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Why is the problem interesting?

Intersection of K-algebras.

Let u,v € K[ty,...,ty]. The intersection K[u] N K[v] can be
computed by determining pairs (f, g) € K[x] x K[y] such that
f(u) = g(v), i.e. such that f(x) —g(y) € (x —u,y —v) N K[x,yl.

An elimination procedure for Laurent series as in Mireille
Bousquet-Mélou’s proof of the algebraicity of the generating
function of Gessel's walks.
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Definition
Let p € K[x,yl. It is seperated, if there is a (f, g) € K[x] x Ky]
such that

p=Ff—g.

It is separable, if there is a q € K[x,y] \ {0} such that gp is
separated.

Let I C Klx,y] be an ideal. Then
Al ={(f,g) e KIx] xKly] | f—g e I}
is the algebra of separated polynomials of I.

Problem

Given generators of an ideal I C K[x,y], determine a set of
generators for the algebra A(I) of separated polynomials.
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Is the polynomial x°> —vy separable?

YeS. It is even separated.

The associated algebra of separated polynomials is

A3 — %) = K3, y2)).
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Is x> +xy+y? separable?

YeS, because (x —y)(x* +xy +y?) =x3 — 3.
The associated algebra of separated polynomials is

A((P +xy +y%) =Kl y?).
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Is  x(x*+xy+y?) still separable?

NO. It is a multiple of x and involves y.

The algebra of separated polynomials is

A((x(x* +xy +y?)) =KI(1,1)].



What is A(I) for the ideal I generated by
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What is A(I) for the ideal I generated by
(2 —xy+y?) (x> —2xy?—1) and (X*—xy+y?)(y>—2x*y—1)?
A list of generators for A(I) is x
(x12 — 2x6,y12 — 2y6),
(9x1> — 26x7 +17x3,9y"> — 26y7 + 17y3),
(81x'8 —323x°,81y'® — 323y°),

(81x%" —539x7 4 458x3, 81y?! — 539y” + 458y3).



General structure of the Algorithm



General structure of the Algorithm

1 Write I = Iy N [; with Iy zero-dimensional and I; principal.



General structure of the Algorithm

1 Write I = Iy N [; with Iy zero-dimensional and I; principal.

2 Compute generators of A(Ip) via Grobner basis computations
and linear algebra.



General structure of the Algorithm

1 Write I = Iy N I; with Iy zero-dimensional and I principal.

2 Compute generators of A(Ip) via Grobner basis computations
and linear algebra.

3 Compute generators of A(I;) by making a suitable ansatz and
linear algebra.



General structure of the Algorithm

1 Write I = Iy N I; with Iy zero-dimensional and I principal.

2 Compute generators of A(Ip) via Grobner basis computations
and linear algebra.

3 Compute generators of A(I;) by making a suitable ansatz and
linear algebra.

4 Compute the intersection A(I) = A(Iy) NA(Iy).
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When 1 is zero-dimensional, there are
P, q € K[x,yl \ {0} such that

INKx] =(p) and INK[yl=(q).

Clearly,
KIx] - (p,0) + K[yl - (0,q) € A(I).

Consequently,
(f,g) € A(I) <= (rem(f,p),rem(g,q)) € A(I).
It is therefore sufficient to find all pairs (f,g) € A(I) with

deg, f <deg,p and deg,g <degyq.

11
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Algorithm

Input: T C K[x,y] of dimension zero.
Output: generators of A(I).

1 If I=(1), return {(1,0),(x,0),(0,1),(0,y)}.
2 Compute p € K[x] and q € K[y] such that

INK[x] = (p) and INKly] ={(q).

3 Make an ansatz h = Zdeg"p Tt — Z?j%y a1 bjy’ with
undetermined coefficients aj, b;.

4 Compute the normal form of h with respect to a Grobner basis
of I and equate its coefficients to zero.

5 Solve the resulting linear system over K for the unknowns
ai, bj and let (f1,g1),...,(fa,ga) be the pairs of polynomials
corresponding to a basis of the solution space.

6 Return (f1»91) (fdygd)»(p)o))--w(xdegxpi]p)o):
(0,4),-.., 0,y 91 q).
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Assume that
p € Kix,yl\ (Kx] UK[y]).

Proposition [Fried and MacRae, 1969]

If p is separable, then there is a separated multiple which divides
any other separated multiple of it.

Proposition [Fried and MacRae, 1969]

Let f, g, F, G be nonconstant polynomials. Then f(x) — g(y)
divides F(x) — G(y) if and only if there is a polynomial r such that

F=rof and G=rog.

Theorem

If T is principal, then A(I) is simple.
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Definition

A function w from the set of monomials in x and y to R is called
a weight function if there are wy, wy € Z-( such that
w(x'Y) = wyi + wyj for all i,j € Zxo.

The sum of terms of p of maximal weight is denoted by lp, (p).

Theorem

If p is separable and P is its minimal separated multiple, then there
is a unique weight function w such that

(a) Ip,(p) involves at least two monomials, and

(b) the minimal separated multiple of lp,(p) is Ip,, (P).

15
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Is the polynomial
r(x,y) = x> —|—x2y +xy2 +y3 + %2 + xy +y2

separable?
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Is the polynomial
r(x,y) = x>+ xzy —+ xyz +y3 +x% + Xy +y2
separable?

YeS, because

(x—y)plx,y) =x" +x° —y* =y’
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Is p(x,y) = x* +x%y + xy* + y> + x* — xy + y* separable?

Its leading part Ip(p) is x> + x?y + xy? +y>, and the minimal

separated multiple of Ip(p) is x* —y*.

Make an ansatz

Ploy) =x' —yt+ ) Pixly
i+j<4

for the minimal separated multiple P of p, divide it by p, and set
the coefficients of the remainder equal to zero.

The resulting linear system does not have a solution, and therefore,
P is not separable.

18
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Proposition

Let w be a weight function, and let p satisfy

lpw (P) =P

Then p is separable if and only if
(a) p involves a monomial only in x, and

(b) all the roots of p(x, 1) in K are distinct and the ratio of every
two of them is a root of unity.

Moreover, if p is separable and N is the minimal number such that

the ratio of every pair of roots of p(x, 1) is an N-th root of unity,

then the weight of the minimal separated multiple is Nwsy.

20
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Reduction to the Homogeneous Case

J. W. S. Cassels, Factorization of polynomials in several variables,
Proceedings of the 15th Scandinavian Congress Oslo 1968, 1969
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For
P(x,y) = f(x) — g(y)

consider the auxiliary equations

f(x) =t and g(y)=t,

and their solutions

X0y -+ oy Km—1 and [303---»[371—1

over

K(t).
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For
P(x,y) = f(x) — g(y)

consider the auxiliary equations
f(x) =t and g(y)=t,
and their solutions

XQy-veyXm_1 and Po,...,Pn_1 over K(t).

The Galois group G of K(t)/K(t) acts on Zy, X Zn by

n(i,j)={1,j") = (nlow),7(By)) = (o, By).
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Consider the map

p(xy) = T ={{1,j) [ p(a, Bj) = O}

It is a bijection between factors of f(x) — g(y) and (invariant)
subsets
TCZmwxZn with G- T=T.

Furthermore,
if TCT areinvariant, then rT(%,y) |PT(X»U)-

It restricts to a bijection between separated factors and (separated)
invariant subsets T C Z, X Zy such that

xt(h, ) =xr(,) or xr(i,)-xr(i,)=0 foralli,i" € Zp.

In particular, Z., X Zy, is invariant and separated, and corresponds
to the separated factor f(x) — g(y).

23
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The factors of x® —y°® in Q[x, y].
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Definition

Let T be an invariant subset of Z,, x Z,,. The separable closure
TP of T is defined by

TSP .= ﬂ S.

SOT
S inv, sep
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Theorem

If p is separable and P is its minimal separated multiple, then there
is a unique weight function w such that
(a) lp,(p) involves at least two monomials, and

(b) the minimal separated multiple of Ip,,(p) is Ip,, (P).
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Sketch of Proof
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Sketch of Proof

Assume o, B € KPS (t), and define

& =lt() and B;:=1t(p;), and

T:={@{,j) [p(e, Bj)

0} and T:={(1,j) |Ipw(p) (@, B;)

0}
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Sketch of Proof

Assume «, B € € KPuiseux(t) and define
& =lt() and B;:=1t(p;), and

T:={(L,j) [ plow, Bj) =0} and T:={(i,j) | Ipw(p) (e, B;) = 0}

Since B
‘p(cxi, B]) =0 = lpw(P)(&b B]) =0,

we have
sep

TCT, andhence TP CT
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Sketch of Proof

Assume o, 35 € KPuiseux (1) and define

& =lt() and B;:=1t(p;), and

T:={(L,j) [ plow, Bj) =0} and T:={(i,j) | Ipw(p) (e, B;) = 0}

Since B
‘p(cxi, B]) =0 = lpw(P)(&i, B]) =0,

we have
sep

TCT, andhence TP CT

If P is the minimal separated multiple of p, then
TP = Zo x Zyn, and hence T " =Zm X Zn,

and Ipy (P) is the minimal separated multiple of Ip (p).

28



Arbitrary Bivariate ldeals
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Let I = Iy NI be such that Iy is zero-dimensional and I; principal.
Given a set of generators of A(Iy) and the generator of A(Iy), how
can we determine a set of generators of

A(D) = A(Iy) NA(L)?
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Lemma
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Lemma

Let Iy C K[x,yl] be a zero-dimensional ideal. There is a
finite-dimensional K-subspace V of K[x] x Kly] such that

Vo A(l) =KX x Kyl
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Lemma

Let Iy C K[x,yl] be a zero-dimensional ideal. There is a
finite-dimensional K-subspace V of K[x] x Kly] such that

V& A(ly) = Kix x Kly).

Moreover, given (f, g) € K[x] x K[y], we can compute (f, g ev
such that 3
(f) g) - (fa g) € A(IO)
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Algorithm
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Algorithm

Input: a € K[x] x K[y], and A(Iy) and V as before, and a finite
set S ={s1,...,Sm} of elements of N.

Output: a basis of the vector space of polynomials p such that
supp(p) € S and p(a) € A(Ip).
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Algorithm

Input: a € K[x] x K[y], and A(Iy) and V as before, and a finite
set S ={s1,...,Sm} of elements of N.

Output: a basis of the vector space of polynomials p such that
supp(p) € S and p(a) € A(Ip).

1 Fori=1,...,m, compute r; € V such that a® —r; € A(Ip).
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Algorithm

Input: a € K[x] x K[y], and A(Iy) and V as before, and a finite
set S ={s1,...,Sm} of elements of N.

Output: a basis of the vector space of polynomials p such that
supp(p) € S and p(a) € A(Ip).

1 Fori=1,...,m, compute r; € V such that a® —r; € A(Ip).

2 Compute a basis B of the space of all (¢1,...,¢cm) € K™ with
T+ -+ cpmrm =0.
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Algorithm

Input: a € K[x] x K[y], and A(Iy) and V as before, and a finite
set S ={s1,...,Sm} of elements of N.
Output: a basis of the vector space of polynomials p such that
supp(p) € S and p(a) € A(Ip).
Fori=1,...,m, compute r; € V such that a® —r; € A(Ip).
Compute a basis B of the space of all (¢1,...,¢cm) € K™ with
cr1+ -+ emrm =0.

3 For every element (c1,...,cm) € B, return ¢t51 + - - - + ¢ tm.
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A set of generators of A(Ip) N A(I;) can then be computed by
iteratively applying the algorithm as follows:
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A set of generators of A(Ip) N A(I;) can then be computed by
iteratively applying the algorithm as follows:

Algorithm

Input: a zero-dimensional ideal Iy and a generator a of A(I;).
Output: a set of generators for A(Ip) NA(Iy).
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A set of generators of A(Ip) N A(I;) can then be computed by
iteratively applying the algorithm as follows:
Algorithm

Input: a zero-dimensional ideal Iy and a generator a of A(I;).
Output: a set of generators for A(Ip) NA(Iy).

1 Compute a basis of a vector space V for which
Vo A(l) =Kix] x Klyl.
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A set of generators of A(Ip) N A(I;) can then be computed by
iteratively applying the algorithm as follows:

Algorithm

Input: a zero-dimensional ideal Iy and a generator a of A(I;).
Output: a set of generators for A(Ip) NA(Iy).

1 Compute a basis of a vector space V for which
Vo A(l) =Kix] x Klyl.
2 SetG=0,A=0.
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A set of generators of A(Ip) N A(I;) can then be computed by
iteratively applying the algorithm as follows:

Algorithm

Input: a zero-dimensional ideal Iy and a generator a of A(I;).
Output: a set of generators for A(Ip) NA(Iy).

1 Compute a basis of a vector space V for which
VoAl =K x Kyl

2 SetG=0,A=0.
While ged(A) # 1, do:
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A set of generators of A(Ip) N A(I;) can then be computed by
iteratively applying the algorithm as follows:

Algorithm

Input: a zero-dimensional ideal Iy and a generator a of A(I;).
Output: a set of generators for A(Ip) NA(Iy).

1 Compute a basis of a vector space V for which
VoAl =K x Kyl
2 SetG=0,A=0.
While ged(A) # 1, do:
4 Select a set S C N\ (A) with [S| > dim V and find a
polynomial p with p(a) € A(Ip) and supp(p) C S.
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A set of generators of A(Ip) N A(I;) can then be computed by
iteratively applying the algorithm as follows:

Algorithm

Input: a zero-dimensional ideal Iy and a generator a of A(I;).
Output: a set of generators for A(Ip) NA(Iy).

1 Compute a basis of a vector space V for which
VoAl =K x Kyl
2 SetG=0,A=0.
While ged(A) # 1, do:
Select a set S C N\ (A) with [S| > dim V and find a
polynomial p with p(a) € A(Ip) and supp(p) C S.
5 G=GU{p}, A=AU{degp}

S~ W
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A set of generators of A(Ip) N A(I;) can then be computed by
iteratively applying the algorithm as follows:

Algorithm

Input: a zero-dimensional ideal Iy and a generator a of A(I;).
Output: a set of generators for A(Ip) NA(Iy).

1 Compute a basis of a vector space V for which
VoAl =K x Kyl
2 SetG=0,A=0.
While ged(A) # 1, do:
Select a set S C N\ (A) with [S| > dim V and find a
polynomial p with p(a) € A(Ip) and supp(p) C S.
5 G=GU{p}, A=AU{degp}
6 Find a basis of the vector space of polynomials p with
pla) € A(Ip) and supp(p) € S =N\ (A) and add the
resulting polynomials to G.
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A set of generators of A(Ip) N A(I;) can then be computed by
iteratively applying the algorithm as follows:

Algorithm

Input: a zero-dimensional ideal Iy and a generator a of A(I;).
Output: a set of generators for A(Ip) NA(Iy).

1 Compute a basis of a vector space V for which
VoAl =K x Kyl

2 SetG=0,A=0.

While ged(A) # 1, do:
Select a set S C N\ (A) with [S| > dim V and find a
polynomial p with p(a) € A(Ip) and supp(p) C S.

5 G=GU{p}, A=AU{degp}

6 Find a basis of the vector space of polynomials p with
pla) € A(Ip) and supp(p) € S =N\ (A) and add the
resulting polynomials to G.

7 Return G
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An Example
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To compute A(Iy) NA(I;) for
Io=03—2xy+y2,y> —2x%y — 1) and I = (x* —xy +y?),

we find

35



To compute A(Iy) NA(I;) for
Io=03—2xy+y2,y> —2x%y — 1) and I = (x* —xy +y?),

we find A(L;) = K(x3, —y?),

35



To compute A(Iy) NA(I;) for
Io=03—2xy+y2y> —2x*y —1) and I; = (x* —xy +y?),
we find A(I1) = K(x3, —y?), and V = @?:OK- (0,y") such that

8
PK-(0,y") & Al) =Kk x Klyl.
i=0
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To compute A(Iy) NA(I;) for
Io=03—2xy+y2y> —2x*y —1) and I; = (x* —xy +y?),
we find A(I1) = K(x3, —y?), and V = @?:OK- (0,y") such that

8
PK-(0,y") & Al) =Kk x Klyl.
i=0

By making an ansatz for a polynomial p with deg(p) < 10 such
that p((x3, —y3)) € A(Ip), we find p = t* — 2t%,
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To compute A(Iy) NA(I;) for
Io=03—2xy+y2y> —2x*y —1) and I; = (x* —xy +y?),
we find A(I1) = K(x3, —y?), and V = @?:OK- (0,y") such that

8
PK-(0,y") & Al) =Kk x Klyl.
i=0

By making an ansatz for a polynomial p with deg(p) < 10 such
that p((x3, —y?)) € A(Ip), we find p = t* — 22, and, in the next
step, a polynomial q = 9t°> — 26t3 + 17 with support in
S={1,2,3,5,6,7,9,10,11,13}.
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To compute A(Iy) NA(I;) for
Io=03—2xy+y2y> —2x*y —1) and I; = (x* —xy +y?),
we find A(I1) = K(x3, —y?), and V = @?:OK- (0,y") such that

8
P K- 0,y @ A(ly) = Klx] x Klyl.
i=0
By making an ansatz for a polynomial p with deg(p) < 10 such
that p((x3, —y?)) € A(Ip), we find p = t* — 22, and, in the next
step, a polynomial q = 9t°> — 26t3 + 17 with support in
S={1,2,3,5,6,7,9,10,11,13}.

Since gcd(4,5) =1, the set S = N\ (4,5) is finite,
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To compute A(Iy) NA(I;) for
Io=03—2xy+y2y> —2x*y —1) and I; = (x* —xy +y?),
we find A(I1) = K(x3, —y?), and V = @?:OK- (0,y") such that

8
PK-(0,y") & Al) =Kk x Klyl.
i=0

By making an ansatz for a polynomial p with deg(p) < 10 such
that p((x3, —y?)) € A(Ip), we find p = t* — 22, and, in the next
step, a polynomial q = 9t°> — 26t3 + 17 with support in
S={1,2,3,5,6,7,9,10,11,13}.

Since gcd(4,5) =1, the set S = N\ (4,5) is finite, and the space
of polynomials whose support is contained in S is generated by
81t° — 323t3, 81t7 — 5393 + 458, and

6561t"" — 1911253 4 184564.
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The implementation of the algorithm can be found on

http://kauers.de/software/separate.m
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The implementation of the algorithm can be found on

http://kauers.de/software/separate.m

Thank you for your attention.
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