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Two research axes

Point counting:
Cryptographic applications:

Constructive: discrete log.
Destructive: VDF
(verifiable-delay functions)

..

Riemann-Roch spaces:
Applications:

Symbolic integration
Arithmetic in Jacobians
Algebraic Geometry codes

Common Denominator:
Algebraic curves
Protection of information
Computer Algebra
Structured problems
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Part I : hyperelliptic point counting

Input: hyperelliptic curve y 2 = f (x) over Fp.
Problem: how many solutions of y 2 = f (x) mod p ?

y 2 = x3 − 2x + 1 over R
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y 2 = x3 − 2x + 1 over F89
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Hyperelliptic point counting

Example: y 2 = x7 − 7x5 + 14x3 − 7x + 42 over F264−59.
Parameters: p, degree of f denoted 2g + 1 (g is the genus).

Polynomial-time algorithms
Input size: O(g log p).
Algorithm polynomial in g log p ?  open problem.

p-adic approaches are polynomial in g . (i.e. (pg)O(1))
`-adic approaches are polynomial in log p. (i.e. (log p)e(g))

Our contributions: large p, exponent of log p depends on g .
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From curves to groups

R

P

Q

P + Q + R = 0

P1

P2 Q1

Q2
R1

R2

P1 + P2 + Q1 + Q2 + R1 + R2 = 0
Curve of equation Y 2 = X5 − 2X4 − 7X3 + 8X2 + 12X

J = Jac(C) is the Jacobian, its elements are formal sums of points.
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From `-adic methods to polynomial systems
Let C : y 2 = f (x) be a hyperelliptic curve over Fq.
Let J be its Jacobian and g its genus. We want N = #J(Fq).

1 (Hasse-Weil) bounds on N ⇒ compute N mod `
2 `-torsion J [`] = {D ∈ J |`D = 0} ' (Z/`Z)2g

3 Action of Frobenius π : (x , y) 7→ (xq, yq) on J [`] yields N mod `

Algorithm a la Schoof
For sufficiently many primes `
Describe I` the ideal of `-torsion
Compute action of π on J [`]
Deduce N mod `

Recover N by CRT

Main tasks: find equations for I` (and bound their degree).
Solve these equations (i.e. find a Gröbner basis for I`).
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Contribution I, genus-3 curves

Asymptotic complexities
Genus Complexity Authors
g = 1 Õ(log4 p) Schoof, Elkies, Atkin (∼1990)
g = 2 Õ(log8 p) Gaudry, Schost (2000)

g = 2, RM curves Õ(log5 p) Gaudry, Kohel, Smith (2011)
g = 3 Õ(log14 p) Our work1

g = 3, RM curves Õ(log6 p) Our work1

Practical experiment1
Curve y 2 = x7 − 7x5 + 14x3 − 7x + 42 over F264−59.
Record computation : 64-bit p, Jacobian has order ∼ 2192.

1A., Gaudry, Spaenlehauer. Proceedings of ANTS 2018
Simon Abelard Structured algorithms 7 / 26



Applications: Verifiable Delay Functions (VDF)

Function f such that:
Evaluation x 7→ f (x) slow and sequential (hard to parallelize).
Verifying that y = f (x) is fast.

Use of VDFs: randomness, power-saving blockchains.

Construction: f (γ) = γ2T , γ in a group of unknown order.

Use case: the group is the Jacobian of a curve.
Point counting  order of the Jacobian, must be infeasible.
Improvement on point counting  threatens security.

Impact of our work:
Choosing safe parameters (p large enough)
Avoid certain weaker curves
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Point-counting in genus 3
Remember: our problem boils down to a polynomial system.

In theory:
6 equations of degree
O(`2)
Solved using trivariate
resultants (good when
few variables, good
complexity results)
Final complexity:
Õ(log14 q)

In practice for ` = 3:
5 equations and variables
degrees ≤ 55
Solved using Gröbner bases (F4 in
Magma): apparently nice structure
but no proven complexity bounds
Runs in 2 weeks using 140 GB of
RAM
` = 5 is out of reach in practice

Culprit: size of `-torsion (`6 in genus 3).
⇒ Look for more favorable curves.
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Tuning Schoof’s algorithm using RM

An RM family (Mestre’91,Tautz-Top-Verberkmoes’91)
Family Ct : y 2 = x7 − 7x5 + 14x3 − 7x + t with t 6= ±2.
−→ hyperelliptic curves of genus 3.
Set η7 root of X 3 + X 2 − 2X − 1, Z[η7] ⊂ End(Jac(Ct)).

Example: (13) = (2− η7 − 2η2
7)(−2 + 2η7 + η2

7)(3 + η7 − η2
7).

The 13-torsion is direct sum of three kernels of endomorphisms.
We model these kernels instead  3 systems with:

5 variables (like ` = 3 before)
5 equations of degrees ≤ 52 (smaller than case ` = 3)

As before, use Gröbner bases in practice (3× 3 days and 41 GB).
In theory: 3 systems but degrees in O(`2/3) instead of O(`2).
Final complexity result: Õ((log q)6) for genus-3 RM hyp. curves.
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A practical example
C42 : y 2 = x7 − 7x5 + 14x3 − 7x + 42 over Fp with p = 264 − 59.

mod `k #var degree bounds time memory
2 — — — —
4 (inert2) 6 15 1 min negl.
3 (inert) 5 55 14 days 140 GB
13 = p1p2p3 5 52 3× 3 days 41 GB

Finishing the computation
Like in genus 2, end with exponential collision search.
[Matsuo-Chao-Tsujii’02,Gaudry-Schost’04,Galbraith-Ruprai’09].
Modular info saves factor 1563/2 ' 1950.
Cost: 105 CPU-days done in a few hours.
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Contribution II, curves of arbitrary genus
With `-adic algorithms : complexity in cg(log p)e(g).

genus g

exponent e(g)
of log p

•-4

•-8

+
1

+
2

•-14

-6

+
3

•

RM curves

•

g ↗ ?

g ↗ ?

g ↗ ?

g ↗ ?

Genus g = 1 g = 2 g = 3
Complexity Õ(log4 p) Õ(log8 p) Õ(log14 p)
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Contribution II, curves of arbitrary genus

Behavior of the exponent when g grows
Adleman-Huang (2001): e(g) ∈ O(g2 log g).

Our work:
Linear bound for exponent2.
Constant exponent in the RM-case3.

Applications:
Algorithmic questions (deterministic polynomial factorization).
Program equivalence (Barthe, Jacomme, Kremer, 2020).

2A., Gaudry, Spaenlehauer. Foundations of Comput. Math., 2019
3A. Journal of Complexity, 2020
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Main ingredient: multihomogeneous structure

Different strategy: describe I` with g2 equations and variables.

g variables

degree in Og(`3)
O(g2) equations

O(g2) variables
O(g2) equations
degree in Og(1)

Geometric resolution
(Giusti-Lecerf-Salvy’01, Cafure-Matera’06)
Assume f1, · · · , fn have degrees ≤ d and
form a reduced regular sequence, and let
δ = maxi deg〈f1, . . . , fi〉. There is an
algorithm computing a geometric resolution
in time polynomial in δ, d , n.

With δ = Og (`3g) bounded by multihomogeneous Bézout bound.
Both d = Og(`3) and n = Og(1) are harmless for our bound.
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Part II: Riemann-Roch spaces

P1

P2

P3

P4

Z

Problem: find all the G(X ,Y )
H(X ,Y ) such that

Z must be a zero of G ,
the Pi can be zeroes of H ,
G/H has no other pole.

Applications: arithmetic in Jacobians, AG codes, etc.

Simon Abelard Structured algorithms 15 / 26



A toy example

Set C = P1, P = [0 : 1], Z = [1 : 1] and D = P − Z .
Previous slide: X−1

X is a solution (one pole in P and one zero in Z ).
Riemann-Roch theorem: X−1

X generates the solution space.

P Z

H(X ,Y ) = 0

P1

Our strategy
Denominator H passes through P.
This means H(X ,Y ) mod X = 0.

Numerators G pass through Z .
It means G(X ,Y ) = 0 mod (X − 1).
We recover the solution X−1

X .
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Divisors and Riemann-Roch spaces

Smooth divisor D: finite formal sum ∑
P mPP of smooth points on C.

Degree of a divisor: deg(D) = ∑
P mP .

Riemann-Roch space L(D): set of rational functions h such that
If mP < 0, P has to be a zero of h with multiplicity ≥ −mP .
If mP > 0, P can be a pole of h with multiplicity ≤ mP .

Remember: zeros constrained by D− and poles allowed by D+.

Our problem:
Given input curve C and smooth divisor D,
Compute a basis of the vector space L(D).
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Geometric vs arithmetic methods

Geometric methods:
Based on Brill-Noether theory.

Goppa, Le Brigand-Risler (80’s)
Huang-Ierardi, Volcheck (90’s)
Khuri-Makdisi (2007)
Le Gluher-Spaenlehauer (2018)

Arithmetic methods:
Ideals in function fields.

Coates (1970)
Davenport (1981)
Hess’s algorithm (2001)

Today: geometric methods
Brill-Noether: belonging conditions for Riemann-Roch spaces.
Conditions  linear systems (Le Gluher, Spaenlehauer, 2018).
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Geometric algorithms (Brill-Noether theory)

Nodal curve Ordinary curve Non-ordinary curve

Our work: conditions  belonging to a K [x ]-module.
Basis of this module through structured linear algebra (Neiger, 2016).
Results: subquadratic algorithms for nodal4 and ordinary5 curves.

4A., Couvreur, Lecerf. Proceedings of ISSAC 2020
5A., Couvreur, Lecerf. Preprint, 2021
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A basis of L(D) through Brill-Noether theory

Effective divisors
D = ∑ miPi is positive or effective if for any i , mi ≥ 0 .
Can split D = D+ − D− as a difference of two effective divisors.
Denote D ≥ D′ whenever D − D′ is effective.

Principal divisor: (h) = ∑
P∈C ordP(h)P (zeros−poles with multiplicity)

A description for L(D) (Haché, Le Brigand-Risler)

Non-zero elements of L(D) are of the form G/H where:
The common denominator H satisfies (H) ≥ D.
H must pass through all the singular points of C.
G is of degree deg H and (G) ≥ (H)− D.
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Sketch of the algorithm

Step 1 Find a denominator H .

Step 2 Compute (H).

Step 3 Compute (H)− D.

Step 4 Compute numerators.
(Very similar to step 1)

P1

Q1 P2

P3
Q2

P4

Steps 2 and 3 are a combination of usual techniques.
Let us focus on the interpolation problem of step 1.
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Finding a denominator in practice

Conditions on H: passing through singularities and (H) ≥ D+.
In primitive form, (H) ≥ D+ ⇔ H(X , v+(X )) = 0 mod χ+(X ).
Passing through singularities: similar equation.

Set d = deg H and write H = ∑d
i=1 hi(X )Y i .

Above conditions on H : the hi ’s are in a K [X ]-module of rank d + 1.

Computing a solution basis (Neiger, 2016)
A basis of this K [X ]-module costs Õ(dω−1 degχ+) field ops.
Problem: d is unknown, we prove an a priori bound.

Overall complexity exponent: (ω + 1)/2.
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Beyond the nodal case
Smooth part: (H) ≥ D+ remains H(X , v(X )) = 0 mod χ(X ).
Singular part: H passes through singularities with multiplicities.

Problems:
How to rephrase Noether’s conditions?
Multiplicities  valuation theory, local expansions.
How to perform the interpolation step?
Naive extension  too many equations, bad complexity.

Complexity bounds
Ordinary case5 : same as nodal (exponent (ω + 1)/2).
General case: ongoing work, target exponent ω first.

5A., Couvreur, Lecerf. Preprint, 2021
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Prospective
Point-counting in genus 2 and 3:

I New algorithms for bivariate resultants
I Improve Gröbner-based approach (symmetry, further structure)

Riemann-Roch spaces:
I Implement fast algorithms through solution bases
I Handle the non-ordinary case

Develop a toolbox for efficient AG codes:
I Algorithms for encoding/decoding
I New choice of curves based on applications

Thank you for your attention!
Simon Abelard Structured algorithms 24 / 26



Appendix: faster resultants in point-counting
Villard’s algorithm for bivariate resultants

Genus Usual resultants Villard’s algorithm With ω = 2.8
g = 2 Õ(log8 q) Õ((log q)8−2/ω) Õ((log q)7.3)

g = 2 RM Õ(log5 q) Õ((log q)5−1/ω)∗ Õ((log q)4.6)∗
g = 3 Õ(log14 q) Õ((log q)14−4/ω) Õ((log q)12.6)

g = 3 RM Õ(log6 q) Õ((log q)6−4/(3ω)) Õ((log q)5.5)

Using van der Hoeven and Lecerf’s algorithm
Genus Usual resultants van der Hoeven - Lecerf
g = 2 Õ(log8 q) Õ((log q)6)

g = 2 RM Õ(log5 q) Õ((log q)4)∗
g = 3 Õ(log14 q) Õ((log q)10)

g = 3 RM Õ(log6 q) Õ((log q)2+8/3)
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