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Moment Problems and Applications

Moments of a mesure

My = “d
o A{"X M

da=(ag,...,ap), x% = xla1 coox |al = ag + -+ + an, K[x]4 = polynomials of total degree at most d
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Moment Problems and Applications

Moments of a mesure

ma:f xad,u:fcxo‘f(x)dx for aeN"
]Rn

o G n-dim semi-algebraic set, with g € K[x] vanishing on G

o f:R" > R D-finite = satisfies a “complete” system of PDEs

da=(ag,...,ap), x% = xla1 coox |al = ag + -+ + an, K[x]4 = polynomials of total degree at most d
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Moment Problems and Applications

Moments of a mesure

ma:f xad,u:fcxo‘f(x)dx for aeN"
]Rn

o G n-dim semi-algebraic set, with g € K[x] vanishing on G

o f:R" > R D-finite = satisfies a “complete” system of PDEs

da=(ag,...,ap), x% = xla1 coox |al = ag + -+ + an, K[x]4 = polynomials of total degree at most d

— Direct problem: knowing G and f, find a complete system of recurrences for (mq)

~r Finite determinancy of such measures
~ Solved with Creative Telescoping, e.g., [Oaku2013] + Takayama's algorithm
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Moment Problems and Applications

Moments of a mesure

ma:f xad,u:fcxo‘f(x)dx for aeN"
]Rn

o G n-dim semi-algebraic set, with g € K[x] vanishing on G

o f:R" > R D-finite = satisfies a “complete” system of PDEs

da=(ag,...,ap), x% = xla1 coox |al = ag + -+ + an, K[x]4 = polynomials of total degree at most d

— Direct problem: knowing G and f, find a complete system of recurrences for (mq)

~r Finite determinancy of such measures
~ Solved with Creative Telescoping, e.g., [Oaku2013] + Takayama's algorithm

— Inverse problem: reconstruct G and/or f, given finitely many moments mq

statistics signal processing  medical imaging (MRI) gravimetry combinatorics
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Inverse Problems
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Inverse Problems

(ma)\aKN

Measures ||||I||
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Inverse Problems

(ma)\aKN

Measures ||||I||

Reconstruction
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Inverse Problems

Decision >
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Inverse Problems

Decision >
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Data Recovery From Moments — Exisiting Techniques

— Numerical methods, e.g.:

o Convex polytopes: [GolubMilanfarVarah1999] [GravinLasserrePasechnikRobins2012]
o Planar quadrature domains: [EbenfeltGustafssonKhavinsonPutinar2005]

o Sublevel sets of homogeneous polynomials: [Lasserre2013]
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Data Recovery From Moments — Exisiting Techniques

— Numerical methods, e.g.:

o Convex polytopes:
o Planar quadrature domains:

o Sublevel sets of homogeneous polynomials:

— Symbolic/algebraic methods:

o A historical starting point: Prony’s method
- reconstructing sparse exponential functions (¥, Ao e™™) from evaluations

— link with moments of Dirac measures
o Multivariate extensions of Prony’s method, e.g.,

o Reconstructing univariate piecewise D-finite densities:
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Exact Support and/or Density Reconstruction

m Lasserre and Putinar’s exact reconstruction algorithm (2015)

Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let G c R", bounded open set, whose algebraic boundary is included in the zero set of
a polynomial g € K[x]q4, and f(x) = exp(p(x)) with p € K[x]s. Given p, degree d and
moments mq up to order |a| = 3d + s, the coefficients of g can be exactly recovered.

m Key idea: Linear recurrences satisfied by the moments + Stokes’ Theorem
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Exact Support an Density Reconstruction
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Exact Support and/or Density Reconstruction

m Lasserre and Putinar’s exact reconstruction algorithm (2015)

Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let G c R", bounded open set, whose algebraic boundary is included in the zero set of
a polynomial g € K[x]q4, and f(x) = exp(p(x)) with p € K[x]s. Given p, degree d and
moments mq up to order |a| = 3d + s, the coefficients of g can be exactly recovered.

m Key idea: Linear recurrences satisfied by the moments + Stokes’ Theorem

Our contribution: a computer algebra approach

o generalization in the framework of holonomic distributions

= they satisfy (as a generalized function) a “complete” system of linear PDEs/ODEs with
polynomial coefficients
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Exact Support and/or Density Reconstruction

m Lasserre and Putinar’s exact reconstruction algorithm (2015)

Inverse Problem: Exponential-Polynomial Measure, Algebraic Support

Let G c R", bounded open set, whose algebraic boundary is included in the zero set of
a polynomial g € K[x]q4, and f(x) = exp(p(x)) with p € K[x]s. Given p, degree d and
moments mq up to order |a| = 3d + s, the coefficients of g can be exactly recovered.

m Key idea: Linear recurrences satisfied by the moments + Stokes’ Theorem

Our contribution: a computer algebra approach

o generalization in the framework of holonomic distributions

= they satisfy (as a generalized function) a “complete” system of linear PDEs/ODEs with
polynomial coefficients

o exact recovery of both support and Exponential-Polynomial density f = exp(p),
with explicit bound on the required number of moments

o similar algorithm for D-finite density, but no a priori bound on the required
number of moments
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Outline

Introduction

Holonomic Distributions and Recurrences on Moments

Inverse Problem: Algorithms and Proofs
m Exponential-Polynomial Densities
m The General Case with D-Finite Densities

Limits and Perspectives
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Outline

Holonomic Distributions and Recurrences on Moments

X
Y
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Ore Algebras, Differential Equations and Recurrences

1. Differential Ore Algebras

- Differential operators: non-commutative, spanned by x1, Ox;, ..., Xn, Ox

n

Ox f = fx’, (x,-f);i = x;&'], +f = Ox;Xi = XjOx; + 1
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Ore Algebras, Differential Equations and Recurrences

1. Differential Ore Algebras

- Differential operators: non-commutative, spanned by x1, Ox, ..., Xn, Ox,

Ox f = fx’, (x,-f);i = x;&'], +f = Ox;Xi = XjOx; + 1

- K[x]{0x) polynomial Ore algebra
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Ore Algebras, Differential Equations and Recurrences

1. Differential Ore Algebras

- Differential operators: non-commutative, spanned by x1, Ox, ..., Xn, Ox,

Ox f = fx’, (x,-f);i = x;&'], +f = Ox;Xi = XjOx; + 1

- K[x]{0x) polynomial Ore algebra vs K(x)(Ox) rational Ore algebra
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Ore Algebras, Differential Equations and Recurrences

1. Differential Ore Algebras
- Differential operators: non-commutative, spanned by x1, Ox, ..., Xn, Ox,

Ox f = fx’, (x,-f);i = x;&'], +f = Ox;Xi = XjOx; + 1

- K[x]{0x) polynomial Ore algebra vs K(x)(Ox) rational Ore algebra

- Ann(f) = {LeK(x){Ox) | Lf =0} PDEs satisfied by density f
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Ore Algebras, Differential Equations and Recurrences

1.

Differential Ore Algebras
- Differential operators: non-commutative, spanned by x1, Ox, ..., Xn, Ox,
Ox f = fx’, (x,-f);i = x;&'], +f = Ox;Xi = XjOx; + 1

- K[x]{0x) polynomial Ore algebra vs K(x)(Ox) rational Ore algebra
- Ann(f) = {LeK(x){Ox) | Lf =0} PDEs satisfied by density f

= f is D-finite iff K(x)(0x)/2Ann(f) has finite dimension over the dy;
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Ore Algebras, Differential Equations and Recurrences

1. Differential Ore Algebras

- Differential operators: non-commutative, spanned by x1, Ox, ..., Xn, Ox,

Ox f = fx’, (Xif);,- = X"fxl,- +f = Ox;Xi = XjOx; + 1

- K[x]{0x) polynomial Ore algebra vs K(x)(Ox) rational Ore algebra
- Ann(f) = {LeK(x){Ox) | Lf =0} PDEs satisfied by density f

= f is D-finite iff K(x)(0x)/2Ann(f) has finite dimension over the dy;

Example: Exponential-Polynomial Density

f(x) =cexp(p(x)) with peKs[x] (e.g., Gaussian distribution)
fv. —pyf=0 = QAnn(f) generated by the 9y, - p;,, = fis D-finite
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Ore Algebras, Differential Equations and Recurrences

2. Difference Ore Algebras
- Difference operators: non-commutative, spanned by o1, Say, ..., an, Sa,

(aiv)a = ajuq (Sa;U)a = Uay,...,a;+1,...,cn Sa;ai = (e +1)Sq,

- Ann(u) = {R e K[a](Sa) | Ru=0} recurrences satisfied by u
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Ore Algebras, Differential Equations and Recurrences

2. Difference Ore Algebras

- Difference operators: non-commutative, spanned by o1, Say, ..., an, Sa,

(aju)a = ajuq (Sa;ju)a = Uay,...,a;+1,...,an Sajai = (ai+1)Sa;

- Ann(u) = {R e K[a](Sa) | Ru=0} recurrences satisfied by u

Recurrences for the moments mq, = / x“f(x)dx:
G

o Direct problem: J c Ann(f) iR J < Ann(my)

o Inverse problem: Reconstruct G and J ¢ Ann(f) from sufficiently many mq
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx

- Action of Ore polynomials: Ly =7
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(e.0)= [ o)
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(8X167<P>
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(0x1G,¥) = (16,-0xp)
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(0x16,¢) = (16, -0xp) = - f_ll ' (x)dx
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(0x16,0) = (16,-0xp) = p(-1) - (1)
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(Oxlg,p) = (1, -0xp) =p(-1) = (1) =  Oxlg=0-1-01

On Moment Problems with Holonomic Functions réhard, M. Joldes an B. Lasserre



Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(8216,0) = (16, (-9:) %) = ' (-1) - '(1)
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Holonomic Measures

— Measure p = flg as a linear functional:

(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx

- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(0216,¢) = (16, (-0)%0) = ¢/ (1) -/ (1)) =  Rlg=3'1-5
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

((x* =1)8x1g, 0)
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

((* =1)8x1e,0) = (1,-0x (x* - 1))
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(2 = 1)1, ) = (1,0 - 1)) == [ ((-1))dx
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(2 = 1)0x16,0) = (L, -0x(x* - 1)) = [(1-x*)]", =0
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Holonomic Measures

— Measure p = flg as a linear functional:
(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx
- Action of Ore polynomials: Ly =7

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1g

(O3 -1)8xle, ) = (16, -0 (x> ~1)g) = [(1-xP)p], =0 = (x*-1)dls=0
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Holonomic Measures

— Measure p = flg as a linear functional:

(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1¢

(62 -1)0u16,0) = (16, -0x (x>~ 1)) = [(1-2D)p]" =0 = (x*-1)d1g =0

o Ore polynomials acting on distributions: (L T,¢) = (T, L* @)

X=x 9L =-0y  (Lil)"=L3L}

i
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Holonomic Measures

— Measure p = flg as a linear functional:

(Fle.e) = [ eCOf(016(0dx = [ p()f(x)dx

Example: Lebesgue measure over a segment

Let G=[-1,1], f=1, andpu=1¢

(62 -1)0u16,0) = (16, -0x (x>~ 1)) = [(1-2D)p]" =0 = (x*-1)d1g =0

o Ore polynomials acting on distributions: (L T,¢) = (T, L* @)

X=x 9L =-0y  (Lil)"=L3L}

i

o Ann(T) in K[x](dx) = holonomic instead of D-finite
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From Holonomic Measures to Recurrences on Moments —l ' I #

- Again, with G = [-1,1], and using ¢ = x*:

0=((1-x*)dxle,x")
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From Holonomic Measures to Recurrences on Moments —l ' I #

- Again, with G = [-1,1], and using ¢ = x*:

0= ((1-x*)dele,x¥) = (1g, O (x* - 1)x¥) = f_ll ((k +2)xK — k) dx
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From Holonomic Measures to Recurrences on Moments

- Again, with G = [-1,1], and using ¢ = x*:

0= ((1-x*)dele,x¥) = (1g, O (x* - 1)x¥) = f_ll ((k +2)xK — k) dx

= Recurrence satisfied by the moments (my):

(k+2)myp —kmy_1 =0

This is indeed true...

2 .
e = /lxkdx= o1 !fkeven
-1 0 if k odd
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Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

1
(ps0) = [1 pfdx
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Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

1
flgo (8x - 2x)Fdx
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Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

1
o=f @ (8x - 2x)Fdx
-1 _
=0
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Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

1 1
o=f o ({')X—Zx)fdx:f (=85 - 2x) Fdx + [of ],
-1 R , -1
=0
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Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

- [1s

x%)(0x - 2x) fdx =

=0
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Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

0= [P G0 20fax= [0 2002 -V e [ Def

[
=0 -0
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Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

0= [P G0 20fax= [0 2002 -V e [ Def

[
=0 -0

= (1-x?)(dx - 2x) € Ann(u)

On Moment Problems with Holonomic Functions — . . Lasserre



Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

0= [P G0 20fax= [0 2002 -V e [ Def

[
=0 -0

= (1-x?)(dx - 2x) € Ann(u)

— replace ¢ = x* to obtain a recurrence

f_ll(ax +2x)(x2 = 1)x* f(x)dx =0
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Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

0= [P G0 20fax= [0 2002 -V e [ Def

[
=0 -0

= (1-x?)(dx - 2x) € Ann(u)

— replace ¢ = x* to obtain a recurrence

1
/1 (253 + kx* T kx* ) F(x)dx = 0
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Using Integration by Parts

- p="Fflg with G =[-1,1] and f(x) = exp(-x?):

0= [P G0 20fax= [0 2002 -V e [ Def

[
=0 -0

= (1-x?)(dx - 2x) € Ann(u)

— replace ¢ = x* to obtain a recurrence

1
/1 (253 + kx* T kx* ) F(x)dx = 0

= Recurrence for the my:

2migy3 + kmyeyy — k1 =0
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The General Case

w="~lg, LeK[x](Ox) of order r,

- Use Lagrange identity:
e (Lf) = (L"p) f = Ox Li(f,9)

— L, bilinear concomitant in f, ¢ with derivatives of order < r -1
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The General Case

w="~lg, LeK[x](Ox) of order r, x=(Xt,...,Xn)

- Use Lagrange identity:
e (Lf) = (L"¢) f = V-Li(f )

— L, bilinear concomitant in f, ¢ with derivatives of order < r -1
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The General Case

w="~lg, LeK[x](Ox) of order r, x=(Xt,...,Xn)

- Use Lagrange identity:
e (Lf) = (L"¢) f = V-Li(f )

— L, bilinear concomitant in f, ¢ with derivatives of order < r -1

- [ewnax- [Wofax= [v-oife)dx
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The General Case

w="~lg, LeK[x](Ox) of order r, x=(Xt,...,Xn)

- Use Lagrange identity:
e (Lf) = (L"¢) f = V-Li(f )

— L, bilinear concomitant in f, ¢ with derivatives of order < r -1

(Lp,p)

- [ewnax- [Wofax= [v-oife)dx
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The General Case

w="~lg, LeK[x](Ox) of order r, x=(Xt,...,Xn)

- Use Lagrange identity:
e (Lf) = (L"¢) f = V-Li(f )

— L, bilinear concomitant in f, ¢ with derivatives of order < r -1

(L ,p)
—_———
- Lf)dx - L* ) fdx = 7L (F = f,0)-h
[ewnax - [Werd= [vrifo)de= [ ri(fe)nds

—  use Stokes’ theorem
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The General Case

w="Fflg, LeK[x](dx) of order r, X =(Xty.+.yXn)

- Use Lagrange identity:
o (Lf) = (L"p) f = V-Li(f,p)

— L, bilinear concomitant in f, ¢ with derivatives of order < r -1

(g"Lu,p) =0

- ’Lfd—fL*’fd:f—ﬁf,’d:[ﬁf,’-”is
[eewnax— [(Weefdc= [vLufgvrdx= [ Li(fge) e

—  where g=0o0n 0G —  use Stokes’ theorem
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The General Case

w="Fflg, LeK[x](dx) of order r, X =(Xty.+.yXn)

- Use Lagrange identity:
o (Lf) = (L"p) f = V-Li(f,p)

— L, bilinear concomitant in f, ¢ with derivatives of order < r -1

=0 (g"Lp,p) =0

- 'Lfd—fL*’fd=f-£f,’d=[£f,’-”15
[erenax- [(Weefdc= [vLufgvydx= [ Li(fge) hc

— if L e 2Ann(f) — where g =00n 9G —  use Stokes’ theorem

= L[=g"LeAnn(p)
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From Differential Equations to Recurrences

— Translate L = g"L € Ann(u) into a recurrence on (mg):

Oy, — —oz,Sil

Xi - 50‘ i «j

i
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From Differential Equations to Recurrences

— Translate L = g"L € Ann(u) into a recurrence on (mg):
X > Sa O - —oiSy

i

Direct Problem

1. {L1,..., Lg} < Ann(f) D-finite
2. {Zl, L. ,Zk} c ann(,u)
3. Translate into {Ri,..., Rk} € Ann(my)

4. Grébner basis algo on {Ry,..., Rk}
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From Differential Equations to Recurrences

— Translate L = g"L € Ann(u) into a recurrence on (mg):
X > Sa O - —oiSy

i

Direct Problem

1. {L1,..., Lg} < Ann(f) D-finite
2. {Zl, L. ,Zk} c ann(,u)
3. Translate into {Ri,..., Rk} € Ann(my)

4. Grébner basis algo on {Ry,..., Rk}

If f(x) =exp(p(x)) and g =0 on J¢ s.t.
{xeC"| g(x)=0and Vg(x) =0} =,
then the recurrences system is holonomic.

= Conjecture for the general case?
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From Differential Equations to Recurrences

— Translate L = g"L € Ann(u) into a recurrence on (mg):

-1
Xi = Sa; Ox, — —aiSal_

Direct Problem Inverse Problem
1. {L1,..., Lg} < Ann(f) D-finite

2 {Lw,- o L} & Ann(p) o Reconstruct L;, then g and L; from the
3. Translate into {Ry,..., Ry} € Ann(my) given moments mq

4. Grébner basis algo on {Ry,..., Rk} — Translation L; < R; is linear

= Holonomicity not needed

If f(x) =exp(p(x)) and g =0 on J¢ s.t.
{xeC"| g(x)=0and Vg(x) =0} =,
then the recurrences system is holonomic.

= Conjecture for the general case?
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Outline

m The General Case with D-Finite Densities

Inverse Problem: Algorithms and Proofs
m Exponential-Polynomial Densities
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Inverse Problem — Roadmap and Issues

- To reconstruct g vanishing on G and L € 2Ann(f) of order r:

1. Make an ansatz L for L=g"L e Ann(p)

2. Find the coefficients of L by solving the linear system:

Cux) = wTx) = [(TXDF)dx =0,  Jal<N (LSw)

requiring moments mq, for || < N +...

3. Extract g and L from L using (numerical) GCDs
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Inverse Problem — Roadmap and Issues

- To reconstruct g vanishing on G and L € 2Ann(f) of order r:

1. Make an ansatz L for L=g"L e Ann(p)

2. Find the coefficients of L by solving the linear system:

(T, x) = (u, T*x) = /G(Z*xa)f(x)dx:o, lof < (LSy)
requiring moments mq, for || < N +...

3. Extract g and L from L using (numerical) GCDs

— Issues to be handled:

o False solutions in (LSy): L ¢ Ann(p)?
o How many moments mq: a priori bounds on N7

o Can g and L be always extracted from L € 2nn(u)?

On Moment Problems with Holol ic Functions Bréhard,
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Outline

Inverse Problem: Algorithms and Proofs
m Exponential-Polynomial Densities
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Reconstruction of Exp-Poly Densities

- p="f1lg with f(x) = exp(p(x)) for p e K[x]s and g € K[x]q4 vanishing on 0G
L = g(8-py) € Ann(p)

On Moment Problems with Holonomic Functions réhard, M. Joldes an B. Lasserre



Reconstruction of Exp-Poly Densities

- p="f1lg with f(x) = exp(p(x)) for p e K[x]s and g € K[x]q4 vanishing on 0G
Li = gog-gp, € Ann(p)

hi
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Reconstruction of Exp-Poly Densities

- p="f1lg with f(x) = exp(p(x)) for p e K[x]s and g € K[x]q4 vanishing on 0G
Li = gog-gp, € Ann(p)

hi

Algorithm REC ExpPoLYy

Input: Moments mqy of p for o] < N+d+s-1
Output: Polynomials g and p
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Reconstruction of Exp-Poly Densities

- p="f1lg with f(x) = exp(p(x)) for p e K[x]s and g € K[x]q4 vanishing on 0G
Li = gog-gp, € Ann(p)

hi

Algorithm REC ExpPoLYy

Input: Moments mqy of p for o] < N+d+s-1
Output: Polynomials g and p

1. Build ansatz L; =gy, — hj for 1<i<n
2. Compute coefficients of &, h; with nontrivial solution of

(nIix®) =0, 1<i<n, la]<N (LSw)

i

~,'(0,...,t,’,X,'+1,...,X,-,)dt,‘ where ;i :Zi/g

w
!
t
el

o —x
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Reconstruction of Exp-Poly Densities

- p="f1lg with f(x) = exp(p(x)) for p e K[x]s and g € K[x]q4 vanishing on 0G
Li = gog-gp, € Ann(p)

hi

Algorithm REC ExpPoLYy

Input: Moments mqy of p for o] < N+d+s-1
Output: Polynomials g and p

1. Build ansatz L; =gy, — hj for 1<i<n
2. Compute coefficients of &, h; with nontrivial solution of

(M7Z?Xa):0’ 1<i<n, |O‘|<N (LSN)

i

3. Fﬁ<— ~,'(0,...,t,’,X,'+1,...,X,-,)dt,‘ where ’ﬁi:Fi/E

Itgs
o —x

i
v

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N>3d+s-1, then RECONSTRUCTEXPPOLY computes:
o g=Agwith A#0
o B=p-p(0)
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N> 777, then RECONSTRUCTEXPPOLY computes:
o g=Agwith A#0 o p=p-p(0)

Proof.
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N> 777, then RECONSTRUCTEXPPOLY computes:
o g=Agwith A#0 o p=p-p(0)

Proof.
1. Reconstruction of p
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N> 777, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all ¢ € K[x]n:
0 = (Lp,¢)
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N> 777, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all p € K[x]n:

0 = (Tuy) = [ o@%y-P)fdc + [ Fofe nds
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N> 777, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all p € K[x]n:

0 = Tne) = [o@l,-Pfdx + [ Fofe-nds
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N>3d+s-1, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all p € K[x]n:

0 = Tne) = [o@l,-Pfdx + [ Fofe-nds
Jos T T~
=0

— Take ¢ = (gpy, —hi)g? of degree 3d +s-1
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N>3d+s-1, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all p € K[x]n:

0 = Tne) = [o@l,-Pfdx + [ Fofe-nds

(%) =0

— Take ¢ = (gpy, —hi)g? of degree 3d +s-1
— Hence (x)=0 = g2(§p)’q -h)*’(=0 on G = Px; =hi/g
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N>3d+s-1, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all p € K[x]n:

0 = Tne) = [o@l,-Pfdx + [ Fofe-nds

(%) =0

— Take ¢ = (gpy, —hi)g? of degree 3d +s-1
— Hence (x)=0 = g2(§p)’q -h)*’(=0 on G = Px; =hi/g

2. Reconstruction of g
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N>3d+s-1, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all p € K[x]n:

0 = Tne) = [o@l,-Pfdx + [ Fofe-nds

(%) =0

— Take ¢ = (gpy, —hi)g? of degree 3d +s-1
— Hence (x)=0 = g2(§p)’q -h)*’(=0 on G = Px; =hi/g

2. Reconstruction of g for all ¢ € K[x]n:

gpf ¢e-n dS =0
0c8?" "

On Moment Problems with Holol ic Functions Bréhard, Joldes an B. Lasserre



Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N>3d+s-1, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all p € K[x]n:

0 = Tne) = [o@l,-Pfdx + [ Fofe-nds

(%) =0

— Take ¢ = (gpy, —hi)g? of degree 3d +s-1
— Hence (x)=0 = g2(§p)’q -h)*’(=0 on G = Px; =hi/g

2. Reconstruction of g for all ¢ € K[x]n:

Zof &6 dS =0
0c8? 0
=, /I Vel
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N>3d+s-1, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all p € K[x]n:

0 = Tne) = [o@l,-Pfdx + [ Fofe-nds

(%) =0

— Take ¢ = (gpy, —hi)g? of degree 3d +s-1
— Hence (x)=0 = g2(§p)’q -h)*’(=0 on G = Px; =hi/g

2. Reconstruction of g for all ¢ € K[x]n:

Zof &6 dS =0
0c8? 0
=, /I Vel

— Take ¢ = ggy, of degree 2d -1
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of RECONSTRUCTEXPPOLY

If N>3d+s-1, then RECONSTRUCTEXPPOLY computes:

o g=Agwith A#0 o p=p-p(0)
Proof.
1. Reconstruction of p for all p € K[x]n

0 = Tne) = [o@l,-Pfdx + [ Fofe-nds

(%) =0

— Take ¢ = (gpy, —hi)g? of degree 3d +s-1
— Hence (x)=0 = g2(§p)’q -h)*’(=0 on G = Px; =hi/g

2. Reconstruction of g for all ¢ € K[x]n

Zof &-n dS =
0c8? 0
=, /I Vel

—>Take<p:§g)’<l_ of degree 2d -1 = EZEX',zm OondG = g=0 ondG

On Moment Problems with Holol ic Functions Bréhard, Joldes an B. Lasserre



Example — Algebraic Support, Gaussian Measure

— Reconstruction of:

f(x,y) = exp(-x> +xy - y*/2)

and  g(x,y) = (@ -9/10) + (y* - 11/10)* - 1

2F




Example — Algebraic Support, Gaussian Measure

— Reconstruction of:

f(x,y) :exp(—x2+xy—y2/2) and g(x,y) = (X2—9/10)2+(y2—11/10)2—1

o

/
\

Moments (mj;);,j<1s with 4,6,8 digits of accuracy
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Example — Algebraic Support, Gaussian Measure

— Reconstruction of:

f(x,y) :exp(—x2+xy—y2/2) and g(x,y) = (X2—9/10)2+(y2—11/10)2—1

oF

Lasserre



Outline

Introduction

Holonomic Distributions and Recurrences on Moments

Inverse Problem: Algorithms and Proofs

m The General Case with D-Finite Densities

Limits and Perspectives
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Density and Support Reconstruction in the General Case

- u= fl(; with g € K[x]4 vanishing on 9G, and {Li,...,L,} rectangular system for f:
= Qir; O3 + -+ + qi1Ox; + gio € Ann(f) N K[x](Ix,)
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Density and Support Reconstruction in the General Case

- u=flg with g € K[x]4 vanishing on G, and {Ly,...,L,} rectangular system for f:
Li= g”'(q,-,l.a)’(; +-+ qi10x + qio) € Ann(p) N K[x](0x,) hij = g"qij € K[x]s
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Density and Support Reconstruction in the General Case

- u=flg with g € K[x]4 vanishing on G, and {Ly,...,L,} rectangular system for f:
Li= g”'(q,-,l.a)’(; +-+ qi10x + qio) € Ann(p) N K[x](0x,) hij = g"qij € K[x]s

Algorithm RECONS

Input:  Moments mq of u for [a| <N +5s
Output: A rectangular system {L1,...,L,} for f
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Density and Support Reconstruction in the General Case

- u=flg with g € K[x]4 vanishing on G, and {Ly,...,L,} rectangular system for f:
Li= g”'(q,-,l.a)’(; +-+ qi10x + qio) € Ann(p) N K[x](0x,) hij = g"qij € K[x]s

Algorithm RECONS

Input:  Moments mq of u for [a| <N +5s
Output: A rectangular system {L1,...,L,} for f

1. Build ansatz L; :7;',-,,.8;; 4ot higforl<i<n
2. Compute coefficients of Fij with nontrivial solution of

(u, LFx*) =0, 1<ig<n, |o<N

3. Extract (numerical) GCD polynomial factor in L;
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Density and Support Reconstruction in the General Case

- u=flg with g € K[x]4 vanishing on G, and {Ly,...,L,} rectangular system for f:

Li= g”'(q,-,l.a)’(; +-+ qi10x + qio) € Ann(p) N K[x](0x,) hij = g"qij € K[x]s

Algorithm RECONSTRUCTDENSITY

Input:  Moments mq of u for [a| <N +5s
Output: A rectangular system {L1,...,L,} for f

1. Build ansatz L; :7;',-,,.8;; 4ot higforl<i<n
2. Compute coefficients of Fij with nontrivial solution of
(u, LFx*) =0, 1<ig<n, |o<N

3. Extract (numerical) GCD polynomial factor in L;

Algorithm RECONSTRUCTSUPPORT

Input: Rectangular {L1,...,L,} and mq for |a| < N + dr + max;{deg(q;) — j}
Output: Polynomial g € K[x]q4
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Density and Support Reconstruction in the General Case

- u=flg with g € K[x]4 vanishing on G, and {Ly,...,L,} rectangular system for f:

Li= g”'(q,-,l.a)’(; +-+ qi10x + qio) € Ann(p) N K[x](0x,) hij = g"qij € K[x]s

Algorithm RECONSTRUCTDENSITY

Input:  Moments mq of u for [a| <N +5s
Output: A rectangular system {L1,...,L,} for f

1. Build ansatz L; :7;',-,,.8;; 4ot higforl<i<n
2. Compute coefficients of Fij with nontrivial solution of
(u, LFx*) =0, 1<ig<n, |o<N

3. Extract (numerical) GCD polynomial factor in L;

Algorithm RECONSTRUCTSUPPORT

Input: Rectangular {L1,...,L,} and mq for |a| < N + dr + max;{deg(q;) — j}
Output: Polynomial g € K[x]q4

1. Compute coefficients of ansatz h € K[x]g4r with nontrivial solution of
(,LL,(FL,-)*XQ):O, 1<ign, |a|<N
2. & < (numerical) GCD of {h, A, ,F'Xn}

X1
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Density and Support Reconstruction in the General Case

Theorem — Correctness of RECONSTRUCTDENSITY

For N large enough, the rectangular system {Zl, e ,Z,,} computed by
RECONSTRUCTDENSITY is in Ann(f).
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Density and Support Reconstruction in the General Case

Theorem — Correctness of RECONSTRUCTDENSITY

For N large enough, the rectangular system {Zl, e ,Z,,} computed by
RECONSTRUCTDENSITY is in Ann(f).

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = A\g with A # 0 whenever g;. # 0 on G and
N> (2r-1)d+ (d-1)b+s where:

o r = max rj, orders of the L;
1<ign

o b=r mod?2
os= Eix{deg(q,-,)} maximal degree of the head coefficients
<Isn
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Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:

Proof.

Moment Problems with Hol ic Functions g ) J.-B. Lasserre



Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:

Proof.~
- 0={(hLip, ) for ¢ € K[x]n
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Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:

Proof.~ _ _
~0=(hLip, @) = ngoh(L,-f)dx— facz:L,.(f, ho)é -7dS  for e K[x]n
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Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:

Proof.~ _ _
— 0= (hLip, o) = ngah(L,f)dx—faGLLi(f,hcp)é,'-ﬁdS for ¢ ¢ K[x]n
—_—
-0
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Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:

Proof.
— 0= (hLip, o) = fG@F(L,-f)dx— faGLL,(f,Ra)é,.ﬁds for ¢ ¢ K[x]n
—_—
-0

— Suppose for contradiction that h= gkho with g + hg and k < r
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Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:

Proof.
— 0= (hLip, o) = fG@F(L,-f)dx— faGLL,(f,Ra)é,.ﬁds for ¢ ¢ K[x]n
—_—
-0

— Suppose for contradiction that h= gkho with g + hg and k < r

Ly, (f,he) = f [ainhe = 0 (qizhe) +---+ (=1) 710, (qirho) ]
+0x () [qizhep = O (qishep) + -+ + (-=1)"20, 7 (qirhe) |
+...

+071(F) airhep.
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Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:
o N>(2r-1)d+(d-1)b+s

Proof.~ _ _
~0=(hLip, @) = ngoh(L,-f)dx— facz:L,.(f, ho)é -7dS  for e K[x]n

——————
=0

— Suppose for contradiction that h= gkho with g + hgp and k < r
Ly, (f,hp) = f [ainhe = 0 (qizh) + -+ (=1) 710 (g5 h) ]
+0x () [qizhep - O (qishep) + -+ + (1) 20,7 (qirhe) |
+...

+071(F) qirhep.

r mod 2

g
— Take ¢ = q,-,hog"l‘kg)’qb of deg < (2r-1)d + (d -1)b +s, so that g™ | hy
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Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:
N> 2r-1)d+(d-1)b+s

Proof.~ _ _
~0=(hLip, @) = ngoh(L,-f)dx— facz:L,.(f, ho)é -7dS  for e K[x]n

——————
=0

— Suppose for contradiction that h= gkho with g + hgp and k < r

Ly, (f,hp) = f [ainhe = 0 (qizh) + -+ (=1) 710 (g5 h) ]
+05; (F) [inhe — Ox; (qishe) + -+ + (-1)"205 7 (qirhe) |
+...

+OL(F) qirhep.
— Take ¢ = girhog" 1 ¥gl.” of deg < (2r—1)d + (d —1)b +s, so that g"* | hyp

— o gX
- 0= 0" (qirhy !
o o L) Ivel

r mod 2

fds
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Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:
N> 2r-1)d+(d-1)b+s

Proof.
— 0= (hLip, o) = fG@F(L,-f)dx— faGLL,(f,Ra)é,.ﬁds for ¢ ¢ K[x]n
—_—
-0

— Suppose for contradiction that h= gkho with g + hgp and k < r

Ly, (f,hp) = f [ainhe = 0 (qizh) + -+ (=1) 710 (g5 h) ]
+05; (F) [inhe — Ox; (qishe) + -+ + (-1)"205 7 (qirhe) |
+...
+071(F) qirhep.

r mod 2
~~
rlk Ib

ofdeg (2r-1)d+(d-1)b +s, so that g™ | hyp

) — rib 2 f
- 0= ()\'»,,,4 (girhyp)——=FfdS = (r-1)! / ( ! 2 q,,ho) ——dS
a6 HV l Bx [vel

— Take ¢ = girhog
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Support Reconstruction — Proof

Theorem — Correctness of RECONSTRUCTSUPPORT

RECONSTRUCTSUPPORT computes g = Ag with A # 0 whenever:

Nz((2r-1)d+(d-1)b+s o gir #00on 0G
Proof.~ _ _
~0=(hLip, @) = ngoh(L,-f)dx— facz:L,.(f, ho)é -7dS  for e K[x]n
—_—
-0

— Suppose for contradiction that h= gkho with g + hgp and k < r

L1, (f,hp) = f [ainhe = 0 (qizh) +---+ (=1) 710 (g5 h) ]
+0x; (F) [ihe — O, (qishe) + -+ + (-1)""20; 7 (qirhep) |
+...
+071(F) airhep.

r mod 2
~~
rlk Ib

ofdeg (2r-1)d +(d-1)b +s, so that g™ | hyp

— r+ 2 f

- 0= O M quhp) =2 fdS = (r-1 f (’T ho) ——dS
o o a5 = =01 [ (8 k) o

= Contradiction:  hg =0 on 9g, hence g | hg

— Take ¢ = girhog
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The Singular Case — Example in Combinatorics

— Express Catalan numbers as moments of a measure y: K
1 (2n\ » ve o VS
Cr - L [xnrodx
n+1\n 1 > Y R
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The Singular Case — Example in Combinatorics

— Express Catalan numbers as moments of a measure y:

1 (2n) - n
Co = n+1(n) z flx F(x)dx

(n+2)Cpi1 - (4n+2)Cr =0
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The Singular Case — Example in Combinatorics

— Express Catalan numbers as moments of a measure y:

1 (2n) - n
Co = n+1(n) z flx F(x)dx

(n+2)Cpi1 - (4n+2)Cr =0
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The Singular Case — Example in Combinatorics

4 . N\
— Express Catalan numbers as moments of a measure y: K
1 {on\ - ve o VS
Ch = = fx"f x)dx .
8 n+1 ( n ) 1 () 4

(n+2)Cpi1 - (4n+2)Cr =0

— Reverse translation

x <« S, and

Sa(n+1)—4(n+1)+2

—
(o e e s )

mic Functions Lasserre

Moment Problems with Hol
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— Express Catalan numbers as moments of a measure y: K
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Ch = = fx"f x)dx .
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— Reverse translation
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and
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The Singular Case — Example in Combinatorics

4 . N\
— Express Catalan numbers as moments of a measure y: K
1 {on\ - ve o VS
Ch = = fx"f x)dx .
8 n+1 ( n ) 1 () 4

(n+2)Cpi1 - (4n+2)Cr =0

— Reverse translation
2
S”

X

x <« S, and

-4 5,

—_—— e
2 X

= (4x-x%)0x +2 € Ann(p)
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The Singular Case — Example in Combinatorics

4 . N\
— Express Catalan numbers as moments of a measure y: K
1 2n\ 2 *
Ch = = fx"f x)dx .
" n+1 ( n ) 1 () .

(n+2)Cpi1 - (4n+2)Cr =0

— Reverse translation x < S, and
2
S, -4 5, +2
—_—— [ pd S—
2 X

X

= (4x-x%)0x +2 € Ann(p)

g=17

+o00 4_
G - ,\f X" Xdax 7
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The Singular Case — Example in Combinatorics

— Express Catalan numbers as moments of a measure y:

G =

1
n+1

(

2n
n

)

?

= flx"f(x)dx

(n+2)Cpi1 - (4n+2)Cr =0

— Reverse translation

x <« S, and

s2 -45, +2
—— T —
= (4x-x2)0x +2 e Ann(p) —
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Limits and Perspectives
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Some Limits and Perspectives

m A priori bounds for N in the general case with unknown D-finite density?

m Full determination of the density, including initial conditions

m Extracting the component of V(g) corresponding to G
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Bounds for the Number of Moments?

— Is there an explicit bound Ny on N s.t. for ansatz TofL= g'L:

(Cp,p) =0 for all p e K[x]y = Lp=0 when N > Ny ?
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Bounds for the Number of Moments?

— Is there an explicit bound Ny on N s.t. for ansatz TofL= g'L:

(Cp,p) =0 for all p e K[x]y = Lp=0 when N > Ny ?
— The proof of the Exp-Poly density case doesn’t generalize:

(Tne) = [enax - [ cr(f.e)-nds
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Bounds for the Number of Moments?

— Is there an explicit bound Ny on N s.t. for ansatz TofL= g'L:

(Cp,p) =0 for all p e K[x]y = Lp=0 when N > Ny ?
— The proof of the Exp-Poly density case doesn’t generalize:

(Tne) = [enax - [ cr(f.e)-nds
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Bounds for the Number of Moments?

— Is there an explicit bound Ny on N s.t. for ansatz TofL= g'L:

(Cp,p) =0 for all p e K[x]y = Lp=0 when N > Ny ?
— The proof of the Exp-Poly density case doesn’t generalize:

(Tne) = [enax - [ cr(f.e)-nds

77

~ Such a bound Ny depending only on the structure of L cannot exist:

Example — Legendre Polynomials P, over [-1,1]

Pa(x) annihilated by Ly = 6« ((1 - x?)0x) + n(n+1) = common ansatz L

but min) = f_ll x¥Py(x)dx=0 for k<n and m,(1n) 50

— Explicit bounds depending on upper bounds on the coefficients of 17
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Reconstructing Initial Conditions of the Density

- Algorithm RECONSTRUCTDENSITY only computes a system 7 = {L1,...,L,}
but not the initial conditions that fully characterize f
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Reconstructing Initial Conditions of the Density

4

F(x,y) = ApePr )

T
p1 = _} X = fx1 ZI1 X = Hx1
2 Y — Myl Y — Hy1
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Reconstructing Initial Conditions of the Density

' E

f(X,y) = )\lepl(x’y)

.
pl:_l(X—Mxl ) ):-1(X—Mx1 ) A= 1
2\ Y- P\ y-pn 2m/|Z]

o 2
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Reconstructing Initial Conditions of the Density

4

f(x,y) = ApePLOOY) | a,eP2(oy) 4 )3 eP3(xy)

T
'7_1 X — Wi —1[ X pxi
pi = 3
2\ Y Hyi Y = Hyi

On Moment Problems with Holol ic Functions — F. Bréhard, . Lasserre



Reconstructing Initial Conditions of the Density

4

f(X’y) = A€

T
Pi=—1 X = Pxi zi-1 X = Hxi
2 Y = Hyi

Y = Hyi
Moment Problems with Hol

p1(x,y) +)\26P2(><;,V) n )\3eP3(X;Y)

A =1777
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Reconstructing Initial Conditions of the Density

- Algorithm RECONSTRUCTDENSITY only computes a system 7 = {L1,...,L,}
but not the initial conditions that fully characterize f

— Solution: compute initial moments for a basis of solution densities of J

o Optimization techniques, e.g., [HenrionLasserreSavorgnan2009]

o Computer algebra, e.g., [LairezMezzarobbaEIDin2019]
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Isolation of the Topological Boundary
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Isolation of the Topological Boundary

4 2

1(0G) = (g) with g(X7Y)=(X2+y2—9)($<2+y2—1)((X—2)2+y2—1)(X2+(y—2)2—1)

4
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Isolation of the Topological Boundary

I(0G) = (g) with g(X7Y)=(X2+y2—9)(¥2+y2—1)((x—2)2+y2—

g reconstructed using 6 digits accuracy for the moments (mq.)

4

’1)(X2+(y—2)2—1)
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Isolation of the Topological Boundary

~.

— —

1(0G) = (g) with g(X7Y)=(X2+y2—9)($<2+y2—1)((X—2)2+y2—1)(X2+(y—2)2—1)

g reconstructed using 4 digits accuracy for the moments (mq.)

4
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Isolation of the Topological Boundary
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1)(x*+(y-2)*-1)

x2+y2—9)(X2+y2—1)((x—2)2+y2—

4

1(0G) =(g) with g(x,y)=(
g reconstructed using 2 digits accuracy for the moments (mq)
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Isolation of the Topological Boundary

1(0G) = (g) with g(X7Y)=(X2+y2—9)($<2+y2—1)((X—2)2+y2—1)(X2+(y—2)2—1)

g reconstructed using 1 digit accuracy for the moments (mq )
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Isolation of the Topological Boundary
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1(0G) =(g) with g(x,y)=(
g reconstructed using 2 digits accuracy for the moments (mq)
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Isolation of the Topological Boundary

4
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4

1)(x*+(y-2)*-1)

4

x2+y2—9)(X2+y2—1)((x—2)2+y2—
g < randomly perturbed ()

1(0G) = (g) with g(x,y)=(

G ~ {(x,y) | g(x,y) =0 and E[g(x,y)*] <€},
. Bréhard, M. Joldes an B. Lasserre
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Conclusion and Perspectives

Contributions:

o Extension of [LasserrePutinar2015] to reconstruction of unknown Exp-Poly
density and unknown semi-algebraic support

— Explicit bound for the number N of required moments

o Reconstruction algorithm for unknown holonomic density and unknown
semi-algebraic support

o Numerical experiments using least-squares approximation when approximate
moments are known

Future work:

o Generic bounds for N depending on the magnitude of the coefficients

o Numerical aspects: robustness w.r.t. approximate moments, or nonpolynomial
boundary

o lIsolation of the topological boundary via perturbation techniques

o Application to problems involving combinatorial sequences
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