
Picard-Fuchs equations for Feynman integrals

Pierre Vanhove

& &

Joint PolSys–SpecFun Seminar
based on work in progress with

Charles Doran, Andrey Novoseltsev

Pierre Vanhove (IPhT& HSE & CERN ) PF for Feynman integrals 07/05/2021 1 / 35

http://ipht.cea.fr
https://ms.hse.ru/en
https://ms.hse.ru/en


p1 p2

p02p01

<latexit sha1_base64="wamjZnkmvP6bFRDiGgtS4qRVkug="></latexit>

Scattering amplitudes are the fundamental
tools for making contact between quantum field
theory description of nature and experiments

I Comparing particule physics model against datas from accelators
I Post-Minkowskian expansion for Gravitational wave physics
I Various condensed matter and statistical physics systems
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Feynman Integrals: parametric representation

Feynman integral are given by projective space integrals

IΓ (ν,D; s,m) =

∫
∆n

UΓ (x)ω−D
2

FΓ (x)ω

n∏
i=1

xνi−1
i Ω0 ω =

n∑
i=1

νi −
D
2

with the volume form on Pn−1

Ω0 =

n∑
i=1

(−1)i−1x idx1 ∧ · · · d̂x i · · ·∧ dxn

The domain of integration is the positive quadrant

∆n := {x1 > 0, . . . , xn > 0|[x1, . . . , xn] ∈ Pn−1}
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Feynman Integrals: parametric representation

The graph polynomial is homogeneous degree L + 1 in Pn−1

FΓ (x) = UΓ (x)× X (m2; x) − VΓ (s, x)

I Homogeneous polynomial of degree L with ua1,...,an ∈ {0,1}

UΓ (x) =
∑

a1+···+an=L
06ai61

ua1,...,an

n∏
i=1

xai
i

I the hyperplane

X (m2; x) :=
n∑

n=1

m2
i xi

I Homogeneous polynomial of degree L + 1

VΓ (x) =
∑

a1+···+an=L+1
06ai61

Sai ,··· ,an

n∏
i=1

xai
i

Sai ,··· ,an are linear combination of the kinematic variables
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Feynman Integrals: parametric representation

The integrand is an algebraic differential form in Hn−1(Pn−1\XΓ ) on
the complement of the graph hypersurface

XΓ := {UΓ (x)× FΓ (x) = 0, x ∈ Pn−1}

I All the singularities of the Feynman integrals are located on the
graph hypersurface

I Generically the graph hypersurface has non-isolated singularities
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Feynman integral and periods

The domain of integration ∆n is not an homology cycle because

∂∆n ∩XΓ = {(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)}

we have to look at the relative cohomology

H•(Pn−1\XΓ ;Dn\Dn ∩XΓ )

The normal crossings divisor Dn := {x1 · · · xn = 0} and XΓ are
separated by performing a series of iterated blowups of the
complement of the graph hypersurface [Bloch, Esnault, Kreimer]
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Differential equation

The Feynman integral are period integrals of the relative cohomology
after performing the appropriate blow-ups

M(s,m2) := H•(P̃n−1\X̃F ; D̃n\D̃n ∩ X̃Γ )

Since the integrand varies with the physical variables {Sai ,m2
1, . . . ,m

2
n}

one needs to study a variation of (mixed) Hodge structure

One can show that the Feynman integral are holonomic D-finite
functions [Bitoun et al.;Smirnov et al.]

A Feynman integrals satisfies inhomogenous differential equations
with respect to any set of variables z ∈ {Sai ,m2

1, . . . ,m
2
n}

LPF IΓ = SΓ

Generically there is an inhomogeneous term SΓ , 0 due to the
boundary components ∂∆n
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Feynman integral D-module

We want to address the questions of how to derive
I How can we derive efficiently the complete system of differential

equations (i.e. the minimal order PF)

LPF IΓ = SΓ

I Of which geometry the Feynman integral are period integrals?
I Understand the algebraic geometry that determines the motive
M(s,m2) leading to the above (D-module) of system of differential
equations ?
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The sunset graphs family
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The sunset family of graph

The graph polynomial for the n − 1-loop sunset with ω = D/2 = 1

F�n (x) = x1 · · · xn
(
φ�n (x) − p2) ; φ�n (x) = ( 1

x1
+ · · ·+ 1

xn

)(
m2

1x1 + · · ·+ m2
nxn
)

The Feynman integral in D = 2 is convergent

I�n (p
2,m2) =

∫
x1>0,...,xn>0

1
p2 − φ�n (x)

n−1∏
i=1

dxi

xi
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The sunset integrals and L-function values

For the special value p2 = m2
1 = · · · = m2

n = 1 the sunset Feynman
integral becomes a pure period integral [Bloch, Kerr, Vanhove]

I�n (1, . . . ,1) =
∫

xi>0

∏n−1
i=1 d log xi

1 −
(

1
x1

+ · · ·+ 1
xn

)
(x1 + · · ·+ xn)

I Using impressive numeric experimentations [Broadhust] found
that I�n (1, . . . ,1) is given by L-function values in the critical band.

I For large n the L-function are from moments Kloosterman sums
over finite fields
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The sunset integrals and L-function values

For the special value p2 = m2
1 = · · · = m2

n = 1 the sunset Feynman
integral becomes a pure period integral [Bloch, Kerr, Vanhove]

I�n (1, . . . ,1) =
∫

xi>0

∏n−1
i=1 d log xi

1 −
(

1
x1

+ · · ·+ 1
xn

)
(x1 + · · ·+ xn)

These special values realise explicitly Deligne’s conjecture relating
period integrals to L-values in the critical band

n = 3: elliptic curve case : I�3 (1, . . . ,1) =
1
2ζ(2)

n = 4: K 3 Picard rank 19 : I�4 (1, . . . ,1) =
12π√

15
L(fK 3,2) [Bloch, Kerr, Vanhove]

I L(fK3 , s) is the L-function of H2(K 3,Q`) [Peters, Top, v. der Vlugt]

I Functional equation L(fK 3, s) ∝ L(fK 3,3 − s)
I fK 3 = η(τ)η(3τ)η(5τ)η(15τ)

∑
m,n qm2+4n2+mn
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The classical sunset period integrals

We can consider the period integral by changing the domain of
integration to the torus Tn = {|x1| = · · · = |xn| = 1}

π�n (p
2,m2) =

1
(2πi)n

∫
Tn

1
p2 − φ�n (x)

n−1∏
i=1

dxi

xi

is given by the series in terms of generalized Apéry numbers near
p2 = ∞
π�n (p

2,m2) =
∑
m>0

(p2)−1−m
∑

r1+···+rn=m

(
(r1 + · · ·+ rn)!

r1! · · · rn!

)2 n∏
i=1

(m2
i )

ri

The series has been studied in the past by [Verrill].

Pierre Vanhove (IPhT& HSE & CERN ) PF for Feynman integrals 07/05/2021 13 / 35



The classical sunset period integrals

The Feynman integral for 0 6 p2 6 (m1 + · · ·+ mn)
2

I�n (p
2,m2) = 2n−1

∫∞
0

uI0(
√

p2u)
n∏

i=1

K0(miu)du

The classical period for p2 > (m1 + · · ·+ mn)
2

π�n (p
2,m2) =

1
2

∫∞
0

uK0(

√
p2u)

n∏
i=1

I0(miu)du

where we have the modified Bessel function of the first kind

I0(z) =
1

2iπ

∫
|t|=1

e− z
2(t+ 1

t )d log t ; K0(z) =
∫+∞

0
e− z

2(t+ 1
t )d log t

There are exponential period integrals in the sense of the non classical
exponential motives of [Fresán, Jossen]. Fascinating quadratic
relations satisfied by the Bessel moments generalizing Riemann
identity [Broadhurst, Roberts; Zhou; Fresán, Jossen, Sabbah, Yu]
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A Fast Approach to Creative Telescoping

Christoph Koutschan

Abstract. In this note we reinvestigate the task of computing creative telescoping relations in
differential-difference operator algebras. Our approach is based on an ansatz that explicitly includes
the denominators of the delta parts. We contribute several ideas of how to make an implementation
of this approach reasonably fast and provide such an implementation. A selection of examples
shows that it can be superior to existing methods by a large factor.

Mathematics Subject Classification (2010). Primary 68W30; Secondary 33F10.
Keywords. holonomic functions, special functions, symbolic integration, symbolic summation,
creative telescoping, Ore algebra, WZ theory.

1. Introduction
The method of creative telescoping nowadays is one of the central tools in computer algebra for
attacking definite integration and summation problems. Zeilberger with his celebrated holonomic
systems approach [17] was the first to recognize its potential for making these tasks algorithmic for
a large class of functions. In the realm of holonomic functions, several algorithms for computing
creative telescoping relations have been developed in the past. The methodology described here is
not an algorithm in the strict sense because it involves some heuristics. But since it works pretty
well on nontrivial examples we found it worth to be written down. Additionally we believe that
it is the method of choice for really big examples. Our implementation is contained in the Mathe-
matica package HolonomicFunctions as the command FindCreativeTelescoping. The
package can be downloaded from the RISC combinatorics software webpage:

http://www.risc.uni-linz.ac.at/research/combinat/software/

Throughout this paper we will work in the following setting. We assume that a function f to
be integrated or summed satisfies some linear difference-differential relations which we represent in
a suitable operator algebra (Ore algebra). We use the symbol Dx to denote the derivation operator
w.r.t. x and Sn for the shift operator w.r.t. n. Such an algebra can be viewed as a polynomial ring
in the respective operators, with coefficients being rational functions in the corresponding variables,
subject to the commutation rules Dxx = xDx +1 and Snn = nSn +Sn. Ideally, all the relations for f
generate a @-finite left ideal, i.e., a zero-dimensional left ideal in the operator algebra. If addition-
ally f is holonomic (a notion that can be made formal by D-module theory), then the existence of
creative telescoping relations is guaranteed by theory (i.e., by the elimination property of holonomic
modules). Chyzak, Kauers, and Salvy [6] have shown that creative telescoping is also possible for
higher-dimensional ideals under certain conditions. We tacitly assume that any input to a creative

supported by NFS-DMS 0070567 as a postdoctoral fellow, and by the Austrian Science Fund (FWF): P20162-N18
The final publication is available at www.springerlink.com, DOI: 10.1007/s11786-010-0055-0.
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We want to derive the differential equation

LPF

∫
Γ

fΓ (S,m2; x)Ω0 = SΓ

For a given subset of the physical parameters
z := (z1, . . . , zr ) ⊂ {S,m2} we want to construct a differential operator
Tz such that

TzΩΓ = 0

such that

Tz = LPF(S,m2,∂z) +

n∑
i=1

∂xi Qi(S,m2∂z ; x ,∂x)
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where the finite order differential operator

LPF(S,m2,∂z) =
∑

06ai6oi
16i6r

pa1,...,ar (S,m2)

r∏
i=1

(
d

dzi

)ai

Qi(S,m2,∂z) =
∑

06ai6o ′i
16i6r

∑
06bi6õi
16i6n

q(i)
a1,...,ar (S,m2, x)

r∏
i=1

(
d

dzi

)ai n∏
i=1

(
d

dxi

)bi

I The orders oi , o ′i , õi are positive integers
I pa1,...,ar (S,m2) polynomials in the kinematic variables

I q(i)
a1,...,ar (S,m2, x) rational functions in the kinematic variable and

the projective variables x .
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Integrating over a cycle γ gives

0 =

∮
γ

Tz fΓΩ0 = LPF(s,m,∂z)

∮
γ

fΓΩ0 +

∮
γ

dβΓ

For a cycle
∮
γ dβΓ = 0 we get

LPF(s,m,∂z)

∮
γ

fΓΩ0 = 0

For the Feynman integral IΓ we have

0 =

∫
∆n

Tz fΓΩ0 = LPF(s,m,∂z)IΓ +
∫
∆n

dβΓ

since ∂∆n , ∅
LPF(s,m,∂z)IΓ = SΓ
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This can done using the creative telescoping method introduced by
Doron Zeilberger (1990) and the algorithm by F. Chyzak because the
Feynman integral are D-finite [Bitoun, Bogner, Klausen, Panzer]

This works in all case even when the graph hypersurface does not
have isolated singularities (which is the generic case)

This algorithm gives the D-module of annihilator and with the
inhomogeneous term

We can use the Creative Telescoping algorithm for exploring the
properties of the Feynman integral. This gives some very useful insight
in the underlying algebraic geometry (order of the PF operators, their
singularities, etc.)
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Application: the multiloop sunset integral in D = 2

In the case of the sunset integral in two dimensions the Bessel
representation is a one-dimensional integral p2 < (m1 + · · ·+ mn)

2

In(p2,m2) = 2n−1
∫∞

0
xI0(

√
p2x)

n∏
i=1

K0(mix) dx ,

and the classical period integral for p2 > (m1 + · · ·+ mn)
2

πn(p2,m2) = 2n−1
∫∞

0
xK0(

√
p2x)

n∏
i=1

I0(mix) dx ,

The Bessel functions I0 and K0 have the same annihilator.
In this case the telescoper reads with
z = {z1, . . . , zr } ⊂ {p2,m2

1, . . . ,m
2
n}

Tz = LPF

(
p2,m,

d
dz

)
+

d
dx

Q
(

p2,m2, x ,
d
dx

,
d

dz

)
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The motivic geometry
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Sunset graphs toric variety Xp2(An) [Verrill]

The sunset graph polynomial

F�n = x1 · · · xn

((
n∑

i=1

m2
i xi

)(
n∑

i=1

1
xi

)
− p2

)

is a character of the adjoint representation of An−1 with support on the
polytope generated by the An−1 root lattice
I The Newton polytope ∆n for F�n is reflexive with only the origin as

interior point
I The toric variety X (An−1) is the graph of the Cremona

transformations Xi → 1/Xi of Pn−1

X (An−1) is obtained by blowing up the strict transform of the
points, lines, planes etc. spanned by the subset of points
(1,0, . . . ,0), (0,1,0, . . . ,0), . . . ,(0, . . . ,0,1) in Pn−1

Pierre Vanhove (IPhT& HSE & CERN ) PF for Feynman integrals 07/05/2021 22 / 35



Two-loop Sunset toric variety X (A2)

(m2
1x1 + m2

2x2 + m2
3x3)(x1x2 + x1x3 + x2x3) = p2x1x2x3

I The toric variety is X (A2) = Bl3(P2) = dP6 blown up at 3 points
I The subfamily of anticanonical hyperspace is non generic

The combinatorial structure of the NEF partition describes
precisely the mass deformations

I True for all n
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Sunset graphs pencils of variety Xp2(An) [Verrill]

For p2 ∈ P1 we define the pencil in the ambient toric variety X (An−1)

Xp2(An−1) = {(p2, x) ∈ P1 × X (An−1)|x1 · · · xn

(
n∑

i=1

m2
i xi

)(
n∑

i=1

1
xi

)
− p2x1 · · · xn = 0}

The fiber at p2 = ∞ is Dn = {x1 · · · xn = 0}

Since Dn is linearly equivalent to the anti-canonical divisor of X (An−1)
the family has trivial canonical divisor: We have a family of (singular)
Calabi-Yau n − 2-fold

This is specific to this family of associated with root lattice of An
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The Iterative fibration
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The Iterative fibration

The sunset family
(∑n

i=1 m2
i xi
) (∑n

i=1
1
xi

)
− p2 = 0 is birational to a

complete intersection variety in Pn

1
x0

+

n∑
i=1

1
xi

= 0; p2x0 +

n∑
i=1

m2
i xi = 0

Obviously X (An−1) is obtained from X (An−2) with the substitutions

1
xn−1

→ 1
xn−1

+
1
xn

; m2
n−1xn−1 → m2

n−1xn−1 + m2
nxn

X (An−1) is fibrered over X (A1) = P
1 with generic fibers X (An−2)

X (An−2)→ X (An−1)→ X (A1) = P
1
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The Iterative fibration

The geometric phenomenon at work that the n-loop sunset
corresponds to a family of Calabi-Yau (n − 1)-folds each of which is a
double cover of the (rational) total space of a family of (n − 1)-loop
sunset Calabi-Yau (n − 2)-folds.

At the level of the integrals this

I�n (p
2,m2) =

∫+∞
0

I�n−1

(
p2,m2, (m2

n−1 + t−1m2
n)(1 + t)

)
d log t

and for the classical period

π�n (p
2,m2) =

1
2iπ

∫
|t|=1

π�n−1

(
p2,m2, (m2

n−1 + t−1m2
n)(1 + t)

)
d log t

This construction allows to understand the geometry and build the PF
operator for all loop orders [Doran, Novoseltsev, Vanhove]
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The two-loop sunset graph [Bloch, Kerr, Vanhove]

The pencil of sunset elliptic curve

Xp2(A2) = {(p2, x) ∈ P2 ×X (A2)|(m2
1x1 + m2

2x2 + m2
3x3)(x1x2 + x1x3 + x2x3) = p2x1x2x3}

The j-invariant is

j�(p2,m2) =

(∏4
i=1(p

2 − µ2
i ) + 16p2 ∏3

i=1 m2
i

)3

(p2)2
∏3

i=1 m4
i
∏4

i=1(p2 − µ2
i )

with µ2
i = (±m1 ±m2 ±m3)

2
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The two-loop sunset graph [Bloch, Kerr, Vanhove]

The j-invariant is

j�(p2,m2) =

(∏4
i=1(p

2 − µ2
i ) + 16p2 ∏3

i=1 m2
i

)3

(p2)2
∏3

i=1 m4
i
∏4

i=1(p2 − µ2
i )

The fibers types are
I Generic case m1 , m2 , m3

I2(0) + I6(∞) + 4I1(µ2
i ); µ2

i = (±m1 ±m2 ±m3)
2

I single mass m1 = m2 = m3 , 0 : modular curve X1(6)

I2(0) + I6(∞) + I3(m2) + I1(9m2)

The Feynman integral is an elliptic dilogarithm [Bloch, Kerr,Vanhove]

H2(P2\{x1x2x3 = 0},X�,Q(2))
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The 3-loop case : pencil of K 3

Xp2(A3) := {(p2, x) ∈ P1×X (A3)|
(
m2

1x1 + m2
2x2 + m2

3x3 + m2
4x4
)( 1

x1
+ · · ·+ 1

x4

)
= p2}

The graph hypersurface defines a K 3 hypersurface
By the iteration we know that this K 3 is elliptically fibered with for fibers
given by the sunset elliptic curve
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The 3-loop case : pencil of K 3 [Doran, Novoseltsev, Vanhove]

Xp2(A3) := {(p2, x) ∈ P1×X (A3)|
(
m2

1x1 + m2
2x2 + m2

3x3 + m2
4x4
)( 1

x1
+ · · ·+ 1

x4

)
= p2}

Generic anticanonical K 3 hypersurface in the toric threefold X∆◦ has
Picard rank 11
The physical locus for the sunset has at least Picard rank 16

masses fibers Mordell-Weil Picard rank
(m4,m1,m2,m3) 8I1 + 2I2 + 2I6 2 16
(m4 = m1,m2,m3) 8I1 + I4 + 2I6 2 17
(m4,m1,m2 = m3) 4I1 + 4I2 + 2I6 1 17
(m4 = m1,m2 = m3) 4I1 + 2I2 + I4 + 2I6 1 18
(m4 = m1 = m2,m3) 8I1 + I4 + 2I6 3 18
(m4,m1 = m2 = m3) 4I1 + 4I2 + 2I6 2 18
(m4 = m1 = m2 = m3) 4I1 + 2I2 + I4 + 2I6 2 19

|Pic| = 19 motive of an elliptic 3-log H3(P3\D4,X4,Q(3)) [Bloch, Kerr, Vanhove]
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The Picard-Fuchs operator

L3

L4

m4=m1

??

L4

m4=m1

__

L5

m3=m1

``
m3=m4

>>

L6

m2=m1

OO

Lr = (α
d

dp2 + β) ◦ Lr−1

The Picard-Fuchs operators for the
Feynman integral for general parameters
m4 , m1 , m2 , m3

L6 =

6∑
r=0

qr (s)
(

d
dp2

)r

is order 6 and degree 25

q6(p2) = q̃6(p2)×∏
εi=±1

(p2 − (ε1m1 + ε2m2 + ε3m3 + ε4m4)
2)

with q̃6(p2) degree 17 with apparent
singularities
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The 4-loop case : pencil of CY 3-fold

Xp2(A4) := {(p2, x) ∈ P1 × X (A4)|
(
m2

1x1 + · · ·+ m2
5x5
)( 1

x1
+ · · ·+ 1

x5

)
= p2}

This gives a pencil of nodal Calabi-Yau 3-fold

For a (small or big) resolution Ŵ is
I h12(Ŵ ) = 5 for the 5 masses case : 30 nodes
I h12(Ŵ ) = 1 for the 1 mass case m1 = · · · = m5 : 35 nodes
I h12(Ŵ ) = 0 for p2 = m1 = · · · = m5 = 1: rigid case birational to

the Barth-Nieto quintic
I�5 (1, . . . ,1) = 48ζ(2)L(f ,2) [Broadhurst]

f weight 4 and level 6 modular form f = (η(τ)η(2τ)η(3τ)η(6τ))2

This L-series is precisely the one for H3(X (A4),Q`) [Verrill]

Functional equation L(f , s) ∝ L(f ,4 − s)
Again we have a manifestation of Deligne’s conjecture
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The 4-loop case : pencil of CY 3-fold

P[5]

P[14]

::

P[23]

dd

P[122]

OO 55

P[123]

ii OO

P[132]

dd ;;

P[15]

OO

The Picard-Fuchs operators for the
Feynman integral for general parameters
m1 , · · · , m5

L12 =

12∑
r=0

qr (s)
(

d
dp2

)r

is order 12 and degree 121
The one identifies two masses the order
of the differential operator decreases by
2

L12 → L10 → L8 → L6 → L4

Lr =

(
α

(
d

dp2

)2

+ β
d

dp2 + γ

)
◦ Lr−2
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Conclusion

� We have put forward a new approach for deriving the differential
equation for Feynman integrals

� We have explained that the sunset graph have a natural nested
Calabi-Yau structure allowing to understand they geometry easily

Generic Feynman graphs is more intricate

# For Feynman graph with deg(F)Γ = L in Pn with n > L + 1 we do
not have a Calabi-Yau

Two-loop motivic elliptic curve for the Hodge structure [Bloch, Doran, Kerr,

Vanhove (work in progress)]: natural classification of the master integral
topologies and algebraic geometry of del Pezzo surfaces
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