Residues of skew rational functions

and linearized Goppa codes

Xavier Caruso

University of Bordeaux

xavier.caruso@normalesup.org

SpecFun seminar

October 28, 2019



Skew polynomials and
skew rational functions



Definition of skew polynomials

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials

Notations

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials

Notations
K — a field

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials

Notations
K — afield
0: K— K — aring automorphism

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials

Notations
K — a field

0: K— K — aring automorphism of finite order r

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials

Notations
K — afield
0: K— K — aring automorphism of finite order r
F — the subfield of K fixed by 6

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials

Notations
K — afield
0: K— K — aring automorphism of finite order r
F — the subfield of K fixed by 6
Definition

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials

Notations
K — afield
0: K— K — aring automorphism of finite order r
F — the subfield of K fixed by 6
Definition

A skew polynomial is an expression of the form:
D S B R &

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials

Notations
K — afield
0: K— K — aring automorphism of finite order r
F — the subfield of K fixed by 6
Definition

A skew polynomial is an expression of the form:
D S B R &

Multiplication of skew polynomials is governed by the rule:
Xa=6(a)X

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials

Notations
K — afield
0: K— K — aring automorphism of finite order r
F — the subfield of K fixed by 6
Definition

A skew polynomial is an expression of the form:
D S B R &

Multiplication of skew polynomials is governed by the rule:
Xa=6(a)X
The ring of skew polynomials is denoted by K[X; 0]

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew polynomials
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F — the subfield of K fixed by 6
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A skew polynomial is an expression of the form:
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Definition of skew polynomials

Notations
K — afield
0: K— K — aring automorphism of finite order r
F — the subfield of K fixed by 6
Definition

A skew polynomial is an expression of the form:
D S B R &

Multiplication of skew polynomials is governed by the rule:
Xa=6(a)X
The ring of skew polynomials is denoted by K[X; 0]

We set Y = X'; it is a central element
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Definition of skew rational functions

Definition

A skew rational function is an element of Frac(K[X; 6])
Observations

i The centre of K[X; 6] is F[Y]; it has finite index

1= Each skew polynomial has a multiple in the centre

1> Skew rational functions can be written % with D central

i.e.  Frac(K[X;0]) = Frac(F[Y]) ®fy) K[X; 6]

Xavier Caruso Skew residues and linearized Goppa codes



Definition of skew rational functions

Definition
A skew rational function is an element of Frac(K[X; 6])

Observations
i The centre of K[X; 6] is F[Y]; it has finite index
1= Each skew polynomial has a multiple in the centre
i Skew rational functions can be written % with D central
i.e.  Frac(K[X;0]) = Frac(F[Y]) ®fy) K[X; 6]
1 With this representation, we have
RIS R RO Pr P, PP

= d e —
S D1 D, St DN D L DT
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A theory of residues

Throughout this section, for simplicity,
we assume that the characteristic of K does not divide r



Derivation of skew polynomials
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Derivation of skew polynomials

For a skew polynomial P = Z a; X", we define:

I

B e e
e

1
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Derivation of skew polynomials

For a skew polynomial P = Z a; X", we define:

I

gl? 1 -
= ;Z S G

! Xﬁlaz(fl(a)X*1
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Derivation of skew polynomials

For a skew polynomial P = Z a; X", we define:

I

gl? 1 -
= ;Z S G

! S =) T (E e
Proposition
diy is a K-linear derivation on K[X*!; 0]
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Derivation of skew polynomials

For a skew polynomial P = Z a; X", we define:

I

gl? .l -
— == iaX" e K[XT9
‘o) g Z ’ '

! S =) T (E e
Proposition
diy is a K-linear derivation on K[X*!; 0]
d
dY

dqQ
dy

ie.

P
(PQ)= S Q+P
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Derivation of skew polynomials

For a skew polynomial P = Z a; X", we define:
i
Rl :
—— ==Y ia X" € K[X*4]
A A e = G N
Proposition
diy is a K-linear derivation on K[X*!; 0]
d@

L Y(PQ) 7(” dy

d
Consequence

% extends to a K-linear derivation on Frac(K[X; 6])
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Derivation of skew polynomials

For a skew polynomial P = Z a; X", we define:

I

gl? .l -
— == iaX" e K[XT9

‘o) g Z ’ '

! S =) T (E e
Proposition

diy is a K-linear derivation on K[X*!; 0]

d
dY

dQ

i dy

dP
PQI= " P
(PR)= 5 Q@+
Consequence
% extends to a K-linear derivation on Frac(K[X; 6])

d (P\ %D-PP
dy \D) — D2

Xavier Caruso Skew residues and linearized Goppa codes



Taylor expansion of skew rational functions

Xavier Caruso Skew residues and linearized Goppa codes



Taylor expansion of skew rational functions

Definition

Xavier Caruso Skew residues and linearized Goppa codes



Taylor expansion of skew rational functions

Definition

Let z€ F*; let f = g be a skew rational function

Xavier Caruso Skew residues and linearized Goppa codes



Taylor expansion of skew rational functions

Definition
Let z€ F*; let f = g be a skew rational function

& If Djy_, #0

Xavier Caruso Skew residues and linearized Goppa codes



Taylor expansion of skew rational functions

Definition
Let z€ F*; let f = g be a skew rational function
= If Dy—, # 0, we define:

e L 5 p

TS:(f) = <n! dY”)YZ i

n=0
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Taylor expansion of skew rational functions

Definition
Let z€ F*; let f = g be a skew rational function
= If Dy—, # 0, we define:

e L 5 p

TS:(f) = <n! dY”)YZ i

n=0

*— reduction modulo Y —z
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Taylor expansion of skew rational functions

Definition
Let z€ F*; let f = be a skew rational function
= If Dy—, # 0, we define:
[ 1 d"f K[X 9]
TS(7) = i
-5 (458, <

n=0

‘\ reduction modulo Y—z
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Taylor expansion of skew rational functions

Definition
Let z€ F*; let f = g be a skew rational function
= If Dy—, # 0, we define:
[ 1 d"f K[X 0]
TS(7) = — i
=3 (57}, T € V]

n=0

*— reduction modulo Y —z

155 Otherwise, if z is a zero of D of order m, we define:

) () = TS S TS (B —2)F)
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Taylor expansion of skew rational functions

Definition
Let z€ F*; let f = g be a skew rational function
= If Dy—, # 0, we define:
[ 1 d"f K[X 0]
TS(7) = — i
=3 (57}, T € V]

n=0

Y~ reduction modulo Y —z
155 Otherwise, if z is a zero of D of order m, we define:
K[X; 0]

SR s e e R AR = ﬁ((T))
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Taylor expansion of skew rational functions

Definition
Let z€ F*; let f = g be a skew rational function
= If Dy—, # 0, we define:
[ 1 d"f K[X 0]
TS(7) = — i
=3 (57}, T € V]

n=0

*— reduction modulo Y —z

155 Otherwise, if z is a zero of D of order m, we define:

S, (1) =TT S (Y —z) ) - € M((T))
Theorem _
The function TS : Frac(K[X;6]) — }((\[/)ize)] (@n)

is a homomorphism of K-algebras
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Skew residues

Definition
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Definition

Let z € F*; let f be a skew rational function
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Definition
Let z € F*; let f be a skew rational function

i The skew residue of f at z is:

sres,(f) = coefficient of T~ in TS,(f)
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Definition
Let z € F*; let f be a skew rational function
1 The skew residue of f at z is:
sres,(f) = coefficient of T~ in TS,(f)
w For j€{0,1,...,r—1},
the j-th partial skew residue of f at z is:

sres, j(f) = coefficient of X/ in sres,(f) € K
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Definition
Let z € F*; let f be a skew rational function

i The skew residue of f at z is:

KI[X;
sres,(f) = coefficient of T1 in TS,(f) € ol

(Y—2)
w For j€{0,1,...,r—1},
the j-th partial skew residue of f at z is:

sres, j(f) = coefficient of X/ in sres,(f) € K
Generalization

One can also define partial skew residues
when z lies in a separable closure F5P of F or z = o0
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Definition
Let z € F*; let f be a skew rational function

i The skew residue of f at z is:

KI[X;
sres,(f) = coefficient of T1 in TS,(f) € ol

(Y-2)

w For j€{0,1,...,r—1},
the j-th partial skew residue of f at z is:

sres, j(f) = coefficient of X/ in sres,(f) € K

Generalization

One can also define partial skew residues
when z lies in a separable closure F5P of F or z = o0
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Definition
Let z € F*; let f be a skew rational function

i The skew residue of f at z is:

KI[X;
sres,(f) = coefficient of T1 in TS,(f) € ol

(Y—2)
w For j€{0,1,...,r—1},
the j-th partial skew residue of f at z is:

sres, j(f) = coefficient of X/ in sres,(f) € K

Generalization

One can also define partial skew residues
when z lies in a separable closure F5P of F or z = o0
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Definition
Let z € F*; let f be a skew rational function
1 The skew residue of f at z is:
sres,(f) = coefficient of T~ in TS,(f)
w For j€{0,1,...,r—1},
the j-th partial skew residue of f at z is:

sres, j(f) = coefficient of X/ in sres,(f) € K

Generalization

One can also define partial skew residues
when z lies in a separable closure F5P of F or z = o0

snes. (A= [ 2 L] e B[Z[l® =4S
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Definition
Let z € F*; let f be a skew rational function
1 The skew residue of f at z is:
sres,(f) = coefficient of T~ in TS,(f)
w For j€{0,1,...,r—1},
the j-th partial skew residue of f at z is:

sres, j(f) = coefficient of X/ in sres,(f) € K

Generalization

One can also define partial skew residues
when z lies in a separable closure F5P of F or z = o0

e (A= e B ZIIR G G 5P @ K
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Definition
Let z € F*; let f be a skew rational function
1 The skew residue of f at z is:
sres,(f) = coefficient of T~ in TS,(f)
w For j€{0,1,...,r—1},
the j-th partial skew residue of f at z is:

sres, j(f) = coefficient of X/ in sres,(f) € K

Generalization

One can also define partial skew residues
when z lies in a separable closure F5P of F or z = o0

Hiie R | LR ERER ZRCO e @ RS QK (FECR)T

Xavier Caruso Skew residues and linearized Goppa codes



A residue formula

Xavier Caruso Skew residues and linearized Goppa codes



A residue formula

Theorem

Xavier Caruso Skew residues and linearized Goppa codes



A residue formula

Theorem

> For all skew rational function f, we have:

Z sreszo(f) = 0

zEFsepLi{o0}
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A residue formula
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A residue formula

Theorem
> For all skew rational function f, we have:

Z sreszo(f) = 0

zEFsepLi{o0}

= |f f has only simple poles, we have:

Z sresz j(f) = 0, TSR T B

zeFsePLI{oo}

Remarks

The main ingredient of the proof is a formula relating
sres, j(f) to a residue of a classical rational function
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A residue formula

Theorem
> For all skew rational function f, we have:

Z sreszo(f) = 0

zEFsepLi{o0}

= |f f has only simple poles, we have:

Z sresz j(f) = 0, TSR T B

zeFsePLI{oo}

Remarks

The main ingredient of the proof is a formula relating
sres, j(f) to a residue of a classical rational function

The second part of the theorem admits generalizations when
f has multiple poles, but they are much more difficult to state
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Let v : Frac(K[X; 6]) — Frac(K[X; 6])
be an endormorphism of K-algebras
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Change of variables

Let v : Frac(K[X; 6]) — Frac(K[X; 6])
be an endormorphism of K-algebras

Change of variables X — ~(X)
Facts

= y(X) = CX with C € Frac(K[Y])
w5 y(Y) = NY with N = Nk ,£(C) € Frac(F[Y])
i.e. 7 stabilizes Frac(K[Y]) and acts on it
as the change of variables Y — NY
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Change of variables

Let v : Frac(K[X; 6]) — Frac(K[X; 6])
be an endormorphism of K-algebras

Change of variables X — ~(X)
Facts

= y(X) = CX with C € Frac(K[Y])
w5 y(Y) = NY with N = Nk ,£(C) € Frac(F[Y])
i.e. 7 stabilizes Frac(K[Y]) and acts on it
as the change of variables Y — NY
= |f £ € Frac(K[Y]),

res,,, (f dY) = res, (y(f) dy(Y)) = res, (’Y(f) dz/(;/) dY)
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Change of variables

Let v : Frac(K[X; 6]) — Frac(K[X; 6])
be an endormorphism of K-algebras

Change of variables X — ~(X)
Facts

= y(X) = CX with C € Frac(K[Y])
w5 y(Y) = NY with N = Nk ,£(C) € Frac(F[Y])
i.e. 7 stabilizes Frac(K[Y]) and acts on it
as the change of variables Y — NY
= |f £ € Frac(K[Y]),

res,,; (f dY) = res; (y(f) dy(Y)) = res, (’Y(f) dz/(;/) dY)
Wz =Y)y=
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Change of variables

Let v : Frac(K[X; 6]) — Frac(K[X; 6])
be an endormorphism of K-algebras

Change of variables X — ~(X)
Facts

= y(X) = CX with C € Frac(K[Y])
w5 y(Y) = NY with N = Nk ,£(C) € Frac(F[Y])
i.e. 7 stabilizes Frac(K[Y]) and acts on it
as the change of variables Y — NY
= |f £ € Frac(K[Y]),
res,,, (f dY) = res; (y(f) dy(Y)) = res, (fy(f) dZ/(\z/) dY)
1wz =(Y))y=z

Objective

Generalize this formula to any skew rational function f
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Change of variables

Let ~ : Frac(K[X; 6]) — Frac(K[X;6])
be an endormorphism of K-algebras

Change of variables X — ~(X)
Facts

= y(X) = CX with C € Frac(K[Y])
= y(Y) = NY with N = Ny /£(C) € Frac(F[Y])
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Change of variables

Let ~ : Frac(K[X; 6]) — Frac(K[X;6])
be an endormorphism of K-algebras

Change of variables X — ~(X)
Facts

= y(X) = CX with C € Frac(K[Y])
w y(Y) = NY with N = Nx,£(C) € Frac(F[Y])
1 By Hilbert's Theorem 90, there exists U such that:

AC R 15
u VN
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Change of variables

Let ~ : Frac(K[X; 6]) — Frac(K[X;6])
be an endormorphism of K-algebras

Change of variables X — ~(X)
Facts

= y(X) = CX with C € Frac(K[Y])
w y(Y) = NY with N = Nx,£(C) € Frac(F[Y])
1 By Hilbert's Theorem 90, there exists U such that:
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N € Frac(F[Y])[\/N](X)FK

Xavier Caruso Skew residues and linearized Goppa codes



Change of variables

Let ~ : Frac(K[X; 6]) — Frac(K[X;6])
be an endormorphism of K-algebras

Change of variables X — ~(X)
Facts

= y(X) = CX with C € Frac(K[Y])
w y(Y) = NY with N = Nx,£(C) € Frac(F[Y])
1 By Hilbert's Theorem 90, there exists U such that:

G 16 ,
N € Frac(F[Y])[\/N](X)FK

C Frac(F[Y]) [\'/N] ®Fry) KIX: 0]
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Change of variables

Let ~ : Frac(K[X; 6]) — Frac(K[X;6])
be an endormorphism of K-algebras

Change of variables X — ~(X)
Facts

= y(X) = CX with C € Frac(K[Y])
w y(Y) = NY with N = Nx,£(C) € Frac(F[Y])
1 By Hilbert's Theorem 90, there exists U such that:

9(5) — \% € Frac(F[Y]) [\'/N} Qf K
Theorem < Erac(Fl1) [\'/N] ®Fpv) KX 6]

For all skew rational function f, we have:

stes,, ;(f) = U™! - stes, <U y(f) Ut W) U
\

VxZ =7 ( Y) Pr=
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When p divides r

1= There is no analogue of the derivation diy on Frac(K[X; 9])
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When p divides r

1= There is no analogue of the derivation diy on Frac(K[X; 9])
Proposition
There is no derivation 9 : Frac(K[X;0]) — Frac(K[X;6])
such that 0 = -% on Frac(K[Y]) and 9P =0
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When p divides r

1= There is no analogue of the derivation diy on Frac(K[X; 9])
Proposition
There is no derivation 9 : Frac(K[X;0]) — Frac(K[X;6])
such that 0 = -% on Frac(K[Y]) and 9P =0

i But there do exist morphisms of K-algebras
K[X; 6]

T
v—2) [71

I PR
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When p divides r

1= There is no analogue of the derivation diy on Frac(K[X; 9])
Proposition
There is no derivation 9 : Frac(K[X;0]) — Frac(K[X;6])
such that 0 = -% on Frac(K[Y]) and 9P =0

i But there do exist morphisms of K-algebras
K[X; 6]

T
v—2) [71

Do e =—="
i
im KIX;0] g
rgl(Yfz)m
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When p divides r

1= There is no analogue of the derivation diy on Frac(K[X; 9])
Proposition
There is no derivation 9 : Frac(K[X;0]) — Frac(K[X;6])
such that 0 = -% on Frac(K[Y]) and 9P =0

i But there do exist morphisms of K-algebras
K[X; 6]

T
v—2) [71
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i
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When p divides r

1= There is no analogue of the derivation diy on Frac(K[X; 9])
Proposition
There is no derivation 9 : Frac(K[X;0]) — Frac(K[X;6])
such that 0 = -% on Frac(K[Y]) and 9P =0

i But there do exist morphisms of K-algebras
K[X; 6]

T
v—2) [71

Do e =—="
i
im KIX;0] =
rgl(Yfz)m

1= The main issue is that
there is no canonical choice of such a morphism
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When p divides r (cont.)
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When p divides r (cont.

1 One can define skew residues and partial skew residues
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When p divides r (cont.)

1 One can define skew residues and partial skew residues
but there are not canonical
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When p divides r (cont.)

1 One can define skew residues and partial skew residues
but there are not canonical (They depend upon a choice of TS,)
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When p divides r (cont.)

1 One can define skew residues and partial skew residues
but there are not canonical (They depend upon a choice of TS,)

1= However are defined without ambiguity:
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When p divides r (cont.)

1 One can define skew residues and partial skew residues
but there are not canonical (They depend upon a choice of TS,)

1= However are defined without ambiguity:

© sres, o(f) for any f € Frac(K[X;H]) and any z € F5¢P
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When p divides r (cont.)

1 One can define skew residues and partial skew residues
but there are not canonical (They depend upon a choice of TS,)

1= However are defined without ambiguity:
= sres;o(f) for any f € Frac(K[X;6]) and any z € F5P

e sres,(f) if f has (at most) a simple pole at z
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When p divides r (cont.)

1 One can define skew residues and partial skew residues
but there are not canonical (They depend upon a choice of TS,)

1= However are defined without ambiguity:
= sres;o(f) for any f € Frac(K[X;6]) and any z € F5P

e sres,(f) if f has (at most) a simple pole at z

1= The residue formulas hold without any modification
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When p divides r (cont.)

1 One can define skew residues and partial skew residues
but there are not canonical (They depend upon a choice of TS,)

1= However are defined without ambiguity:
= sres;o(f) for any f € Frac(K[X;6]) and any z € F5P

e sres,(f) if f has (at most) a simple pole at z
1= The residue formulas hold without any modification

i The formula of change of variables reads as follows:

For any choice of sres,, ,
there exists a choice of sres, such that

s« () = sves:(2() 57 )
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Linearized Goppa codes



Evaluation morphisms
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Evaluation morphisms

Definition
Given a K-linear vector space V/, a semi-linear homomorphism
@ :V — V is an additive mapping such that:

Vae K, VveV, ¢(av)=20(a)- ¢(v)
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Evaluation morphisms

Definition
Given a K-linear vector space V/, a semi-linear homomorphism
@ :V — V is an additive mapping such that:

Vae K, VveV, ¢(av)=20(a)- ¢(v)

Proposition

= |f p: V — V is a semi-linear endomorphism, the function
G K[X;0] — Endg(V)

Z a,-Xi — Z a,-«p"

is a homomorphism of K-algebras
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Evaluation morphisms

Definition
Given a K-linear vector space V/, a semi-linear homomorphism
@ :V — V is an additive mapping such that:

Vae K, VveV, ¢(av)=20(a)- ¢(v)
Proposition

= |f p: V — V is a semi-linear endomorphism, the function
G K[X;0] — Endg(V)

Sax o Y
is a homomorphism of K-algebras

1= The semi-linear endomorphisms of K are the cf, c € K
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Evaluation morphisms

Definition
Given a K-linear vector space V/, a semi-linear homomorphism
@ :V — V is an additive mapping such that:

Vae K, VveV, ¢(av)=20(a)- ¢(v)
Proposition

= |f p: V — V is a semi-linear endomorphism, the function
G K[X;0] — Endg(V)

Sax o Y
is a homomorphism of K-algebras

1= The semi-linear endomorphisms of K are the cf, c € K

1= For ¢ € K*, e is surjective
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Evaluation morphisms

Definition
Given a K-linear vector space V/, a semi-linear homomorphism
@ :V — V is an additive mapping such that:

Vae K, VveV, ¢(av)=20(a)- ¢(v)
Proposition

= |f p: V — V is a semi-linear endomorphism, the function
G K[X;0] — Endg(V)

Sax o Y
is a homomorphism of K-algebras

1= The semi-linear endomorphisms of K are the cf, c € K

w For ¢ € K*, e is surjective and kerec = (Y — Ny /£(c))
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Linearized Reed—Solomon codes
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Linearized Reed—Solomon codes

Let ¢ = (c1,...,Cm) be elements of K*
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Linearized Reed—Solomon codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct
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Linearized Reed—Solomon codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V= (Vi,..., V) be F-linear subspaces of K
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Linearized Reed—Solomon codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V= (Vi,..., V) be F-linear subspaces of K
Set n =dimg V4 +--- +dimg V,
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Linearized Reed—Solomon codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V= (Vi,..., V) be F-linear subspaces of K
Set n =dimg Vi +---+dimg V, and let k < n
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Linearized Reed—Solomon codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n =dimg Vi +---+dimg V, and let k < n

w poy o K[X; 0] — Hompg(Vi,K) X -+ x Homp(Vp, K)
f — (Ecl(f)|V17"'76Cm(f)\Vm)
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Linearized Reed—Solomon codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n =dimg Vi +---+dimg V, and let k < n

w poy o K[X; 0] — Hompg(Vi,K) X -+ x Homp(Vp, K)
f — (Ecl(f)|V17"'76Cm(f)\Vm)
s LRS(k, ¢, V) = pev (K[X; 0]<k)
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Linearized Reed—Solomon codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n =dimg Vi +---+dimg V, and let k < n

w poy o K[X; 0] — Hompg(Vi,K) X -+ x Homp(Vp, K)
f — (Ecl(f)|V17"'76Cm(f)\Vm)
s LRS(k, ¢, V) = pev (K[X; 0]<k)

Theorem

The parameters of LRS(k, ¢, V) are:
length n, dimension k, minimal distance d = n— k+1
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Linearized Reed—Solomon codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n=dimg Vi +--- +dimg V,;, and let k < n

w poy o K[X; 0] — Hompg(Vi,K) X -+ x Homp(Vp, K)
f — (Ecl(f)|V17"'76Cm(f)\Vm)

= LRS(k, ¢, V) = pe,v (KX 6]<k)

Theorem

The parameters of LRS(k, ¢, V) are:
length n, dimension k, minimal distance d = n— k+1

for the sum-rank weight: we (@) = rank(yp1) + - - - + rank(¢m)
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Linearized Goppa codes
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V= (Vi,..., V) be F-linear subspaces of K
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimg V4 + - - - + codimg V/,
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - -+ + codimg V,,, and let k < n
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - -+ + codimg V,,, and let k < n

Preparation
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - -+ + codimg V,,, and let k < n

Preparation

i There exists D € K[X; 6] of degree n with ime. (D) = V;, Vi
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - -+ + codimg V,,, and let k < n

Preparation
i There exists D € K[X; 6] of degree n with ime. (D) = V;, Vi
i For f = gD~ with g € K[X*L; 6]
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - -+ + codimg V,,, and let k < n

Preparation
i There exists D € K[X; 6] of degree n with ime. (D) = V;, Vi
i For f = gD~ with g € K[X*L; 4]

= f has a simple pole at each z; = Ny /r(c;)
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V = (V4,...,Vy) be F-linear subspaces of K
Set n = codimgVq + - - + codimg V,, and let kK < n
Preparation
i There exists D € K[X; 6] of degree n with ime. (D) = V;, Vi
i For f = gD~ with g € K[X*L; 4]

= f has a simple pole at each z; = Ny /r(c;)

= ¢, (sres;(f)) vanishes on V;
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V = (V4,...,Vy) be F-linear subspaces of K

Set n = codimgVj + - -+ + codimg V,,, and let k < n

Preparation
i There exists D € K[X; 6] of degree n with ime. (D) = V;, Vi
i For f = gD~ with g € K[X*L; 4]

= f has a simple pole at each z; = Ny /r(c;)

= ¢, (sres;(f)) vanishes on V;

and then induces a F-linear mapping K/V; — K
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - -+ + codimg V,,, and let k < n

Preparation
i There exists D € K[X; 6] of degree n with ime. (D) = V;, Vi
i For f = gD~ with g € K[X*L; 4]

= f has a simple pole at each z; = Ny /r(c;)

= ¢, (sres;(f)) vanishes on V;

and then induces a F-linear mapping K/V; — K
Note: = (sres (F)) = =q ((Y—2) - f)
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*
such that the Ny /£ (c;)'s are pairwise distinct

Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - - - 4+ codimg V), and let kK < n
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - - - 4+ codimg V), and let kK < n

w vy KXFL 0D — Homp(K/Vi,K) x -
f = (eq(stesy(f)), ...)
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - - - 4+ codimg V), and let kK < n

w vy KXFL 0D — Homp(K/Vi,K) x -
f = (eq(stesy(f)), ...)
w LG(k, ¢, V) = 7y (K[X; 0]k Xmk=r(m+1) p-1)
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Linearized Goppa codes

Let ¢ = (c1,...,Cm) be elements of K*

such that the Ny /£ (c;)'s are pairwise distinct
Let V= (Vi,..., V) be F-linear subspaces of K

Set n = codimgVj + - - - 4+ codimg V), and let kK < n

I Y,V - K[Xil;e] DL HOII]F(K/V]_,K) X eoo
f = (eq(stesy(f)), ...)

w LG(k, ¢, V) = 7y (K[X; 0]k Xmk=r(m+1) p-1)

Theorem

The parameters of LG(k, ¢, V) are:
length n, dimension k, minimal distance d = n— k +1

for the sum-rank weight: we . (¢) = rank(p1) + - - - + rank(¢m)
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Main ingredient of the proof:

Comparison with Reed—Solomon codes
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Main ingredient of the proof:

Comparison with Reed—Solomon codes

1. There exists a skew polynomial D’ such that:

D'D=(Y—-z)(Y—2) (Y —2zn)
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Main ingredient of the proof:

Comparison with Reed—Solomon codes

1. There exists a skew polynomial D’ such that:

D'D=(Y—-z)(Y—2) (Y —2zn)

2. Setv=n—k—r(m+1). Forall i:
kergci(D/) == kerfc;(XVD/) =V
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Main ingredient of the proof:

Comparison with Reed—Solomon codes

1. There exists a skew polynomial D’ such that:

D'D=(Y—-z)(Y—2) (Y —2zn)

2. Setv=n—k—r(m+1). Forall i:
kerec, (D') = kereg,(XVD') =V,
3. H — 7))t e (X¥D') induces isomorphisms:

e 7o K/Vi =5 imeg(XVD') = W,
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Main ingredient of the proof:

Comparison with Reed—Solomon codes

1. There exists a skew polynomial D’ such that:
D'D=(Y—-z)(Y—2) (Y —2zn)
2. Setv=n—k—r(m+1). Forall i:

kerec, (D') = kereg,(XVD') =V,

3. H — 7))t e (X¥D') induces isomorphisms:
= 7o K/Vi =5 imeg(XVD') = W,

7% : Hompg(W;, K) — Homg(K/V;, K)
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Main ingredient of the proof:

Comparison with Reed—Solomon codes

1. There exists a skew polynomial D’ such that:

D'D=(Y—-z)(Y—2) (Y —2zn)

2. Setv=n—k—r(m+1). Forall i:
kergci(D/) == kerfc;(XVD/) =V

3. H(z,- — 7))t e (X¥D') induces isomorphisms:
e 7 K/V =5 imeg (XVD') = W,
7% : Hompg(W;, K) — Homg(K/V;, K)

4. 7 =(75,...,7%) identifies LRS(k, ¢, W) with LG(k, ¢, V)
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Main ingredient of the proof:

Comparison with Reed—Solomon codes

1. There exists a skew polynomial D’ such that:
D'D=(Y—-z)(Y—2) (Y —2zn)
2. Setv=n—k—r(m+1). Forall i:
kerec, (D') = kereg,(XVD') =V,
3. H(z,- — 7))t e (X¥D') induces isomorphisms:
e 7 K/V =5 imeg (XVD') = W,
7% : Hompg(W;, K) — Homg(K/V;, K)

4. 7 =(75,...,7%) identifies LRS(k, ¢, W) with LG(k, ¢, V)

5. 7* preserves the sum-rank weight
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A theorem of duality
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A theorem of duality

Recall that:
LRS(k,c,V) C Hompg(Vi,K) x -+ x Homg(Vp, K)
LG(k,c,V) C Hompg(K/Vi,K) x - - x Homg(K/Vp, K)

Xavier Caruso Skew residues and linearized Goppa codes



A theorem of duality

Recall that:
LRS(k,c,V) C Hompg(Vi,K) x -+ x Homg(Vp, K)
LG(k,c,V) C Hompg(K/Vi,K) x - - x Homg(K/Vp, K)

Pairing
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A theorem of duality

Recall that:
LRS(k,c,V) C Hompg(Vi,K) x -+ x Homg(Vp, K)
LG(k,c,V) C Hompg(K/Vi,K) x - - x Homg(K/Vp, K)
Pairing
= K is equipped with the pairing (x, y), = Trg/r(xy)
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A theorem of duality

Recall that:
LRS(k,c,V) C Hompg(Vi,K) x -+ x Homg(Vp, K)
LG(k,c,V) C Hompg(K/Vi,K) x - - x Homg(K/Vp, K)
Pairing
= K is equipped with the pairing (x, y), = Trg/r(xy)
1w Endr(K) is equipped with the pairing (¢, ), = Tr(¢*y)
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A theorem of duality

Recall that:
LRS(k,c,V) C Hompg(Vi,K) x -+ x Homg(Vp, K)
LG(k,c,V) C Hompg(K/Vi,K) x - - x Homg(K/Vp, K)
Pairing
= K is equipped with the pairing (x, y), = Trg/r(xy)
1w Endr(K) is equipped with the pairing (¢, ), = Tr(¢*y)

©* is the adjoint of ¢: (p*(x),y)x = (X, 0(¥))
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A theorem of duality

Recall that:
LRS(k,c,V) C Hompg(Vi,K) x -+ x Homg(Vp, K)
LG(k,c,V) C Hompg(K/Vi,K) x - - x Homg(K/Vp, K)
Pairing
= K is equipped with the pairing (x, y), = Trg/r(xy)
1w Endr(K) is equipped with the pairing (¢, ), = Tr(¢*y)
& is the adjoint of : {*(x), ¥)x = (6 0 (V)x
1 More generally, the same formula defines a perfect pairing:

Homp(K/V,K) x Homp(V+, K) — F
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A theorem of duality

Recall that:
LRS(k,c,V) C Hompg(Vi,K) x -+ x Homg(Vp, K)
LG(k,c,V) C Hompg(K/Vi,K) x - - x Homg(K/Vp, K)
Pairing
= K is equipped with the pairing (x, y), = Trg/r(xy)
1w Endr(K) is equipped with the pairing (¢, ), = Tr(¢*y)
" is the adjoint of p: (p*(x), ¥)x = (% @(¥))k
1 More generally, the same formula defines a perfect pairing:
Homp(K/V,K) x Homp(V+, K) — F
Theorem
LG(k,¢,V)* = LRS(n—k,c™1, V)
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Decoding algorithm
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Decoding algorithm

Decoding linearized Reed—Solomon codes

Xavier Caruso Skew residues and linearized Goppa codes



Decoding algorithm

Decoding linearized Reed—Solomon codes

—k
Input: g — p£7l(f) —|—§ Wlth Ws-rk(g) S n? = [

Output: f
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Decoding algorithm

Decoding linearized Reed—Solomon codes
—k
Input: © = pc v(f) + e with wy i (e) < % =w
Output: f

0. Compute P € K[X; 0] of degree n with e.,(P) =0
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Decoding algorithm

Decoding linearized Reed—Solomon codes
—k
Input: © = pc v(f) + e with wy i (e) < % =w
Output: f
0. Compute P € K[X; 0] of degree n with e.,(P) =0

1. Compute g € K[X; 0] with e¢,(g) = ¢
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Decoding algorithm

Decoding linearized Reed—Solomon codes
Input: © = pc v(f) + e with wy i (e) < n%k =w
Output: f
0. Compute P € K[X; 0] of degree n with e.,(P) =0
1. Compute g € K[X; 0] with e¢,(g) = ¢
2. Compute U, V, R € K[X; 0] with
Ug + VP =R and deg U < w, deg R < w+k
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Decoding algorithm

Decoding linearized Reed—Solomon codes
Input: © = pc v(f) + e with wy i (e) < n%k =w
Output: f
0. Compute P € K[X; 0] of degree n with e.,(P) =0
1. Compute g € K[X; 0] with e¢,(g) = ¢
2. Compute U, V, R € K[X; 0] with
Ug + VP =R and deg U < w, deg R < w+k

3. Return the quotient in the left division of R by U
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Decoding algorithm

Decoding linearized Reed—Solomon codes
Input: © = pc v(f) + e with wy i (e) < n%k =w
Output: f
0. Compute P € K[X; 0] of degree n with e.,(P) =0
1. Compute g € K[X; 0] with e¢,(g) = ¢
2. Compute U, V, R € K[X; 0] with
Ug + VP =R and deg U < w, deg R < w+k

3. Return the quotient in the left division of R by U

Complexity: O(min (n%lr, n r%)) operations in F
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Decoding algorithm

Decoding linearized Reed—Solomon codes

—k
Input: g — p£7l(f) —|—§ Wlth Ws-rk(g) S n? = [

Output: f
0. Compute P € K[X; 0] of degree n with e.,(P) =0
1. Compute g € K[X; 0] with e¢,(g) = ¢
2. Compute U, V, R € K[X; 0] with

Ug + VP =R and deg U < w, deg R < w+k

3. Return the quotient in the left division of R by U
z, wtl 4
Complexity: O(min (n 2 7 r““)) operations in F

Decoding linearized Goppa codes
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Decoding algorithm

Decoding linearized Reed—Solomon codes

—k
Input: g — p£7l(f) —|—§ Wlth Ws-rk(g) S n? = [

Output: f
0. Compute P € K[X; 0] of degree n with e.,(P) =0
1. Compute g € K[X; 0] with e¢,(g) = ¢
2. Compute U, V, R € K[X; 0] with

Ug + VP =R and deg U < w, deg R < w+k

3. Return the quotient in the left division of R by U
> wil 4
Complexity: O(min (n 2 7 r““)) operations in F
Decoding linearized Goppa codes
Use the isomorphism of codes LG(k, ¢, V) ~ LRS(k, c, W)



Thanks

for your attention



