Separating Variables in Bivariate Polynomial Ideals

Manfred Buchacher

joint work with Manuel Kauers and Gleb Pogudin

Given an ideal $I \subseteq \mathbb{K}[x,y]$, compute $I \cap (\mathbb{K}[x] + \mathbb{K}[y])$.

Given an ideal $I \subseteq \mathbb{K}[x, y]$, compute $I \cap (\mathbb{K}[x] + \mathbb{K}[y])$.

Why is the problem interesting?

Given an ideal $I \subseteq \mathbb{K}[x, y]$, compute $I \cap (\mathbb{K}[x] + \mathbb{K}[y])$.

Why is the problem interesting?

Intersection of K-algebras.

Let $u,v\in\mathbb{K}[t_1,\ldots,t_n]$. The intersection $\mathbb{K}[u]\cap\mathbb{K}[v]$ can be computed by determining pairs $(f,g)\in\mathbb{K}[x]\times\mathbb{K}[y]$ such that f(u)=g(v), i.e. such that $f(x)-g(y)\in\langle x-u,y-v\rangle\cap\mathbb{K}[x,y]$.

Given an ideal $I \subseteq \mathbb{K}[x,y]$, compute $I \cap (\mathbb{K}[x] + \mathbb{K}[y])$.

Why is the problem interesting?

Intersection of \mathbb{K} -algebras.

Let $u,v\in\mathbb{K}[t_1,\ldots,t_n]$. The intersection $\mathbb{K}[u]\cap\mathbb{K}[v]$ can be computed by determining pairs $(f,g)\in\mathbb{K}[x]\times\mathbb{K}[y]$ such that f(u)=g(v), i.e. such that $f(x)-g(y)\in\langle x-u,y-v\rangle\cap\mathbb{K}[x,y]$.

An elimination procedure for Laurent series as in Mireille Bousquet-Mélou's proof of the algebraicity of the generating function of Gessel's walks.

Let $p \in \mathbb{K}[x,y]$. It is **seperated**, if there is a $(f,g) \in \mathbb{K}[x] \times \mathbb{K}[y]$ such that

$$p = f - g$$
.

Let $p \in \mathbb{K}[x,y]$. It is **seperated**, if there is a $(f,g) \in \mathbb{K}[x] \times \mathbb{K}[y]$ such that

$$p = f - g$$
.

It is **separable**, if there is a $q \in \mathbb{K}[x,y] \setminus \{0\}$ such that qp is separated.

3

Let $p \in \mathbb{K}[x,y]$. It is **seperated**, if there is a $(f,g) \in \mathbb{K}[x] \times \mathbb{K}[y]$ such that

$$p = f - g$$
.

It is **separable**, if there is a $q \in \mathbb{K}[x,y] \setminus \{0\}$ such that qp is separated.

Let $I \subseteq \mathbb{K}[x, y]$ be an ideal. Then

$$A(I) := \{(f, g) \in \mathbb{K}[x] \times \mathbb{K}[y] \mid f - g \in I\}$$

is the algebra of separated polynomials of I.

Let $p \in \mathbb{K}[x,y]$. It is **seperated**, if there is a $(f,g) \in \mathbb{K}[x] \times \mathbb{K}[y]$ such that

$$p = f - g$$
.

It is **separable**, if there is a $q \in \mathbb{K}[x,y] \setminus \{0\}$ such that qp is separated.

Let $I \subseteq \mathbb{K}[x, y]$ be an ideal. Then

$$A(I) := \{(f, g) \in \mathbb{K}[x] \times \mathbb{K}[y] \mid f - g \in I\}$$

is the algebra of separated polynomials of I.

Problem

Given generators of an ideal $I \subseteq \mathbb{K}[x,y]$, determine a set of generators for the algebra A(I) of separated polynomials.

3

Examples

Is the polynomial $x^3 - y^3$ separable?

Is the polynomial $x^3 - y^3$ separable?

Yes. It is even separated.

Is the polynomial $x^3 - y^3$ separable?

Yes. It is even separated.

The associated algebra of separated polynomials is

$$A(\langle x^3 - y^3 \rangle) = \mathbb{K}[(x^3, y^3)].$$

Is
$$x^2 + xy + y^2$$
 separable?

Is
$$x^2 + xy + y^2$$
 separable?

Yes, because
$$(x-y)(x^2 + xy + y^2) = x^3 - y^3$$
.

Is
$$x^2 + xy + y^2$$
 separable?

Yes, because
$$(x-y)(x^2 + xy + y^2) = x^3 - y^3$$
.

The associated algebra of separated polynomials is

$$A(\langle x^2 + xy + y^2 \rangle) = \mathbb{K}[(x^3, y^3)].$$

Is $x(x^2 + xy + y^2)$ still separable?

ls $x(x^2 + xy + y^2)$ still separable?

No. It is a multiple of x and involves y.

7

Is $x(x^2 + xy + y^2)$ still separable?

No. It is a multiple of x and involves y.

The algebra of separated polynomials is

$$A(\langle x(x^2+xy+y^2)\rangle) = \mathbb{K}[(1,1)].$$

7

What is A(I) for the ideal I generated by

$$(x^2-xy+y^2)(x^3-2xy^2-1)$$
 and $(x^2-xy+y^2)(y^3-2x^2y-1)$?

What is A(I) for the ideal I generated by

$$(x^2-xy+y^2)(x^3-2xy^2-1)$$
 and $(x^2-xy+y^2)(y^3-2x^2y-1)$?

A list of generators for A(I) is x

$$(x^{12}-2x^6, y^{12}-2y^6),$$

$$(9x^{15} - 26x^9 + 17x^3, 9y^{15} - 26y^9 + 17y^3),$$

$$(81x^{18} - 323x^6, 81y^{18} - 323y^6),$$

$$(81x^{21} - 539x^9 + 458x^3, 81y^{21} - 539y^9 + 458y^3).$$

1 Write $I = I_0 \cap I_1$ with I_0 zero-dimensional and I_1 principal.

- **1** Write $I = I_0 \cap I_1$ with I_0 zero-dimensional and I_1 principal.
- **2** Compute generators of $A(I_0)$ via Gröbner basis computations and linear algebra.

- 1 Write $I = I_0 \cap I_1$ with I_0 zero-dimensional and I_1 principal.
- **2** Compute generators of $A(I_0)$ via Gröbner basis computations and linear algebra.
- **3** Compute generators of $A(I_1)$ by making a suitable ansatz and linear algebra.

- **1** Write $I = I_0 \cap I_1$ with I_0 zero-dimensional and I_1 principal.
- **2** Compute generators of $A(I_0)$ via Gröbner basis computations and linear algebra.
- **3** Compute generators of $A(I_1)$ by making a suitable ansatz and linear algebra.
- **4** Compute the intersection $A(I) = A(I_0) \cap A(I_1)$.

Zero-Dimensional Ideals

$$p, q \in \mathbb{K}[x, y] \setminus \{0\}$$
 such that

$$I\cap \mathbb{K}[x]=\langle p\rangle \quad \text{and} \quad I\cap \mathbb{K}[y]=\langle q\rangle.$$

$$p, q \in \mathbb{K}[x, y] \setminus \{0\}$$
 such that

$$I \cap \mathbb{K}[x] = \langle p \rangle$$
 and $I \cap \mathbb{K}[y] = \langle q \rangle$.

Clearly,

$$\mathbb{K}[x]\cdot(p,0)+\mathbb{K}[y]\cdot(0,q)\subseteq A(I).$$

$$p, q \in \mathbb{K}[x, y] \setminus \{0\}$$
 such that

$$I \cap \mathbb{K}[x] = \langle p \rangle$$
 and $I \cap \mathbb{K}[y] = \langle q \rangle$.

Clearly,

$$\mathbb{K}[x] \cdot (p,0) + \mathbb{K}[y] \cdot (0,q) \subseteq A(I).$$

Consequently,

$$(f,g) \in A(I) \quad \Longleftrightarrow \quad (\operatorname{rem}(f,p),\operatorname{rem}(g,q)) \in A(I).$$

$$p, q \in \mathbb{K}[x, y] \setminus \{0\}$$
 such that

$$I \cap \mathbb{K}[x] = \langle p \rangle$$
 and $I \cap \mathbb{K}[y] = \langle q \rangle$.

Clearly,

$$\mathbb{K}[x] \cdot (p, 0) + \mathbb{K}[y] \cdot (0, q) \subseteq A(I).$$

Consequently,

$$(f,g) \in A(I) \iff (\operatorname{rem}(f,p),\operatorname{rem}(g,q)) \in A(I).$$

It is therefore sufficient to find all pairs $(f,g) \in A(I)$ with

$$\deg_x f < \deg_x p \quad \text{and} \quad \deg_y g < \deg_y q.$$

Algorithm

Algorithm

Input: $I \subseteq \mathbb{K}[x, y]$ of dimension zero.

Output: generators of A(I).

Algorithm

Input: $I \subseteq \mathbb{K}[x, y]$ of dimension zero.

Output: generators of A(I).

1 If $I = \langle 1 \rangle$, return $\{(1,0),(x,0),(0,1),(0,y)\}$.

Input: $I \subseteq \mathbb{K}[x, y]$ of dimension zero.

- 1 If $I = \langle 1 \rangle$, return $\{(1,0), (x,0), (0,1), (0,y)\}$.
- 2 Compute $p \in \mathbb{K}[x]$ and $q \in \mathbb{K}[y]$ such that

$$I \cap \mathbb{K}[x] = \langle p \rangle$$
 and $I \cap \mathbb{K}[y] = \langle q \rangle$.

Input: $I \subseteq \mathbb{K}[x, y]$ of dimension zero.

Output: generators of A(I).

- 1 If $I = \langle 1 \rangle$, return $\{(1,0), (x,0), (0,1), (0,y)\}$.
- 2 Compute $p \in \mathbb{K}[x]$ and $q \in \mathbb{K}[y]$ such that

$$I \cap \mathbb{K}[x] = \langle p \rangle$$
 and $I \cap \mathbb{K}[y] = \langle q \rangle$.

3 Make an ansatz $h = \sum_{i=0}^{\deg_x p-1} a_i x^i - \sum_{j=0}^{\deg_y q-1} b_j y^j$ with undetermined coefficients a_i, b_j .

Input: $I \subseteq \mathbb{K}[x, y]$ of dimension zero.

- 1 If $I = \langle 1 \rangle$, return $\{(1,0), (x,0), (0,1), (0,y)\}$.
- 2 Compute $p \in \mathbb{K}[x]$ and $q \in \mathbb{K}[y]$ such that

$$I \cap \mathbb{K}[x] = \langle p \rangle$$
 and $I \cap \mathbb{K}[y] = \langle q \rangle$.

- 3 Make an ansatz $h = \sum_{i=0}^{\deg_x p-1} a_i x^i \sum_{j=0}^{\deg_y q-1} b_j y^j$ with undetermined coefficients a_i, b_j .
- 4 Compute the normal form of h with respect to a Gröbner basis of I and equate its coefficients to zero.

Input: $I \subseteq \mathbb{K}[x,y]$ of dimension zero.

- 1 If $I = \langle 1 \rangle$, return $\{(1,0), (x,0), (0,1), (0,y)\}$.
- 2 Compute $p \in \mathbb{K}[x]$ and $q \in \mathbb{K}[y]$ such that

$$I \cap \mathbb{K}[x] = \langle p \rangle$$
 and $I \cap \mathbb{K}[y] = \langle q \rangle$.

- 3 Make an ansatz $h = \sum_{i=0}^{\deg_x p-1} a_i x^i \sum_{j=0}^{\deg_y q-1} b_j y^j$ with undetermined coefficients a_i, b_j .
- 4 Compute the normal form of h with respect to a Gröbner basis of I and equate its coefficients to zero.
- 5 Solve the resulting linear system over \mathbb{K} for the unknowns a_i, b_j and let $(f_1, g_1), \ldots, (f_d, g_d)$ be the pairs of polynomials corresponding to a basis of the solution space.

Input: $I \subseteq \mathbb{K}[x,y]$ of dimension zero.

- 1 If $I = \langle 1 \rangle$, return $\{(1,0), (x,0), (0,1), (0,y)\}$.
- 2 Compute $p \in \mathbb{K}[x]$ and $q \in \mathbb{K}[y]$ such that

$$I \cap \mathbb{K}[x] = \langle p \rangle$$
 and $I \cap \mathbb{K}[y] = \langle q \rangle$.

- Make an ansatz $h = \sum_{i=0}^{\deg_x p-1} a_i x^i \sum_{j=0}^{\deg_y q-1} b_j y^j$ with undetermined coefficients a_i, b_j .
- 4 Compute the normal form of h with respect to a Gröbner basis of I and equate its coefficients to zero.
- 5 Solve the resulting linear system over \mathbb{K} for the unknowns a_i, b_j and let $(f_1, g_1), \ldots, (f_d, g_d)$ be the pairs of polynomials corresponding to a basis of the solution space.
- 6 Return $(f_1, g_1), \ldots, (f_d, g_d), (p, 0), \ldots, (x^{\deg_x p-1}p, 0), (0, q), \ldots, (0, y^{\deg_y q-1}q).$

Principal Ideals

$$p\in \mathbb{K}[x,y]\setminus (\mathbb{K}[x]\cup \mathbb{K}[y]).$$

$$p \in \mathbb{K}[x,y] \setminus (\mathbb{K}[x] \cup \mathbb{K}[y]).$$

Proposition [Fried and MacRae, 1969]

If p is separable, then there is a separated multiple which divides any other separated multiple of it.

$$p \in \mathbb{K}[x,y] \setminus (\mathbb{K}[x] \cup \mathbb{K}[y]).$$

Proposition [Fried and MacRae, 1969]

If p is separable, then there is a separated multiple which divides any other separated multiple of it.

Proposition [Fried and MacRae, 1969]

Let f, g, F, G be nonconstant polynomials. Then f(x) - g(y) divides F(x) - G(y) if and only if there is a polynomial r such that

$$F = r \circ f$$
 and $G = r \circ g$.

$$p \in \mathbb{K}[x, y] \setminus (\mathbb{K}[x] \cup \mathbb{K}[y]).$$

Proposition [Fried and MacRae, 1969]

If p is separable, then there is a separated multiple which divides any other separated multiple of it.

Proposition [Fried and MacRae, 1969]

Let f, g, F, G be nonconstant polynomials. Then f(x) - g(y) divides F(x) - G(y) if and only if there is a polynomial r such that

$$F = r \circ f$$
 and $G = r \circ g$.

Theorem

If I is principal, then A(I) is simple.

A function ω from the set of monomials in x and y to \mathbb{R} is called a **weight function** if there are $\omega_x, \omega_y \in \mathbb{Z}_{>0}$ such that $\omega(x^iy^j) = \omega_x i + \omega_y j$ for all $i, j \in \mathbb{Z}_{\geq 0}$.

A function ω from the set of monomials in x and y to \mathbb{R} is called a **weight function** if there are $\omega_x, \omega_y \in \mathbb{Z}_{>0}$ such that $\omega(x^iy^j) = \omega_x i + \omega_y j$ for all $i, j \in \mathbb{Z}_{\geq 0}$.

The sum of terms of p of maximal weight is denoted by $\mathrm{lp}_{\omega}(p).$

A function ω from the set of monomials in x and y to \mathbb{R} is called a **weight function** if there are $\omega_x, \omega_y \in \mathbb{Z}_{>0}$ such that $\omega(x^iy^j) = \omega_x i + \omega_y j$ for all $i, j \in \mathbb{Z}_{\geq 0}$.

The sum of terms of p of maximal weight is denoted by $lp_{\omega}(p)$.

Theorem

If p is separable and P is its minimal separated multiple, then there is a unique weight function ω such that

A function ω from the set of monomials in x and y to \mathbb{R} is called a **weight function** if there are $\omega_x, \omega_y \in \mathbb{Z}_{>0}$ such that $\omega(x^iy^j) = \omega_x i + \omega_y j$ for all $i, j \in \mathbb{Z}_{\geq 0}$.

The sum of terms of p of maximal weight is denoted by $\mathrm{lp}_{\omega}(p)$.

Theorem

If p is separable and P is its minimal separated multiple, then there is a unique weight function ω such that

(a) $\operatorname{lp}_{\omega}(p)$ involves at least two monomials, and

A function ω from the set of monomials in x and y to \mathbb{R} is called a **weight function** if there are $\omega_x, \omega_y \in \mathbb{Z}_{>0}$ such that $\omega(x^iy^j) = \omega_x i + \omega_y j$ for all $i, j \in \mathbb{Z}_{\geq 0}$.

The sum of terms of p of maximal weight is denoted by $lp_{\omega}(p)$.

Theorem

If p is separable and P is its minimal separated multiple, then there is a unique weight function ω such that

- (a) $\mathrm{lp}_{\omega}(\mathfrak{p})$ involves at least two monomials, and
- (b) the minimal separated multiple of $lp_{\omega}(p)$ is $lp_{\omega}(P)$.

An Example

Is the polynomial

$$p(x,y) = x^3 + x^2y + xy^2 + y^3 + x^2 + xy + y^2$$

separable?

Is the polynomial

$$p(x,y) = x^3 + x^2y + xy^2 + y^3 + x^2 + xy + y^2$$

separable?

Yes, because

$$(x-y)p(x,y) = x^4 + x^3 - y^4 - y^3$$
.

Is $p(x,y) = x^3 + x^2y + xy^2 + y^3 + x^2 - xy + y^2$ separable?

Is $p(x, y) = x^3 + x^2y + xy^2 + y^3 + x^2 - xy + y^2$ separable?

Its leading part lp(p) is $x^3 + x^2y + xy^2 + y^3$, and the minimal separated multiple of lp(p) is $x^4 - y^4$.

Is
$$p(x,y) = x^3 + x^2y + xy^2 + y^3 + x^2 - xy + y^2$$
 separable?

Its leading part lp(p) is $x^3 + x^2y + xy^2 + y^3$, and the minimal separated multiple of lp(p) is $x^4 - y^4$.

Make an ansatz

$$P(x, y) = x^4 - y^4 + \sum_{i+j < 4} P_{ij} x^i y^j$$

for the minimal separated multiple P of p, divide it by p, and set the coefficients of the remainder equal to zero.

Is
$$p(x,y) = x^3 + x^2y + xy^2 + y^3 + x^2 - xy + y^2$$
 separable?

Its leading part lp(p) is $x^3 + x^2y + xy^2 + y^3$, and the minimal separated multiple of lp(p) is $x^4 - y^4$.

Make an ansatz

$$P(x, y) = x^4 - y^4 + \sum_{i+j < 4} P_{ij} x^i y^j$$

for the minimal separated multiple P of p, divide it by p, and set the coefficients of the remainder equal to zero.

The resulting linear system does not have a solution, and therefore, p is not separable.

The Homogeneous Case

Let $\boldsymbol{\omega}$ be a weight function, and let \boldsymbol{p} satisfy

$$lp_{\omega}(p) = p$$
.

Let $\boldsymbol{\omega}$ be a weight function, and let p satisfy

$$lp_{\omega}(p) = p$$
.

Then p is separable if and only if

Let ω be a weight function, and let p satisfy

$$lp_{\omega}(p) = p$$
.

Then p is separable if and only if (a) p involves a monomial only in x, and

Let ω be a weight function, and let p satisfy

$$lp_{\omega}(\mathfrak{p}) = \mathfrak{p}.$$

Then p is separable if and only if

- (a) p involves a monomial only in x, and
- (b) all the roots of p(x, 1) in $\overline{\mathbb{K}}$ are distinct and the ratio of every two of them is a root of unity.

Let ω be a weight function, and let p satisfy

$$lp_{\omega}(\mathfrak{p}) = \mathfrak{p}.$$

Then p is separable if and only if

- (a) p involves a monomial only in x, and
- (b) all the roots of p(x, 1) in $\overline{\mathbb{K}}$ are distinct and the ratio of every two of them is a root of unity.

Moreover, if p is separable and N is the minimal number such that the ratio of every pair of roots of p(x,1) is an N-th root of unity, then the weight of the minimal separated multiple is $N\omega_x$.

Reduction to the Homogeneous Case

Reduction to the Homogeneous Case

J. W. S. Cassels, *Factorization of polynomials in several variables*, Proceedings of the 15th Scandinavian Congress Oslo 1968, 1969

For

$$P(x,y) = f(x) - g(y)$$

consider the auxiliary equations

$$f(x) = t$$
 and $g(y) = t$,

For

$$P(x, y) = f(x) - g(y)$$

consider the auxiliary equations

$$f(x) = t$$
 and $g(y) = t$,

and their solutions

$$\alpha_0,\ldots,\alpha_{m-1}$$
 and $\beta_0,\ldots,\beta_{n-1}$ over $\overline{\mathbb{K}(t)}.$

For

$$P(x,y) = f(x) - g(y)$$

consider the auxiliary equations

$$f(x) = t$$
 and $g(y) = t$,

and their solutions

$$\alpha_0,\dots,\alpha_{m-1}\quad\text{and}\quad\beta_0,\dots,\beta_{n-1}\quad\text{over}\quad\overline{\mathbb{K}(t)}.$$

The Galois group G of $\overline{\mathbb{K}(t)}/\mathbb{K}(t)$ acts on $\mathbb{Z}_{\mathfrak{m}} \times \mathbb{Z}_{\mathfrak{n}}$ by

$$\pi(\mathfrak{i},\mathfrak{j})=(\mathfrak{i}',\mathfrak{j}')\quad :\Longleftrightarrow\quad (\pi(\alpha_{\mathfrak{i}}),\pi(\beta_{\mathfrak{j}}))=(\alpha_{\mathfrak{i}'},\beta_{\mathfrak{j}'}).$$

Consider the map

$$p(x,y)\mapsto T=\{(i,j)\mid p(\alpha_i,\beta_j)=0\}.$$

Consider the map

$$p(x,y) \mapsto T = \{(i,j) \mid p(\alpha_i,\beta_j) = 0\}.$$

It is a bijection between factors of f(x)-g(y) and (invariant) subsets

$$T\subseteq \mathbb{Z}_{\mathfrak{m}}\times \mathbb{Z}_{\mathfrak{n}}\quad \text{with}\quad G\cdot T=T.$$

Consider the map

$$p(x,y) \mapsto T = \{(i,j) \mid p(\alpha_i,\beta_j) = 0\}.$$

It is a bijection between factors of f(x) - g(y) and (invariant) subsets

$$T\subseteq \mathbb{Z}_m\times \mathbb{Z}_n\quad \text{with}\quad G\cdot T=T.$$

Furthermore,

$$\text{if}\quad T\subseteq \overline{T}\quad \text{are invariant, then}\quad p_T(x,y)\mid p_{\overline{T}}(x,y).$$

Consider the map

$$p(x,y) \mapsto T = \{(i,j) \mid p(\alpha_i,\beta_j) = 0\}.$$

It is a bijection between factors of f(x) - g(y) and (invariant) subsets

$$T\subseteq \mathbb{Z}_m\times \mathbb{Z}_n \quad \text{with} \quad G\cdot T=T.$$

Furthermore,

if
$$T \subseteq \overline{T}$$
 are invariant, then $p_T(x,y) \mid p_{\overline{T}}(x,y)$.

It restricts to a bijection between separated factors and (separated) invariant subsets $T\subseteq \mathbb{Z}_m\times \mathbb{Z}_n$ such that

$$\chi_T(\mathfrak{i}, \underline{\ }) = \chi_T(\mathfrak{i}', \underline{\ }) \quad \text{or} \quad \chi_T(\mathfrak{i}, \underline{\ }) \cdot \chi_T(\mathfrak{i}', \underline{\ }) = 0 \quad \text{for all } \mathfrak{i}, \mathfrak{i}' \in \mathbb{Z}_m.$$

Consider the map

$$p(x,y) \mapsto T = \{(i,j) \mid p(\alpha_i,\beta_j) = 0\}.$$

It is a bijection between factors of f(x) - g(y) and (invariant) subsets

$$T\subseteq \mathbb{Z}_m\times \mathbb{Z}_n \quad \text{with} \quad G\cdot T=T.$$

Furthermore,

if
$$T \subseteq \overline{T}$$
 are invariant, then $p_T(x,y) \mid p_{\overline{T}}(x,y)$.

It restricts to a bijection between separated factors and (separated) invariant subsets $T\subseteq \mathbb{Z}_m\times \mathbb{Z}_n$ such that

$$\chi_T(\mathfrak{i}, \underline{\ }) = \chi_T(\mathfrak{i}', \underline{\ }) \quad \text{or} \quad \chi_T(\mathfrak{i}, \underline{\ }) \cdot \chi_T(\mathfrak{i}', \underline{\ }) = 0 \quad \text{for all } \mathfrak{i}, \mathfrak{i}' \in \mathbb{Z}_\mathfrak{m}.$$

In particular, $\mathbb{Z}_m \times \mathbb{Z}_n$ is invariant and separated, and corresponds to the separated factor f(x) - g(y).

 $\ \, \text{An Example}$

An Example

The factors of $x^6 - y^6$ in $\mathbb{Q}[x, y]$.

$$x^2 - xy + y^2$$

Definition

Definition

Let T be an invariant subset of $\mathbb{Z}_n \times \mathbb{Z}_m$. The **separable closure** T^{sep} of T is defined by

$$\mathsf{T}^{\mathrm{sep}} := \bigcap_{\substack{S \supseteq \mathsf{T} \\ S \text{ inv, sep}}} \mathsf{S.}$$

Theorem

If p is separable and P is its minimal separated multiple, then there is a unique weight function $\boldsymbol{\omega}$ such that

- (a) $\mathrm{lp}_{\omega}(\mathfrak{p})$ involves at least two monomials, and
- (b) the minimal separated multiple of $lp_{\omega}(p)$ is $lp_{\omega}(P)$.

Assume $\alpha_i, \beta_i \in \mathbb{K}^{\mathrm{Puiseux}}(\overline{t})$, and define

$$\overline{\alpha}_i := \operatorname{lt}(\alpha_i) \quad \text{and} \quad \overline{\beta}_j := \operatorname{lt}(\beta_j), \text{ and}$$

$$T:=\{(i,j)\mid p(\alpha_i,\beta_j)=0\}\quad\text{and}\quad \overline{T}:=\{(i,j)\mid \mathrm{lp}_\omega(p)(\overline{\alpha}_i,\overline{\beta}_j)=0\}.$$

Assume $\alpha_i, \beta_j \in \mathbb{K}^{\mathrm{Puiseux}}(\overline{t})$, and define

$$\overline{\alpha}_i := \operatorname{lt}(\alpha_i) \quad \text{and} \quad \overline{\beta}_j := \operatorname{lt}(\beta_j), \text{ and}$$

$$T := \{(i,j) \mid p(\alpha_i,\beta_j) = 0\} \quad \text{and} \quad \overline{T} := \{(i,j) \mid \mathrm{lp}_\omega(p)(\overline{\alpha}_i,\overline{\beta}_j) = 0\}.$$

Since

$$p(\alpha_i, \beta_j) = 0 \implies lp_{\omega}(p)(\overline{\alpha}_i, \overline{\beta}_j) = 0,$$

we have

$$T\subseteq \overline{T}, \quad \text{and hence} \quad T^{\mathrm{sep}}\subseteq \overline{T}^{\mathrm{sep}}.$$

Assume $\alpha_i, \beta_i \in \mathbb{K}^{\mathrm{Puiseux}}(\bar{t})$, and define

$$\overline{\alpha}_i := \operatorname{lt}(\alpha_i) \quad \text{and} \quad \overline{\beta}_j := \operatorname{lt}(\beta_j), \text{ and}$$

$$T := \{(i,j) \mid p(\alpha_i,\beta_j) = 0\} \quad \text{and} \quad \overline{T} := \{(i,j) \mid \mathrm{lp}_\omega(p)(\overline{\alpha}_i,\overline{\beta}_j) = 0\}.$$

Since

$$p(\alpha_i, \beta_j) = 0 \implies lp_{\omega}(p)(\overline{\alpha}_i, \overline{\beta}_j) = 0,$$

we have

$$T \subseteq \overline{T}$$
, and hence $T^{\text{sep}} \subseteq \overline{T}^{\text{sep}}$.

If P is the minimal separated multiple of p, then

$$T^{\mathrm{sep}} = \mathbb{Z}_{\mathfrak{m}} \times \mathbb{Z}_{\mathfrak{n}}, \quad \text{and hence} \quad \overline{T}^{\mathrm{sep}} = \mathbb{Z}_{\mathfrak{m}} \times \mathbb{Z}_{\mathfrak{n}},$$

and $\mathrm{lp}_{\omega}(P)$ is the minimal separated multiple of $\mathrm{lp}_{\omega}(p)$.

Arbitrary Bivariate Ideals

Let $I=I_0\cap I_1$ be such that I_0 is zero-dimensional and I_1 principal. Given a set of generators of $A(I_0)$ and the generator of $A(I_1)$, how can we determine a set of generators of

$$A(I) = A(I_0) \cap A(I_1)?$$

Lemma

Lemma

Let $I_0 \subseteq \mathbb{K}[x,y]$ be a zero-dimensional ideal. There is a finite-dimensional \mathbb{K} -subspace V of $\mathbb{K}[x] \times \mathbb{K}[y]$ such that

$$V \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y].$$

Lemma

Let $I_0 \subseteq \mathbb{K}[x,y]$ be a zero-dimensional ideal. There is a finite-dimensional \mathbb{K} -subspace V of $\mathbb{K}[x] \times \mathbb{K}[y]$ such that

$$V \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y].$$

Moreover, given $(f,g)\in \mathbb{K}[x]\times \mathbb{K}[y]$, we can compute $(\tilde{f},\tilde{g})\in V$ such that

$$(f,g)-(\tilde{f},\tilde{g})\in A(I_0).$$

Input: $\alpha \in \mathbb{K}[x] \times \mathbb{K}[y]$, and $A(I_0)$ and V as before, and a finite set $S = \{s_1, \ldots, s_m\}$ of elements of \mathbb{N} .

Output: a basis of the vector space of polynomials p such that $\mathrm{supp}(\mathfrak{p})\subseteq S \text{ and } \mathfrak{p}(\mathfrak{a})\in A(I_0).$

Input: $\alpha \in \mathbb{K}[x] \times \mathbb{K}[y]$, and $A(I_0)$ and V as before, and a finite set $S = \{s_1, \ldots, s_m\}$ of elements of \mathbb{N} .

Output: a basis of the vector space of polynomials p such that $\mathrm{supp}(p)\subseteq S$ and $p(\alpha)\in A(I_0).$

 $1 \quad \text{ For } i=1,\dots,m \text{, compute } r_i \in V \text{ such that } \alpha^{s_i}-r_i \in A(I_0).$

Input: $\alpha \in \mathbb{K}[x] \times \mathbb{K}[y]$, and $A(I_0)$ and V as before, and a finite set $S = \{s_1, \dots, s_m\}$ of elements of \mathbb{N} .

Output: a basis of the vector space of polynomials p such that $\mathrm{supp}(p)\subseteq S$ and $p(a)\in A(I_0).$

- 1 For $i=1,\ldots,m$, compute $r_i\in V$ such that $\mathfrak{a}^{\mathfrak{s}_i}-r_i\in A(I_0).$
- Compute a basis B of the space of all $(c_1, ..., c_m) \in \mathbb{K}^m$ with $c_1r_1 + \cdots + c_mr_m = 0$.

Algorithm

Input: $\alpha \in \mathbb{K}[x] \times \mathbb{K}[y]$, and $A(I_0)$ and V as before, and a finite set $S = \{s_1, \ldots, s_m\}$ of elements of \mathbb{N} .

Output: a basis of the vector space of polynomials p such that $\mathrm{supp}(p)\subseteq S$ and $p(a)\in A(I_0).$

- 1 For $i=1,\ldots,m$, compute $r_i\in V$ such that $\mathfrak{a}^{\mathfrak{s}_i}-r_i\in A(I_0).$
- Compute a basis B of the space of all $(c_1, ..., c_m) \in \mathbb{K}^m$ with $c_1r_1 + \cdots + c_mr_m = 0$.
- 3 For every element $(c_1, \ldots, c_m) \in B$, return $c_1 t^{s_1} + \cdots + c_m t^{s_m}$.

Algorithm

Algorithm

Input: a zero-dimensional ideal I_0 and a generator α of $A(I_1)$.

Output: a set of generators for $A(I_0) \cap A(I_1)$.

Algorithm

Input: a zero-dimensional ideal I_0 and a generator α of $A(I_1)$. Output: a set of generators for $A(I_0) \cap A(I_1)$.

Compute a basis of a vector space V for which $V \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y]$.

Algorithm

- Compute a basis of a vector space V for which $V \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y]$.
- 2 Set $G = \emptyset$, $\Delta = \emptyset$.

Algorithm

- Compute a basis of a vector space V for which $V \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y]$.
- 2 Set $G = \emptyset$, $\Delta = \emptyset$.
- 3 While $gcd(\Delta) \neq 1$, do:

Algorithm

- Compute a basis of a vector space V for which $V \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y]$.
- 2 Set $G = \emptyset$, $\Delta = \emptyset$.
- 3 While $gcd(\Delta) \neq 1$, do:
- Select a set $S \subseteq \mathbb{N} \setminus \langle \Delta \rangle$ with $|S| > \dim V$ and find a polynomial p with $p(a) \in A(I_0)$ and $\operatorname{supp}(p) \subseteq S$.

Algorithm

- Compute a basis of a vector space V for which $V \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y]$.
- 2 Set $G = \emptyset$, $\Delta = \emptyset$.
- 3 While $gcd(\Delta) \neq 1$, do:
- Select a set $S \subseteq \mathbb{N} \setminus \langle \Delta \rangle$ with $|S| > \dim V$ and find a polynomial p with $p(a) \in A(I_0)$ and $\operatorname{supp}(p) \subseteq S$.
- 5 $G = G \cup \{p\}, \ \Delta = \Delta \cup \{\deg p\}$

Algorithm

- Compute a basis of a vector space V for which $V \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y]$.
- 2 Set $G = \emptyset$, $\Delta = \emptyset$.
- 3 While $gcd(\Delta) \neq 1$, do:
- Select a set $S \subseteq \mathbb{N} \setminus \langle \Delta \rangle$ with $|S| > \dim V$ and find a polynomial p with $p(a) \in A(I_0)$ and $\operatorname{supp}(p) \subseteq S$.
- 5 $G = G \cup \{p\}, \Delta = \Delta \cup \{\deg p\}$
- 6 Find a basis of the vector space of polynomials p with $p(\alpha) \in A(I_0)$ and $\mathrm{supp}(p) \subseteq S = \mathbb{N} \setminus \langle \Delta \rangle$ and add the resulting polynomials to G.

Algorithm

- Compute a basis of a vector space V for which $V \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y]$.
- 2 Set $G = \emptyset$, $\Delta = \emptyset$.
- 3 While $gcd(\Delta) \neq 1$, do:
- Select a set $S \subseteq \mathbb{N} \setminus \langle \Delta \rangle$ with $|S| > \dim V$ and find a polynomial p with $p(a) \in A(I_0)$ and $\operatorname{supp}(p) \subseteq S$.
- 5 $G = G \cup \{p\}, \ \Delta = \Delta \cup \{\deg p\}$
- 6 Find a basis of the vector space of polynomials p with $p(a) \in A(I_0)$ and $\operatorname{supp}(p) \subseteq S = \mathbb{N} \setminus \langle \Delta \rangle$ and add the resulting polynomials to G.
- 7 Return G

An Example

$$I_0 = \langle x^3-2xy+y^2, y^3-2x^2y-1\rangle \quad \text{and} \quad I_1 = \langle x^2-xy+y^2\rangle,$$

we find

$$I_0 = \langle x^3 - 2xy + y^2, y^3 - 2x^2y - 1 \rangle \quad \text{and} \quad I_1 = \langle x^2 - xy + y^2 \rangle,$$

we find $A(I_1) = \mathbb{K}(x^3, -y^3)$,

$$I_0 = \langle x^3 - 2xy + y^2, y^3 - 2x^2y - 1 \rangle \quad \text{and} \quad I_1 = \langle x^2 - xy + y^2 \rangle,$$

we find $A(I_1) = \mathbb{K}(x^3, -y^3)$, and $V = \bigoplus_{i=0}^8 \mathbb{K} \cdot (0, y^i)$ such that

$$\bigoplus_{i=0}^{8} \mathbb{K} \cdot (0, y^{i}) \oplus A(I_{0}) = \mathbb{K}[x] \times \mathbb{K}[y].$$

$$\begin{split} I_0 &= \langle x^3 - 2xy + y^2, y^3 - 2x^2y - 1 \rangle \quad \text{and} \quad I_1 = \langle x^2 - xy + y^2 \rangle, \\ \text{we find } A(I_1) &= \mathbb{K}(x^3, -y^3), \text{ and } V = \bigoplus_{i=0}^8 \mathbb{K} \cdot (0, y^i) \text{ such that} \\ &\bigoplus_{i=0}^8 \mathbb{K} \cdot (0, y^i) \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y]. \end{split}$$

By making an ansatz for a polynomial p with $\deg(p) \leq 10$ such that $p((x^3,-y^3)) \in A(I_0)$, we find $p=t^4-2t^2$,

$$\begin{split} I_0 &= \langle x^3 - 2xy + y^2, y^3 - 2x^2y - 1 \rangle \quad \text{and} \quad I_1 = \langle x^2 - xy + y^2 \rangle, \\ \text{we find } A(I_1) &= \mathbb{K}(x^3, -y^3), \text{ and } V = \bigoplus_{i=0}^8 \mathbb{K} \cdot (0, y^i) \text{ such that} \\ &\bigoplus_{i=0}^8 \mathbb{K} \cdot (0, y^i) \oplus A(I_0) = \mathbb{K}[x] \times \mathbb{K}[y]. \end{split}$$

By making an ansatz for a polynomial p with $\deg(p) \leq 10$ such that $p((x^3,-y^3)) \in A(I_0),$ we find $p=t^4-2t^2,$ and, in the next step, a polynomial $q=9t^5-26t^3+17$ with support in $S=\{1,2,3,5,6,7,9,10,11,13\}.$

$$\begin{split} I_0 &= \langle x^3 - 2xy + y^2, y^3 - 2x^2y - 1 \rangle \quad \text{and} \quad I_1 = \langle x^2 - xy + y^2 \rangle, \\ \text{we find } A(I_1) &= \mathbb{K}(x^3, -y^3), \text{ and } V = \bigoplus_{i=0}^8 \mathbb{K} \cdot (0, y^i) \text{ such that} \end{split}$$

$$\bigoplus_{i=0}^{o} \mathbb{K} \cdot (0, y^{i}) \oplus A(I_{0}) = \mathbb{K}[x] \times \mathbb{K}[y].$$

By making an ansatz for a polynomial p with $\deg(p) \leq 10$ such that $p((x^3,-y^3)) \in A(I_0),$ we find $p=t^4-2t^2,$ and, in the next step, a polynomial $q=9t^5-26t^3+17$ with support in $S=\{1,2,3,5,6,7,9,10,11,13\}.$

Since gcd(4,5) = 1, the set $S = \mathbb{N} \setminus \langle 4,5 \rangle$ is finite,

$$I_0 = \langle x^3 - 2xy + y^2, y^3 - 2x^2y - 1 \rangle \quad \text{and} \quad I_1 = \langle x^2 - xy + y^2 \rangle,$$

we find $A(I_1)=\mathbb{K}(x^3,-y^3)$, and $V=igoplus_{i=0}^8\mathbb{K}\cdot(0,y^i)$ such that

$$\bigoplus_{i=0}^{8} \mathbb{K} \cdot (0, y^{i}) \oplus A(I_{0}) = \mathbb{K}[x] \times \mathbb{K}[y].$$

By making an ansatz for a polynomial p with $\deg(p) \leq 10$ such that $p((x^3,-y^3)) \in A(I_0)$, we find $p=t^4-2t^2$, and, in the next step, a polynomial $q=9t^5-26t^3+17$ with support in $S=\{1,2,3,5,6,7,9,10,11,13\}$.

Since $\gcd(4,5)=1$, the set $S=\mathbb{N}\setminus \langle 4,5\rangle$ is finite, and the space of polynomials whose support is contained in S is generated by $81t^6-323t^3$, $81t^7-539t^3+458$, and $6561t^{11}-191125t^3+184564$.

The implementation of the algorithm can be found on http://kauers.de/software/separate.m The implementation of the algorithm can be found on http://kauers.de/software/separate.m

Thank you for your attention.