When are counting sequences Stieltjes moment sequences?

Andrew Elvey Price Joint work with Alin Bostan, Tony Guttmann and Jean-Marie Maillard

Université de Bordeaux et Université de Tours

20/01/2020

When are counting sequences Stieltjes moment sequences?

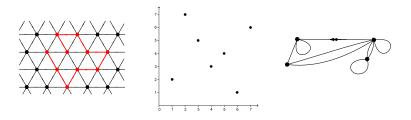
Andrew Elvey Price

COUNTING SEQUENCES

Main questions: *how many objects of size n are there?* Possible objects:

- lattice paths (size = #steps)
- (pattern-avoiding) permutations (size = #elements)
- planar maps/graphs/trees (size = #edges or #vertices)
- Many more

Any such type of object defines a counting sequence a_0, a_1, \ldots , where a_n is the number of objects of size n.



Definition and Theorem: A sequence $a_0, a_1, a_2, ...$ is a *Stieltjes moment sequence* if the following (equivalent) conditions hold:

• There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$.

Definition and Theorem: A sequence a_0, a_1, a_2, \ldots is a *Stieltjes* moment sequence if the following (equivalent) conditions hold:

- There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$. The matrices $\begin{bmatrix} a_0 & a_1 & \dots \\ a_1 & a_2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$ and $\begin{bmatrix} a_1 & a_2 & \dots \\ a_2 & a_3 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$ are positive semi-definite.

Definition and Theorem: A sequence $a_0, a_1, a_2, ...$ is a *Stieltjes moment sequence* if the following (equivalent) conditions hold:

• There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$.

• The matrices $\begin{bmatrix} a_0 & a_1 & \dots \\ a_1 & a_2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$ and $\begin{bmatrix} a_1 & a_2 & \dots \\ a_2 & a_3 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$ are positive semi-definite.

• There exist real numbers $\alpha_0, \alpha_1, \ldots \ge 0$ such that

$$A(t) = \sum_{n=0}^{\infty} a_n t^n = \frac{\alpha_0}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}}$$

Definition and Theorem: A sequence $a_0, a_1, a_2, ...$ is a *Stieltjes moment sequence* if the following (equivalent) conditions hold:

• There exists a positive measure ρ such that $a_n = \int_0^\infty x^n d\rho(x)$.

• The matrices $\begin{bmatrix} a_0 & a_1 & \dots \\ a_1 & a_2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$ and $\begin{bmatrix} a_1 & a_2 & \dots \\ a_2 & a_3 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$ are positive semi-definite.

• There exist real numbers $\alpha_0, \alpha_1, \ldots \ge 0$ such that

$$A(t) = \sum_{n=0}^{\infty} a_n t^n = \frac{\alpha_0}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}}$$

Question: Which counting sequences are Stieltjes moment sequences?

When are counting sequences Stieltjes moment sequences?

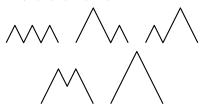
If $(a_n)_{n\geq 0}$ is a Stieltjes moment sequence with generating function A(t) then

- The ratios a_{n+1}/a_n are increasing.
- All singularities of A(t) lie in $\mathbb{R}_{\geq 0}$.
- We can produce "good" lower bounds on the growth rate

$$\mu = \lim_{n \to \infty} \sqrt[n]{a_n}.$$

EXAMPLE: CATALAN NUMBERS

The *n*th Catalan number c_n is the number of paths of *n* up steps and *n* down steps which are always at height ≥ 0 (Dyck paths). The sequence starts 1, 1, 2, 5, 14, 42, ...



 $c_3 = 5$, as there are 5 Dyck paths of length 6.

EXAMPLE: CATALAN NUMBERS

The *n*th Catalan number c_n is the number of paths of *n* up steps and *n* down steps which are always at height ≥ 0 (Dyck paths). The sequence starts 1, 1, 2, 5, 14, 42

The sequence starts 1, 1, 2, 5, 14, 42, ...

Representation as moments:

$$c_n = \frac{1}{n+1} \binom{2n}{n} = \int_0^4 x^n \frac{\sqrt{4-x}}{2\pi\sqrt{x}} dx.$$

Generating function as continued fraction:

$$C(t) = \sum_{n=0}^{\infty} c_n t^n = \frac{1}{1 - \frac{t}{1 - \frac{t}{1 - \dots}}}$$

TALK OUTLINE

- **Part 1:** Methods for proving the counting sequences are Stieltjes moments sequences
 - Part 1a: Combinatorial continued fractions
 - Part 1b: Spectral theorem for paths on graphs
 - Part 1c: Stieltjes inversion formula
- **Part 2:** Pattern avoiding permutations as Stieltjes moment sequences
 - Part 2a: Density function for 1342-avoiding permutations
 - Part 2b: Density function for 1234-avoiding permutations
 - **Part 2c:** Random matrices for 12...*k*-avoiding permutations
 - Part 2d: Empirical analysis for 1324-avoiding permutations

Part 1: Proving that counting sequences are Stieltjes moments sequences

Part 1a: Combinatorial continued fractions

COMBINATORIAL CONTINUED FRACTIONS

Recall $(a_n)_{n\geq 0}$ is a Stieltjes moment sequence if and only if its generating function A(t) can be written as

$$A(t) = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}},$$

for non-negative reals α_n .

COMBINATORIAL CONTINUED FRACTIONS

Recall $(a_n)_{n\geq 0}$ is a Stieltjes moment sequence if and only if its generating function A(t) can be written as

$$A(t) = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}},$$

for non-negative reals α_n .

Combinatorial interpretation (Flajolet, 1980): Weighted Dyck paths where each down step from height *k* gets weight α_k (setting $\alpha_k = 1$ yields the Catalan numbers).

COMBINATORIAL CONTINUED FRACTIONS

Recall $(a_n)_{n\geq 0}$ is a Stieltjes moment sequence if and only if its generating function A(t) can be written as

$$A(t) = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}},$$

for non-negative reals α_n .

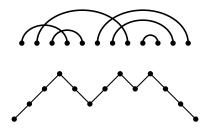
Combinatorial interpretation (Flajolet, 1980): Weighted Dyck paths where each down step from height *k* gets weight α_k (setting $\alpha_k = 1$ yields the Catalan numbers).

Bijections to:

- Set partitions
- Perfect matchings
- Permutations
- Phylogenetic trees

When are counting sequences Stieltjes moment sequences?

EXAMPLE: PERFECT MATCHINGS



- From perfect matchings to weighted Dyck paths: Replace each opener with an up step and each closer with a down step.
- Each down step from height k gets weight k (#arches that the closer could close).
- The continued fraction for perfect matchings has $\alpha_k = k$.

Therefore: The counting sequence for perfect matchings is Stieltjes.

More general continued fractions have also been used:

• "Jacobi-type" fractions for weighted Motzkin paths

$$A(t) = \frac{\delta_0}{1 - \gamma_1 t - \frac{\delta_1 t^2}{1 - \gamma_2 t - \frac{\delta_2 t^2}{1 - \dots}}},$$

(only Stieltjes for certain weights). (Sokal, Zeng, to appear)

• "Thron-type" fractions for weighted Schröder paths

$$A(t) = \frac{1}{1 - \beta_1 t - \frac{\alpha_1 t}{1 - \beta_2 t - \frac{\alpha_2 t}{1 - \dots}}}$$

(Stieltjes if all $\alpha_k, \beta_k \ge 0$). (E.P., Sokal, 2020)

• "Branched continued fractions" for paths with steps +1 and -k (Stieltjes if all weights ≥ 0). (Pétréolle, Sokal, Zhu, 2018)

When are counting sequences Stieltjes moment sequences?

Andrew Elvey Price

Part 1b: Spectral theorem for paths on graphs

Theorem: (E.P., Guttmann 2019) On any fixed (locally-finite) undirected graph: the counting sequence of even-length excursions forms a Stieltjes moment sequence.

Theorem: (E.P., Guttmann 2019) On any fixed (locally-finite) undirected graph: the counting sequence of even-length excursions forms a Stieltjes moment sequence.

Example: On the graph below, even length excursions from the red point are counted by Catalan numbers

Theorem: (E.P., Guttmann 2019) On any fixed (locally-finite) undirected graph: the counting sequence of even-length excursions forms a Stieltjes moment sequence.

Example: On the graph below, even length excursions from the red point are counted by Catalan numbers

Proof of theorem: (Sokal)

- For finite graphs: use the adjacency matrix to count excursions
 → result follows from spectral theorem.
- For infinite graphs: Use sequence of finite graphs

Theorem: (E.P., Guttmann 2019) On any fixed (locally-finite) undirected graph: the counting sequence of even-length excursions forms a Stieltjes moment sequence.

Example: On the graph below, even length excursions from the red point are counted by Catalan numbers

Proof of theorem: (Sokal)

- For finite graphs: use the adjacency matrix to count excursions
 → result follows from spectral theorem.
- For infinite graphs: Use sequence of finite graphs

Examples:

- Walks on Cayley graphs (i.e., *cogrowth* sequences of groups).
- Lattice excursions confined to the quarter plane.
- Excursions on higher dimensional lattices.

Part 1c: Stieltjes inversion formula

STIELTJES INVERSION FORMULA

Assume a_0, a_1, \ldots is a Stieltjes moment sequence with

$$a_n = \int_0^\tau x^n \mu(x) dx.$$

The generating function A(t) satisfies (at $z \sim \infty$)

$$\frac{1}{z}A\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} a_n z^{-n-1} = \int_0^{\tau} \frac{1}{z-x} \mu(x) dx =: F(z).$$

STIELTJES INVERSION FORMULA

Assume a_0, a_1, \ldots is a Stieltjes moment sequence with

$$a_n = \int_0^\tau x^n \mu(x) dx.$$

The generating function A(t) satisfies (at $z \sim \infty$)

$$\frac{1}{z}A\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} a_n z^{-n-1} = \int_0^{\tau} \frac{1}{z-x} \mu(x) dx =: F(z).$$

The RHS F(z) is the analytic continuation of $\frac{1}{z}A\left(\frac{1}{z}\right)$ to $\mathbb{C} \setminus [0, \tau]$.

Assume a_0, a_1, \ldots is a Stieltjes moment sequence with

$$a_n = \int_0^\tau x^n \mu(x) dx.$$

The generating function A(t) satisfies (at $z \sim \infty$)

$$\frac{1}{z}A\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} a_n z^{-n-1} = \int_0^{\tau} \frac{1}{z-x} \mu(x) dx =: F(z).$$

The RHS F(z) is the analytic continuation of $\frac{1}{z}A\left(\frac{1}{z}\right)$ to $\mathbb{C} \setminus [0, \tau]$. Stieltjes inversion formula:

$$\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(F(x + \epsilon i) - F(x - \epsilon i) \right).$$

When are counting sequences Stieltjes moment sequences?

NATURE OF DENSITY FUNCTION

From the Stieltjes inversion formula, equations for the generating function A(t) transform into equations for the density function $\mu(x)$: **Theorem:** Assume that $(a_n)_{n\geq 0}$ is the moment sequence of the density μ and has generating function $A(t) = \sum_{n=0}^{\infty} a_n t^n$. If A(t) is (piecewise)

- *algebraic* (i.e., there exists a nonzero polynomial $P(x, y) \in \mathbb{R}[x, y]$ such that P(t, A(t)) = 0),
- *D-finite* (Batenkov, 2009) (i.e., it is the solution of a linear ODE with polynomial coefficients) or
- *D-algebraic* (i.e., it is the solution of a nonlinear ODE with polynomial coefficients)

then the same is true for μ .

NATURE OF DENSITY FUNCTION

From the Stieltjes inversion formula, equations for the generating function A(t) transform into equations for the density function $\mu(x)$: **Theorem:** Assume that $(a_n)_{n\geq 0}$ is the moment sequence of the density μ and has generating function $A(t) = \sum_{n=0}^{\infty} a_n t^n$. If A(t) is (piecewise)

- *algebraic* (i.e., there exists a nonzero polynomial $P(x, y) \in \mathbb{R}[x, y]$ such that P(t, A(t)) = 0),
- *D-finite* (Batenkov, 2009) (i.e., it is the solution of a linear ODE with polynomial coefficients) or
- *D-algebraic* (i.e., it is the solution of a nonlinear ODE with polynomial coefficients)

then the same is true for μ .

For algebraicity the converse is false: eg. if $a_n = \frac{1}{n+1}$ then $\mu(x) = 1$ for $x \in [0, 1]$ but $A(t) = -t^{-1} \log(1 - t)$.

For D-finiteness the converse is true (Bréhard, Joldes, Lasserre, 2019).

EXAMPLE: CATALAN NUMBERS

Generating function

$$C(t) = \frac{1}{1 - tC(t)} = \frac{1 - \sqrt{1 - 4t}}{2t}.$$

Then

$$F(z) := \int_0^4 \frac{1}{z - x} \mu(x) dx = \frac{1}{z} C\left(\frac{1}{z}\right) = \frac{1}{2} \left(1 - \sqrt{\frac{z - 4}{z}}\right).$$

By the Stieltjes inversion formula, the density function is

$$\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(F(x + \epsilon i) - F(x - \epsilon i) \right) = \frac{1}{2\pi} \sqrt{\frac{4-x}{x}}.$$

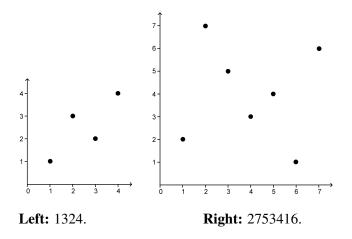
EXAMPLE: DE FOR CATALAN NUMBERS

Generating function C(t) satisfies $(1-2t)C(t) + (t-4t^2)C'(t) = 1.$ Then $F(z) = \frac{1}{z}C(\frac{1}{z})$ satisfies 2F(z) - z(z-4)F'(z) = 1.The density function $\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} (F(x+\epsilon i) - F(x-\epsilon i))$ satisfies

$$2\mu(x) - x(x-4)\mu'(x) = 0.$$

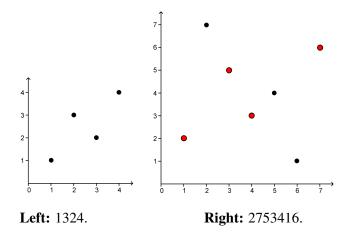
In general: If A(t) is D-finite, the density $\mu(x)$ satisfies the homogeneous part of the differential equation for $\frac{1}{x}A(\frac{1}{x})$.

Part 2: Pattern avoiding permutations as Stietjes moment sequences



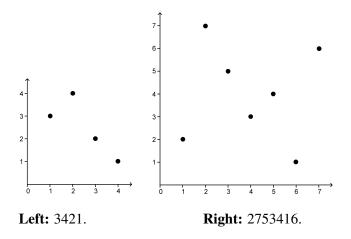
Andrew Elvey Price

The permutation 2753416 contains the pattern 1324.

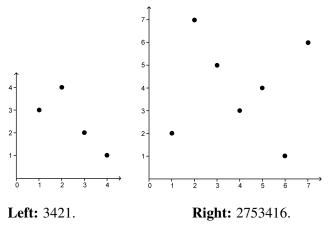


Andrew Elvey Price

The permutation 2753416 *contains* the pattern 1324. The permutation 2753416 *avoids* the pattern 3421.



The permutation 2753416 *contains* the pattern 1324. The permutation 2753416 *avoids* the pattern 3421. **Problem:** Count (by size) permutations avoiding a given pattern τ



The permutation 2753416 *contains* the pattern 1324. The permutation 2753416 *avoids* the pattern 3421. **Problem:** Count (by size) permutations avoiding a given pattern τ

- For each n, the number of permutations of length n avoiding π is denoted Av_n(π).
- Two patterns π and τ are said to be "Wilf equivalent" if $Av_n(\pi) = Av_n(\tau)$ for every $n \in \mathbb{Z}_{\geq 0}$.

• For length 3 patterns, there would seem to be two Wilf classes: 132, 213, 231 and 312 are all equivalent to each other due to reflective symmetry, and similarly 123 and 321 are equivalent.

- For length 3 patterns, there would seem to be two Wilf classes: 132, 213, 231 and 312 are all equivalent to each other due to reflective symmetry, and similarly 123 and 321 are equivalent.
- Remarkably, these are all Wilf equivalent (MacMahon 1915, Knuth 1968) as

$$Av_n(123) = Av_n(132) = \frac{1}{n+1} \binom{2n}{n},$$

the *n*th Catalan number.

LENGTH 4 PATTERNS

• For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.
- (Bóna, 1997) The sequence $Av_n(1342)$ is given by the coefficients of the algebraic generating function

$$\frac{32t}{1+12t-8t^2-(1-8t)^{3/2}}$$

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.
- (Bóna, 1997) The sequence $Av_n(1342)$ is given by the coefficients of the algebraic generating function

$$\frac{32t}{1+12t-8t^2-(1-8t)^{3/2}}$$

• (Gessel, 1990) The sequence $Av_n(1234)$ is not algebraic, but has the D-finite generating function

$$\frac{1+5t}{6t^2} - \frac{(1-t)^{\frac{1}{4}}(1-9t)^{\frac{3}{4}}}{6t^2} \, _2F_1\left(\left[-\frac{1}{4},\frac{3}{4}\right],[1],\frac{-64t}{(1-t)(1-9t)^3}\right)$$

- For length 4 patterns, there are only three Wilf classes, which have representatives 1342, 1234 and 1324.
- (Bóna, 1997) The sequence $Av_n(1342)$ is given by the coefficients of the algebraic generating function

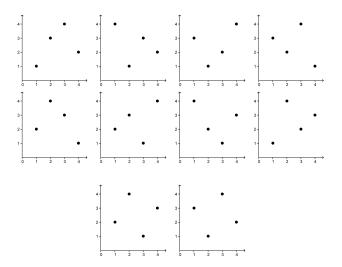
$$\frac{32t}{1+12t-8t^2-(1-8t)^{3/2}}$$

• (Gessel, 1990) The sequence $Av_n(1234)$ is not algebraic, but has the D-finite generating function

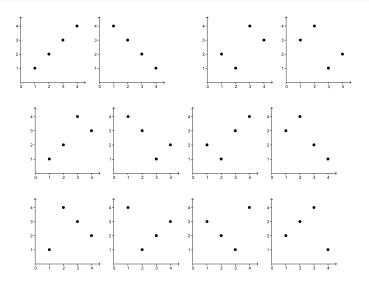
$$\frac{1+5t}{6t^2} - \frac{(1-t)^{\frac{1}{4}}(1-9t)^{\frac{3}{4}}}{6t^2} {}_2F_1\left(\left[-\frac{1}{4},\frac{3}{4}\right],[1],\frac{-64t}{(1-t)(1-9t)^3}\right)$$

• The sequence $Av_n(1324)$ is a mystery.

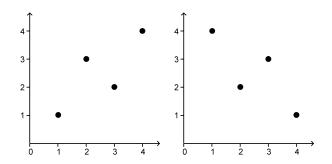
LENGTH 4 PATTERNS: ALGEBRAIC CASES



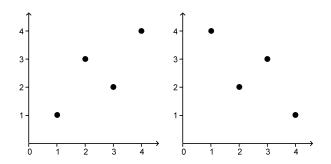
LENGTH 4 PATTERNS: D-FINITE CASES



LENGTH 4 PATTERNS: UNSOLVED CASES



LENGTH 4 PATTERNS: UNSOLVED CASES



- Conway, Guttmann and Zinn-Justin (2018) computed $Av_n(1324)$ for $n \le 50$. Their analysis suggests the sequence is not D-finite.
- Bevan, Brignall, E.P. and Pantone (2018) showed that the exponential growth rate μ_{1324} lies in the interval (10.37, 13.5).

The only other solved cases are $Av_n(12...k)$

- (Gessel 1990): For any fixed k, the generating function $\sum_{n=0}^{\infty} Av_n(12...k)t^n$ is D-finite
- (Bergeron, Gascon 2000): computed explicit differential equations for $k \le 11$.
- (Rains 1998): Connection to random matrices

PATTERN AVOIDING PERMUTATIONS

Theorem: For any pattern τ of length at most 4 except (possibly) 1324 and 4231, the sequence $Av_n(\tau)$ forms a Stieltjes moment sequence.

Conjecture: The sequence $Av_n(1324)$ forms a Stieltjes moment sequence.

Conjecture: The sequence $Av_n(1324)$ forms a Stieltjes moment sequence.

Conjollary: The growth rate $\mu_{1324} \ge 10.607$.

Conjecture: The sequence $Av_n(1324)$ forms a Stieltjes moment sequence.

Conjollary: The growth rate $\mu_{1324} \ge 10.607$.

Theorem: For any *k*, the sequence $Av_n(12...k)$ forms a Stieltjes moment sequence.

Conjecture: The sequence $Av_n(1324)$ forms a Stieltjes moment sequence.

Conjollary: The growth rate $\mu_{1324} \ge 10.607$.

Theorem: For any *k*, the sequence $Av_n(12...k)$ forms a Stieltjes moment sequence.

Question: For any permutation pattern τ , does $Av_n(\tau)$ form a Stieltjes moment sequence?

Part 2a: Density function for 1342-avoiding permutations

(Bóna, 1997): The generating function

$$A(t) := \sum_{n=0}^{\infty} Av_n (1342)t^n = \frac{1 + 20t - 8t^2 + (1 - 8t)^{3/2}}{2(1 + t)^3}$$

Then the transformation

$$F(z) := \int_0^8 \frac{1}{z - x} \mu(x) dx = \frac{1}{z} A\left(\frac{1}{z}\right) = \frac{z^2 + 20z - 8 + (z - 8)^{3/2} \sqrt{z}}{2(z + 1)^3}.$$

By the Stieltjes inversion formula, the density function is

$$\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(F(x + \epsilon i) - F(x - \epsilon i) \right) = \frac{(8 - x)^{3/2} \sqrt{x}}{2\pi (1 + x)^3}.$$

(Bóna, 1997): The generating function

$$A(t) := \sum_{n=0}^{\infty} Av_n (1342)t^n = \frac{1 + 20t - 8t^2 + (1 - 8t)^{3/2}}{2(1 + t)^3}$$

Then the transformation

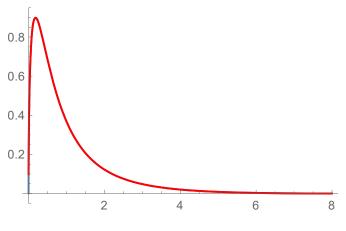
$$F(z) := \int_0^8 \frac{1}{z - x} \mu(x) dx = \frac{1}{z} A\left(\frac{1}{z}\right) = \frac{z^2 + 20z - 8 + (z - 8)^{3/2} \sqrt{z}}{2(z + 1)^3}.$$

By the Stieltjes inversion formula, the density function is

$$\mu(x) = -\frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(F(x + \epsilon i) - F(x - \epsilon i) \right) = \frac{(8 - x)^{3/2} \sqrt{x}}{2\pi (1 + x)^3}.$$

Non-negative for $x \in [0, 8]$! Therefore $(Av_n(1342))_{n \ge 0}$ is a Stieltjes moment sequence.

When are counting sequences Stieltjes moment sequences?



Density function for $Av_n(1324)$.

Part 2b: density function for 1234-avoiding permutations

The generating function
$$A(t) := \sum_{n=0}^{\infty} Av_n (1234) t^n$$
 is given by

$$A(t) = \frac{1+5t}{6t^2} - \frac{(1-t)^{\frac{1}{4}}(1-9t)^{\frac{3}{4}}}{6t^2} {}_2F_1\left(\left[-\frac{1}{4}, \frac{3}{4}\right], [1], \frac{-64t}{(1-t)(1-9t)^3}\right)$$

The transformed generating function

$$F(z) := \int_0^9 \frac{1}{z - x} \mu(x) dx = \frac{1}{z} A\left(\frac{1}{z}\right) \text{ is given by}$$

$$F(z) = \frac{z + 5}{6} - \frac{(z - 1)^{\frac{1}{4}}(z - 9)^{\frac{3}{4}}}{6} {}_2F_1\left(\left[-\frac{1}{4}, \frac{3}{4}\right], [1], \frac{-64z^3}{(z - 1)(z - 9)^3}\right).$$
By the Stieltjes inversion formula, the density function is

$$\mu(x) = -\frac{1}{\pi}\Im(F(z)).$$

The transformed generating function

$$F(z) := \int_0^9 \frac{1}{z - x} \mu(x) dx = \frac{1}{z} A\left(\frac{1}{z}\right) \text{ is given by}$$

$$F(z) = \frac{z + 5}{6} - \frac{(z - 1)^{\frac{1}{4}} (z - 9)^{\frac{3}{4}}}{6} {}_2F_1\left(\left[-\frac{1}{4}, \frac{3}{4}\right], [1], \frac{-64z^3}{(z - 1)(z - 9)^3}\right).$$
By the Stielties inversion formula, the density function is

$$\mu(x) = -\frac{1}{\pi}\Im(F(z)).$$

This is wrong!! Problem: $F(z)$ is not analytic on $\mathbb{C} \setminus \mathbb{R}$.

The transformed generating function

$$F(z) := \int_0^9 \frac{1}{z - x} \mu(x) dx = \frac{1}{z} A\left(\frac{1}{z}\right) \text{ is given by}$$

$$F(z) = \frac{z + 5}{6} - \frac{(z - 1)^{\frac{1}{4}} (z - 9)^{\frac{3}{4}}}{6} {}_2F_1\left(\left[-\frac{1}{4}, \frac{3}{4}\right], [1], \frac{-64z^3}{(z - 1)(z - 9)^3}\right).$$

By the Stieltjes inversion formula, the density function is

$$\mu(x) = -\frac{1}{\pi} \Im(F(z)).$$

This is wrong!! Problem: $F(z)$ is not analytic on $\mathbb{C} \setminus \mathbb{R}$.
Correct Formula:

$$\mu(x) = -\frac{3}{\pi} \Im(F(z)) \qquad \text{for } x \in [1, 9],$$

$$\mu(x) = \frac{3}{\pi} \Re(F(z)) \qquad \text{for } x \in [0, 1].$$

Problem: F(z) is not analytic on $\mathbb{C} \setminus \mathbb{R}$.

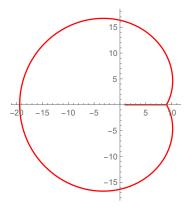


Diagram of non-analytic points of F(z). So F(z) is only the "correct" function in the outer region.

The transformed generating function

$$F(z) := \int_0^9 \frac{1}{z - x} \mu(x) dx = \frac{1}{z} A\left(\frac{1}{z}\right) \text{ is given by}$$

$$F(z) = \frac{z + 5}{6} - \frac{(z - 1)^{\frac{1}{4}} (z - 9)^{\frac{3}{4}}}{6} {}_2F_1\left(\left[-\frac{1}{4}, \frac{3}{4}\right], [1], \frac{-64z^3}{(z - 1)(z - 9)^3}\right).$$

By the Stieltjes inversion formula, the density function is

$$\mu(x) = -\frac{1}{\pi} \Im(F(z)).$$

This is wrong!! Problem: $F(z)$ is not analytic on $\mathbb{C} \setminus \mathbb{R}$.
Correct Formula:

$$\mu(x) = -\frac{3}{\pi} \Im(F(z)) \qquad \text{for } x \in [1, 9],$$

$$\mu(x) = \frac{3}{\pi} \Re(F(z)) \qquad \text{for } x \in [0, 1].$$

The transformed generating function

$$F(z) := \int_0^9 \frac{1}{z - x} \mu(x) dx = \frac{1}{z} A\left(\frac{1}{z}\right) \text{ is given by}$$

$$F(z) = \frac{z + 5}{6} - \frac{(z - 1)^{\frac{1}{4}} (z - 9)^{\frac{3}{4}}}{6} {}_2F_1\left(\left[-\frac{1}{4}, \frac{3}{4}\right], [1], \frac{-64z^3}{(z - 1)(z - 9)^3}\right).$$

By the Stieltjes inversion formula, the density function is

$$\mu(x) = -\frac{1}{\pi}\Im(F(z)).$$

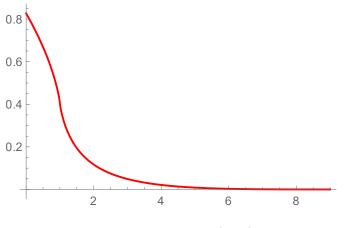
This is wrong!! Problem: $F(z)$ is not analytic on $\mathbb{C} \setminus \mathbb{R}$.
Correct Formula:

$$\mu(x) = -\frac{3}{\pi} \Im(F(z)) \qquad \text{for } x \in [1,9],$$

$$\mu(x) = \frac{3}{\pi} \Re(F(z)) \qquad \text{for } x \in [0,1].$$

Very interesting modular properties behind the factor of 3.

When are counting sequences Stieltjes moment sequences?



Density function for $Av_n(1234)$.

Part 2c: Random matrices for 12...*k*-avoiding permutations

Rains (1998) showed the following theorem: **Theorem:** For *X* a random variable defined as the norm squared of the trace of a Haar-random $(k - 1) \times (k - 1)$ unitary matrix, $E(X^n) = Av_n(12\cdots k).$ Rains (1998) showed the following theorem: **Theorem:** For *X* a random variable defined as the norm squared of the trace of a Haar-random $(k - 1) \times (k - 1)$ unitary matrix, $E(X^n) = Av_n(12\cdots k)$. i.e., $A_n(12\dots (k + 1))$ is equal to

$$\frac{1}{(2\pi)^k \cdot k!} \cdot \int_{[0,2\pi]^k} |e^{i\theta_1} + \dots + e^{i\theta_k}|^{2n} \cdot \prod_{1 \le p < q \le k} |e^{i\theta_p} - e^{i\theta_q}|^2 d\theta_1 \dots d\theta_k.$$

Consequences:

- $Av_n(12\cdots k)$ is a Stieltjes moment sequence.
- The density function of *X* is piecewise D-finite.
- Our exact results for density functions for $Av_n(12\cdots k)$ also describe the density of *X*.

Part 2d: Empirical analysis for 1324-avoiding permutations

CONTINUED FRACTION COEFFICIENTS

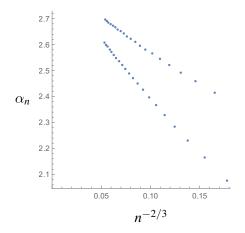
Using the exact numbers $Av_n(1324)$ for $n \le 50$, we computed the first 50 continued fraction coefficients α_n

$$\sum_{n=0}^{\infty} Av_n(1324)t^n = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}}.$$

They are all positive \Rightarrow the sequence might be Stieltjes.

Lower bounds assuming Stieltjes: Set $\alpha_k = 0$ for k > 50. This yields the lower bound 10.6 for the growth rate. (Method first used by Haagerup, Haagerup and Ramirez-Solano 2015).

CONTINUED FRACTION COEFFICIENTS



Plot of α_n vs. $n^{-2/3}$ for the sequence $a_n = |\operatorname{Av}_n(1324)|$, using $n \in [10, 50]$.

We estimate the density function by a polynomial P(x) of degree 52 satisfying:

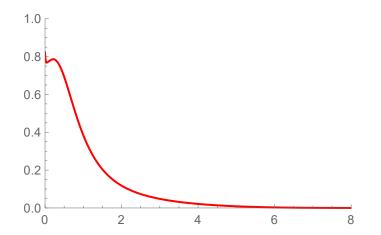
•
$$Av_n(1324) = \int_0^\tau x^n P(x) dx$$
 for $x \le 50$
• $P(\tau) = P'(\tau) = 0$,
where we set $\tau = 12$.

We estimate the density function by a polynomial P(x) of degree 52 satisfying:

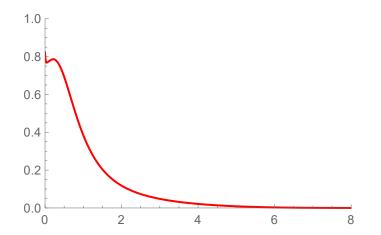
• $Av_n(1324) = \int_0^\tau x^n P(x) dx$ for $x \le 50$ • $P(\tau) = P'(\tau) = 0$,

where we set $\tau = 12$.

Using the same method for 1342 and 1234 (with $\tau = 8$ or 9) yields an approximation visually indistinguishable from the exact formula.



Polynomial approximation to the density function for $Av_n(1324)$.



Polynomial approximation to the density function for $Av_n(1324)$.

- Is $(Av_n(1324))_{n\geq 0}$ a Stieltjes moment sequence?
- Is $(Av_n(\tau))_{n\geq 0}$ a Stieltjes moment sequence for any τ ?
- Is there a combinatorial interpretation to being a Stieltjes moment sequence?
- What else does being a Stieltjes moment sequence gain?

Thank You!