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Scattering amplitudes are the fundamental

tools for making contact between quantum field
P & theory description of nature and experiments

» Comparing particule physics model against datas from accelators
» Post-Minkowskian expansion for Gravitational wave physics
> Various condensed matter and statistical physics systems
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Feynman Integrals: parametric representation

Feynman integral are given by projective space integrals

D n n

Ur(x)® 2 . D

kv Dism = ST w=Y v g
n - j=

with the volume form on "'

n
Qo =) (1) "xdx' A--dxi- - A ax"
i=1

An :{X1 >011Xn>o|[x1vyxn] eﬂ)nf‘l}
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Feynman Integrals: parametric representation

The graph polynomial is homogeneous degree L + 1 in P
Fr(x) = Ur(x) x X(m?; x) — Vr(s, X)

» the hyperplane
X(m?; x) =Y mix
n=1
» Homogeneous polynomial of degree L + 1

n
Vr(x) = Z Sz, an HX,'ai
i=1

aq+--+an=L+1
0<a;<1
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Feynman Integrals: parametric representation

The integrand is an algebraic differential form in H”~ ' (IP"~"\X}) on
the complement of the graph hypersurface

Xr == {Ur(x) x Fr(x) =0,x € P" "}

» Generically the graph hypersurface has non-isolated singularities
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Feynman integral and periods

The domain of integration A, is not an homology cycle because
oA, NXr ={(1,0,..., 0),(0,1,0,..., 0),..., o,..., 0,1)}
we have to look at the relative conomology
H® (P" "\ Xr; 1o\l N Xr)

The normal crossings divisor /1, :={xq - - - x, = 0} and X are
separated by performing a series of iterated blowups of the
complement of the graph hypersurface i, esnaut, kreimen
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Differential equation

The Feynman integral are period integrals of the relative cohomology
after performing the appropriate blow-ups

M(s, mP) := H* (P=\Xr; I\ I 1 Xr)
Since the integrand varies with the physical variables {S;, ms, ..., m2}

one needs to study a variation of (mixed) Hodge structure

One can show that the Feynman integral are holonomic D-finite
functions [Bitoun et al.;Smirnov et al.]

A Feynman integrals satisfies inhomogenous differential equations
with respect to any set of variables z < {S,,, m?, ..., m2}
Lprlr =38r

Generically there is an inhomogeneous term S # 0 due to the
boundary components 0A,

Pierre Vanhove (IPhT& HSE & CERN) PF for Feynman integrals 07/05/2021 7/35



Feynman integral D-module

We want to address the questions of how to derive

» How can we derive efficiently the complete system of differential
equations (i.e. the minimal order PF)

J\‘,p]: lr — 8]"

» Of which geometry the Feynman integral are period integrals?

> Understand the algebraic geometry that determines the motive
9i(s, m?) leading to the above (D-module) of system of differential
equations ?
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The sunset graphs family
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The sunset family of graph

The graph polynomial for the n— 1-loop sunset with w = D/2 = 1

FEx) = X1+ Xp (PF(X) — P?); S(x) = <):1 ot ;n) (Mexy + - -+ mPxp)

The Feynman integral in D = 2 is convergent
n—1

1 ax;
l@ 2v m2 _ J bl
n(p", o) x>0 P2 — 7 (X) H Xi

X1>O ----- =1

Pierre Vanhove (IPhT& HSE & CERN) PF for Feynman integrals 07/05/2021 10/35



The sunset integrals and / -function values

For the special value p?> = m? = --- = m? = 1 the sunset Feynman
integral becomes a pure period integral ioch, kerr, vanhove]

© _ 7;11d|0gxi
R, 1) = 1 1
x,>01_(z+...+7n) (X1+---+Xn)

» Using impressive numeric experimentations [Broadhust] found
that 19(1, ..., 1) is given by L-function values in the critical band.

» For large nthe L-function are from moments Kloosterman sums
over finite fields
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The sunset integrals and / -function values

For the special value p?> = m? = - .- = m? = 1 the sunset Feynman
integral becomes a pure period integral (sioch, kerr, vanhove]

—1
J i1 dlogX;
x,->01—(xl+---+xln) (X1 + -+ Xn)

1

These special values realise explicitly Deligne’s conjecture relating
period integrals to L-values in the critical band

n = 3: elliptic curve case : [(1, ..., 1) =%¢(2)
n= 4: K3 Plcard rank 19 . I?(1 ..... 1) — %L(f;{:g, 2) [Bloch, Kerr, Vanhove]

> L(fKS, S) is the L-function of H2(K3, Qe) [Peters, Top, v. der Vlugt]
> Functional equation L(fxs3, s) o< L(fx3,3 — 5)

> fka =n(T(BUN(ETIN(15T) ¥, , g™ 47
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The classical sunset period integrals

We can consider the period integral by changing the domain of
integration to the torus T, = {[x;| = -+ =[x, = 1}

1 1
T 2,m2 _ : J' AT
P = (o oy, 2 — 6500 1

is given by the series in terms of generalized Apéry numbers near
p? = oo

2 n

(p2'm2): Z(pZ)*Pm Z <(r1++rn)l> H[m;?)r/

rlry!
m>0 F-e ot lp=m 1 " i—1

The series has been studied in the past by (verriii].
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The classical sunset period integrals
The Feynman integral for 0 < p° < (my + -+ m,)?
n
ulp(\/P2u) | | Kolmiu)du
i=1

The classical period for p° > (my + -+ my)?

1 [ n
3l ) = 5 | ukol y/p2u T | bimudu
i=1
where we have the modified Bessel function of the first kind

+oo
0

(02, mP?) = 271 L

Io(2) J e :tt)diogt; Ko(2)
[t|=1

There are exponential period integrals in the sense of the non classical

exponential motives of [Fresan, Jossen]. Fascinating quadratic

relations satisfied by the Bessel moments generalizing Riemann

identity [Broadhurst, Roberts; Zhou; Freséan, Jossen, Sabbah, Yu]
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Creative Telescoping

A Fast Approach to Creative Telescoping

Algorithmes Efficaces
en Calcul Formel

Alin BostaN
Frédéric Cuyzax
Marc Grusti
Romain LesreTon
Grégoire Lecerr
Bruno SaLvy

Eric Scuost
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We want to derive the differential equation

Lpp J fr (S, m?; x)Qq = 8r
I

For a given subset of the physical parameters

zZ=(zi, ..., z,) € {S, m?} we want to construct a differential operator
T, such that

such that
n
Tz =Lpe(S, M7, 0,) + ) 0,Qi(S M3, x, 0y)
i=1
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where the finite order differential operator

r aj
P d I
/QPH@vaQ;} = Z Pa;...., a,(§,m2)H <d2>
. !

) r d\a " d b;
QS ma)= Y > ai. a,(S,mZ,x)H<dZi> H(dx,-)

Oga,’goi/ 0<b; <9 = i=1
1<igr 1sisn

» The orders 0;, 0/, 0; are positive integers
> Da . 2 (S, m?) polynomials in the kinematic variables

the projective variables x.
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Integrating over a cycle vy gives

0 :§ TfrQo = Lpr(s, m, Oz)ii;
9

v

Qo +j€ dpr

.
Foracycle § dpr =0 we get
Lpr(S, m, az)% frQp=0
Y
For the Feynman integral /- we have

OZJ Tzerozﬁl)ls(S,myaz)/r-i—J dpr
n A

n

since 0A, # ()
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This can done using the creative telescoping method introduced by
Doron Zeilberger (1990) and the algorithm by F. Chyzak because the
Feynman integral are D-finite [(Bitoun, Bogner, Klausen, Panzer]

This works in all case even when the graph hypersurface does not
have isolated singularities (which is the generic case)

This algorithm gives the D-module of annihilator and with the
inhomogeneous term

We can use the Creative Telescoping algorithm for exploring the
properties of the Feynman integral. This gives some very useful insight
in the underlying algebraic geometry (order of the PF operators, their
singularities, etc.)
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Application: the multiloop sunset integral in

In the case of the sunset integral in two dimensions the Bessel
representation is a one-dimensional integral p° < (my + -+ m,)?

In(p2,m2) — on—1 JOO Xlo( \/[;X) H Ko(mix) dx,
i1

0

and the classical period integral for p > (my + - + m,)?
00 n
ol ) =271 | kil \/2) T (i) o,
i=1

The Bessel functions Iy and K, have the same annihilator.
In this case the telescoper reads with
z={z,..., z b C{p?, m?, ..., m?2}

d d d d
S 2 2 2
T; = Lpr <p,m,dz>+dxa< ,me, X, dx,dz>
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The motivic geometry
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Sunset graphs toric variety

The sunset graph polynomial

o (£ ) (£.2) )

is a character of the adjoint representation of A, { with support on the
polytope generated by the A,_1 root lattice

» The Newton polytope A, for F§ is reflexive with only the origin as
interior point

» The toric variety X(A,_1) is the graph of the Cremona
transformations X; — 1/X; of P
X(An_1) is obtained by blowing up the strict transform of the
points, lines, planes etc. spanned by the subset of points
(1,0,..., 0), (0,1,0,..., 0),...,(0,..., 0,1)in P!
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Two-loop Sunset toric variety

(Maxy + Maxa + M3X3) (X1 X2 + X1 X3 + XoX3) = PPX1X2X3

LyL,

» The toric variety is X(Az) = Bls(IP?) = dPg blown up at 3 points
» The subfamily of anticanonical hyperspace is non generic
The combinatorial structure of the NEF partition describes
precisely the mass deformations
> True for all n
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Sunset graphs pencils of variety

For p? « P we define the pencil in the ambient toric variety X (A, 1)

n

X2 (A1) ={(P?, X) € P! x X(An_1)IX1 - Xn <Zm x,> (Z ;) — PPy -+ Xp = 0}

i=1

The fiber at p° = oo is 11, = {xy - - - x,, = 0}

Since 11, is linearly equivalent to the anti-canonical divisor of X(A,_1)
the family has trivial canonical divisor: We have a family of (singular)
Calabi-Yau n— 2-fold

This is specific to this family of associated with root lattice of A,
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The lterative fibration
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The lterative fibration

The sunset family (37, m?x;) (ZL %) — p? =0 is birational to a
complete intersection variety in P

1 &1 4
7+Z;:O, p2X0—|—Zm,'2X,':O
0 =7 i=1

Obviously X(A, 1) is obtained from X(A, ») with the substitutions

1 1 l 2 2 2
— + y mn_1Xn,1 — mn_-Ian'] + man
Xn—1 Xn—1  Xn

X(A,_1) is fibrered over X(A;) = P! with generic fibers X(A,_5)

X(An2) = X(Ap1) = X(Ay) =P
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The lterative fibration

The geometric phenomenon at work that the n-loop sunset
corresponds to a family of Calabi-Yau (n— 1)-folds each of which is a
double cover of the (rational) total space of a family of (n— 1)-loop
sunset Calabi-Yau (n— 2)-folds.

At the level of the integrals this

“+o00
I5(p?, m?) :J Iy (pz,mz, (M2 +t7'"m2)(1 + t)) dlogt
0

and for the classical period

1 .
5 (p%, mP) = %J”H o, (pz,mz, (m?2 ,+t"Tm2)(1 +t)) dlog t

This construction allows to understand the geometry and build the PF
operator for all loop orders [Doran, Novoseltsev, Vanhovel]
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The two-loop sunset graph

ms3
my

The pencil of sunset elliptic curve

X2 (Az) = {(P?, X) € P? x X(Ax)|(MEx1 + MBXo + M5Xs) (X1 X2 + X1 X3 + XoX3) = PP X1 XoXs}
The j-invariant is
(ITh (02— 12) + 16p2 T T7 m?)s
(PP2TTE g mt T (PP — n)

with u? = (£my + mp + mg)?

j@(pzr mz) -
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The two-loop sunset graph

The j-invariant is

2

3
P ) — (H?:1 (p* — u2) + 16p? H?:1 m‘?)
(02, m?) =

(P22 TTEy mt Ty (02 — u2)

The fibers types are
» Generic case my # Mo # Mx

lo(0) + lg(00) + 41 (12); uZ = (£my £ mp £+ mg)?
> single mass m; = m, = ms # 0 : modular curve X; (6)

1(0) + lg(c0) + l(m?) + I (9m?)

The Feynman integral is an elliptic dilogarithm sioch, kerrvanhove]

H?(IP2\{x; x2x3 = 0}, Xo, Q(2))
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The 3-loop case : pencil of

1 1
xpz (A3) == {(p{x) c P! x X(Az)] (mfx1 + m§X2 + mng + m§x4) (X—1 R Z) _ p2}

The graph hypersurface defines a K3 hypersurface
By the iteration we know that this K3 is elliptically fibered with for fibers
given by the sunset elliptic curve

regular fiber singular fiber
@ @ total space K3

teP!
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The 3-loop case : pencil of

R
\-/
1 1
Xy )= (0P, 20 € P X1Ao) (s + mBo+ i+ ) (ot o) =)

Generic anticanonical K3 hypersurface in the toric threefold Xa- has

Picard rank 11
The physical locus for the sunset has at least Picard rank 16

masses fibers Mordell-Weil | Picard rank
(m4,m1,m2,m3) 8/1 +2Ig+2l6 2 16
(m4:m1,m2,m3) 8l + Iy + 2 2 17
(m4 my, My = m3) 4/1 +4I2 + 2’6 1 17
(m47m1 ms = mg) 4l + 2 + Iy + 215 1 18
(m47m1 mg,mg) 8/1 +l4+2/6 3 18
(M4, My = My = ms) 4l + 4l + 215 2 18
(m 7m1:m2:m3) 4/1+2/2+l4+2/5 2 19

‘P/C‘ — 19 m0t|Ve Of an e||lptIC 3-|Og HS(]PS\H4, X4, Q(3)) [Bloch, Kerr, Vanhove]
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The Picard-Fuchs operator

The Picard-Fuchs operators for the
Ls Feynman integral for general parameters
My # My # Mo + M3

mag=mj m4:Q
Ly Ly r

m\s—fm msfé Z arls < d,D2 >

Ls is order 6 and degree 25
e 6 (p?) = Gs(p?) %
L6 H (PZ* (ermy +€2m2+€3m3+€4m4)2)
ej==+1
L, = (OCdde +B)olL, 4 with gg(p?) degree 17 with apparent

singularities
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The 4-loop case : pencil of CY 3-fold

1
X2 (As) = {(P? X) € P x X(A4)| (mixy + - - - + mixs) (71 4+ + X—5> =p*}

This gives a pencil of nodal Calabi-Yau 3-fold

For a (small or big) resolution I/ is
> h'2(W) = 5 for the 5 masses case : 30 nodes
> h'2(W) =1 for the 1 mass case my = --- = ms : 35 nodes

> h'2(W) =0for p? = my =--- = ms = 1: rigid case birational to
the Barth-Nieto quintic

/?(1 ..... 1) = 48C(2)L(f, 2) [Broadhurst]

f weight 4 and level 6 modular form f = (1(t)n(27t)n (31 (67))?

This L-series is precisely the one for H>(X(A;), O¢) veri

Functional equation L(f,s) oc L(f,4 —s)

Again we have a manifestation of Deligne’s conjecture
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The 4-loop case : pencil of CY 3-fold

The Picard-Fuchs operators for the
Feynman integral for general parameter:
my #---#Mms

pls]
/ \ r
pli4] pl23] Liz = Z ar(s (dp2>
T >< T is order 12 and degree 121
pli22] pl123)  The one identifies two masses the order
\ / of the differential operator decreases by
2

pl132]
T Lio = Lig — Lg — Lg — Ly

pLr°) d\° ,d
Lr: <06<dp2> +de2 Y OLr—Z
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Conclusion

3t We have put forward a new approach for deriving the differential
equation for Feynman integrals

3t We have explained that the sunset graph have a natural nested
Calabi-Yau structure allowing to understand they geometry easily

Generic Feynman graphs is more intricate

& For Feynman graph with deg(F)r = Lin IP” with n > L + 1 we do
not have a Calabi-Yau
e Two-loop motivic elliptic curve for the Hodge structure (sioch, boran, kerr,
vanhove (work in progress)): Natural classification of the master integral
topologies and algebraic geometry of del Pezzo surfaces
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