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Skew polynomials and
skew rational functions



Definition of skew polynomials

Notations

K — a field

θ : K → K — a ring automorphism of finite order r

F — the subfield of K fixed by θ

Definition

A skew polynomial is an expression of the form:

a0 + a1X + a2X
2 + · · ·+ adX

d

Multiplication of skew polynomials is governed by the rule:

Xa = θ(a)X

The ring of skew polynomials is denoted by K [X ; θ]

We set Y = X r ; it is a central element
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Definition of skew rational functions

Definition

A skew rational function is an element of Frac
(
K [X ; θ]

)
Observations

+ The centre of K [X ; θ] is F [Y ]; it has finite index

+ Each skew polynomial has a multiple in the centre

+ Skew rational functions can be written P
D with D central

i.e. Frac
(
K [X ; θ]

)
= Frac

(
F [Y ]

)
⊗F [Y ] K [X ; θ]

+ With this representation, we have

P1

D1
+

P2

D2
=

P1D2 + P2D1

D1D2
and

P1

D1
· P2

D2
=

P1P2

D1D2
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A theory of residues

Throughout this section, for simplicity,
we assume that the characteristic of K does not divide r
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Derivation of skew polynomials

For a skew polynomial P =
∑
i

aiX
i , we define:

dP

dY
=

1

r
·
∑
i

i ai X
i−r ∈ K [X±1; θ]

X−1a = θ−1(a)X−1

Proposition
d
dY is a K -linear derivation on K [X±1; θ]

i.e.
d

dY
(PQ) =

dP

dY
Q + P

dQ

dY
Consequence
d
dY extends to a K -linear derivation on Frac

(
K [X ; θ]

)
d

dY

(
P

D

)
=

dP
dY D − P dD

dY

D2
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Taylor expansion of skew rational functions

Definition

Let z ∈ F×; let f = P
D be a skew rational function

+ If D |Y=z 6= 0, we define:

TSz(f ) =
∞∑
n=0

(
1

n!

dnf

dY n

)
|Y=z

T n

∈ K [X ; θ]

(Y−z)
[[T ]]

+ Otherwise, if z is a zero of D of order m, we define:

TSz(f ) = T−m · TSz
(
(Y−z)mf

)
∈ K [X ; θ]

(Y−z)
((T ))

Theorem

The function TSz : Frac
(
K [X ; θ]

)
−→ K [X ; θ]

(Y−z)
((T ))

is a homomorphism of K -algebras
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Skew residues

Definition

Let z ∈ F×; let f be a skew rational function

+ The skew residue of f at z is:

sresz(f ) = coefficient of T−1 in TSz(f ) ∈ K [X ; θ]

(Y−z)

+ For j ∈ {0, 1, . . . , r−1},
the j-th partial skew residue of f at z is:

sresz,j(f ) = coefficient of X j in sresz(f ) ∈ K

Generalization

One can also define partial skew residues
when z lies in a separable closure F sep of F or z =∞

sresz,j(f ) = [ . . . ] ∈ F [z ]⊗F K ⊂ F sep ⊗F K ' (F sep)r
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A residue formula

Theorem

+ For all skew rational function f , we have:∑
z∈F sept{∞}

sresz,0(f ) = 0

+ If f has only simple poles, we have:∑
z∈F sept{∞}

sresz,j(f ) = 0, ∀ j ∈ {0, 1, . . . , r−1}

Remarks

The main ingredient of the proof is a formula relating
sresz,j(f ) to a residue of a classical rational function

The second part of the theorem admits generalizations when
f has multiple poles, but they are much more difficult to state
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Change of variables

Let γ : Frac
(
K [X ; θ]

)
→ Frac

(
K [X ; θ]

)
be an endormorphism of K -algebras

Change of variables X 7→ γ(X )
Facts

+ γ(X ) = CX with C ∈ Frac
(
K [Y ]

)
+ γ(Y ) = NY with N = NK/F (C ) ∈ Frac

(
F [Y ]

)
i.e. γ stabilizes Frac

(
K [Y ]

)
and acts on it

as the change of variables Y 7→ NY

+ If f ∈ Frac
(
K [Y ]

)
,

resγ?z
(
f dY

)
= resz

(
γ(f ) dγ(Y )

)
= resz

(
γ(f )

dγ(Y )

dY
dY

)
Objective

Generalize this formula to any skew rational function f
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=

C
r
√
N
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(
F [Y ]
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√
N
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⊂ Frac
(
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√
N
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When p divides r

+ There is no analogue of the derivation d
dY on Frac

(
K [X ; θ]

)
Proposition

There is no derivation ∂ : Frac
(
K [X ; θ]

)
→ Frac

(
K [X ; θ]

)
such that ∂ = d

dY on Frac
(
K [Y ]

)
and ∂p = 0

+ But there do exist morphisms of K -algebras

TSz : K [X ; θ]
K [X ; θ]

(Y−z)
[[T ]]

+ The main issue is that
there is no canonical choice of such a morphism
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When p divides r (cont.)

+ One can define skew residues and partial skew residues
but there are not canonical (They depend upon a choice of TSz)

+ However are defined without ambiguity:

/ sresz,0(f ) for any f ∈ Frac
(
K [X ; θ]

)
and any z ∈ F sep

/ sresz(f ) if f has (at most) a simple pole at z

+ The residue formulas hold without any modification

+ The formula of change of variables reads as follows:

For any choice of sresγ?z ,
there exists a choice of sresz such that

sresγ?z
(
f
)

= sresz

(
γ(f )

dγ(Y )

dY

)
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Linearized Goppa codes



Evaluation morphisms

Definition

Given a K -linear vector space V , a semi-linear homomorphism
ϕ : V → V is an additive mapping such that:

∀a ∈ K , ∀v ∈ V , ϕ(av) = θ(a) · ϕ(v)

Proposition

+ If ϕ : V → V is a semi-linear endomorphism, the function

εϕ : K [X ; θ] −→ EndF (V )∑
aiX

i 7→
∑

aiϕ
i

is a homomorphism of K -algebras

+ The semi-linear endomorphisms of K are the cθ, c ∈ K

+ For c ∈ K ?, εc is surjective and ker εc =
(
Y − NK/F (c)

)
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Linearized Reed–Solomon codes

Let c = (c1, . . . , cm) be elements of K ?

such that the NK/F (ci )’s are pairwise distinct

Let V = (V1, . . . ,Vm) be F -linear subspaces of K

Set n = dimF V1 + · · ·+ dimF Vm and let k ≤ n

+ ρc,V : K [X ; θ] −→ HomF (V1,K )× · · · ×HomF (Vm,K )

f 7→
(
εc1(f )|V1

, . . . , εcm(f )|Vm

)
+ LRS(k , c ,V ) = ρc,V

(
K [X ; θ]<k

)
Theorem

The parameters of LRS(k, c ,V ) are:
length n, dimension k , minimal distance d = n − k + 1

for the sum-rank weight: ws-rk(ϕ) = rank(ϕ1) + · · ·+ rank(ϕm)
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Linearized Goppa codes

Let c = (c1, . . . , cm) be elements of K ?

such that the NK/F (ci )’s are pairwise distinct

Let V = (V1, . . . ,Vm) be F -linear subspaces of K

Set n = codimFV1 + · · ·+ codimFVm and let k ≤ n

Preparation

+ There exists D ∈ K [X ; θ] of degree n with im εci (D) = Vi , ∀i

+ For f = gD−1 with g ∈ K [X±1; θ]:

/ f has a simple pole at each zi = NK/F (ci )

/ εci
(
sreszi (f )

)
vanishes on Vi

and then induces a F -linear mapping K/Vi → K

Note: εci
(
sreszi (f )

)
= εci

(
(Y−zi ) · f

)
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Linearized Goppa codes

Let c = (c1, . . . , cm) be elements of K ?

such that the NK/F (ci )’s are pairwise distinct

Let V = (V1, . . . ,Vm) be F -linear subspaces of K

Set n = codimFV1 + · · ·+ codimFVm and let k ≤ n

+ γc,V : K [X±1; θ] D−1 −→ HomF (K/V1,K )× · · ·
f 7→

(
εc1(sresz1(f )), . . .

)
+ LG(k, c ,V ) = γc,V

(
K [X ; θ]<k X

n−k−r (m+1) D−1
)

Theorem

The parameters of LG(k , c,V ) are:
length n, dimension k , minimal distance d = n − k + 1

for the sum-rank weight: ws-rk(ϕ) = rank(ϕ1) + · · ·+ rank(ϕm)
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Main ingredient of the proof:
Comparison with Reed–Solomon codes

1. There exists a skew polynomial D ′ such that:

D ′D = (Y − z1)(Y − z2) · · · (Y − zm)

2. Set v = n − k − r (m+1). For all i :

ker εci (D
′) = ker εci (X

vD ′) = Vi

3.
∏
j 6=i

(zi − zj)
−1 · εci (X

vD ′) induces isomorphisms:

τi : K/Vi
∼−→ im εci (X

vD ′) = Wi

τ?i : HomF (Wi ,K )
∼−→ HomF (K/Vi ,K )

4. τ? = (τ?1 , . . . , τ
?
m) identifies LRS(k , c ,W ) with LG(k , c ,V )

5. τ? preserves the sum-rank weight
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A theorem of duality

Recall that:

LRS(k , c ,V ) ⊂ HomF (V1,K )× · · · ×HomF (Vm,K )

LG(k , c ,V ) ⊂ HomF (K/V1,K )× · · · ×HomF (K/Vm,K )

Pairing

+ K is equipped with the pairing 〈x , y〉K = TrK/F (xy)

+ EndF (K ) is equipped with the pairing 〈ϕ,ψ〉K = Tr(ϕ?ψ)

ϕ? is the adjoint of ϕ: 〈ϕ?(x), y〉K = 〈x , ϕ(y)〉K
+ More generally, the same formula defines a perfect pairing:

HomF (K/V ,K )×HomF (V⊥,K ) −→ F

Theorem

LG
(
k , c ,V

)⊥
= LRS

(
n−k , c−1,V⊥

)

Xavier Caruso Skew residues and linearized Goppa codes



A theorem of duality

Recall that:

LRS(k , c ,V ) ⊂ HomF (V1,K )× · · · ×HomF (Vm,K )

LG(k , c ,V ) ⊂ HomF (K/V1,K )× · · · ×HomF (K/Vm,K )

Pairing

+ K is equipped with the pairing 〈x , y〉K = TrK/F (xy)

+ EndF (K ) is equipped with the pairing 〈ϕ,ψ〉K = Tr(ϕ?ψ)

ϕ? is the adjoint of ϕ: 〈ϕ?(x), y〉K = 〈x , ϕ(y)〉K
+ More generally, the same formula defines a perfect pairing:

HomF (K/V ,K )×HomF (V⊥,K ) −→ F

Theorem

LG
(
k , c ,V

)⊥
= LRS

(
n−k , c−1,V⊥

)

Xavier Caruso Skew residues and linearized Goppa codes



A theorem of duality

Recall that:

LRS(k , c ,V ) ⊂ HomF (V1,K )× · · · ×HomF (Vm,K )

LG(k , c ,V ) ⊂ HomF (K/V1,K )× · · · ×HomF (K/Vm,K )

Pairing

+ K is equipped with the pairing 〈x , y〉K = TrK/F (xy)

+ EndF (K ) is equipped with the pairing 〈ϕ,ψ〉K = Tr(ϕ?ψ)

ϕ? is the adjoint of ϕ: 〈ϕ?(x), y〉K = 〈x , ϕ(y)〉K
+ More generally, the same formula defines a perfect pairing:

HomF (K/V ,K )×HomF (V⊥,K ) −→ F

Theorem

LG
(
k , c ,V

)⊥
= LRS

(
n−k , c−1,V⊥

)

Xavier Caruso Skew residues and linearized Goppa codes



A theorem of duality

Recall that:

LRS(k , c ,V ) ⊂ HomF (V1,K )× · · · ×HomF (Vm,K )

LG(k , c ,V ) ⊂ HomF (K/V1,K )× · · · ×HomF (K/Vm,K )

Pairing

+ K is equipped with the pairing 〈x , y〉K = TrK/F (xy)

+ EndF (K ) is equipped with the pairing 〈ϕ,ψ〉K = Tr(ϕ?ψ)

ϕ? is the adjoint of ϕ: 〈ϕ?(x), y〉K = 〈x , ϕ(y)〉K
+ More generally, the same formula defines a perfect pairing:

HomF (K/V ,K )×HomF (V⊥,K ) −→ F

Theorem

LG
(
k , c ,V

)⊥
= LRS

(
n−k , c−1,V⊥

)

Xavier Caruso Skew residues and linearized Goppa codes



A theorem of duality

Recall that:

LRS(k , c ,V ) ⊂ HomF (V1,K )× · · · ×HomF (Vm,K )

LG(k , c ,V ) ⊂ HomF (K/V1,K )× · · · ×HomF (K/Vm,K )

Pairing

+ K is equipped with the pairing 〈x , y〉K = TrK/F (xy)

+ EndF (K ) is equipped with the pairing 〈ϕ,ψ〉K = Tr(ϕ?ψ)

ϕ? is the adjoint of ϕ: 〈ϕ?(x), y〉K = 〈x , ϕ(y)〉K
+ More generally, the same formula defines a perfect pairing:

HomF (K/V ,K )×HomF (V⊥,K ) −→ F

Theorem

LG
(
k , c ,V

)⊥
= LRS

(
n−k , c−1,V⊥

)

Xavier Caruso Skew residues and linearized Goppa codes



A theorem of duality

Recall that:

LRS(k , c ,V ) ⊂ HomF (V1,K )× · · · ×HomF (Vm,K )

LG(k , c ,V ) ⊂ HomF (K/V1,K )× · · · ×HomF (K/Vm,K )

Pairing

+ K is equipped with the pairing 〈x , y〉K = TrK/F (xy)

+ EndF (K ) is equipped with the pairing 〈ϕ,ψ〉K = Tr(ϕ?ψ)

ϕ? is the adjoint of ϕ: 〈ϕ?(x), y〉K = 〈x , ϕ(y)〉K

+ More generally, the same formula defines a perfect pairing:

HomF (K/V ,K )×HomF (V⊥,K ) −→ F

Theorem

LG
(
k , c ,V

)⊥
= LRS

(
n−k , c−1,V⊥

)

Xavier Caruso Skew residues and linearized Goppa codes



A theorem of duality

Recall that:

LRS(k , c ,V ) ⊂ HomF (V1,K )× · · · ×HomF (Vm,K )

LG(k , c ,V ) ⊂ HomF (K/V1,K )× · · · ×HomF (K/Vm,K )

Pairing

+ K is equipped with the pairing 〈x , y〉K = TrK/F (xy)

+ EndF (K ) is equipped with the pairing 〈ϕ,ψ〉K = Tr(ϕ?ψ)

ϕ? is the adjoint of ϕ: 〈ϕ?(x), y〉K = 〈x , ϕ(y)〉K
+ More generally, the same formula defines a perfect pairing:

HomF (K/V ,K )×HomF (V⊥,K ) −→ F

Theorem

LG
(
k , c ,V

)⊥
= LRS

(
n−k , c−1,V⊥

)

Xavier Caruso Skew residues and linearized Goppa codes



A theorem of duality

Recall that:

LRS(k , c ,V ) ⊂ HomF (V1,K )× · · · ×HomF (Vm,K )

LG(k , c ,V ) ⊂ HomF (K/V1,K )× · · · ×HomF (K/Vm,K )

Pairing

+ K is equipped with the pairing 〈x , y〉K = TrK/F (xy)

+ EndF (K ) is equipped with the pairing 〈ϕ,ψ〉K = Tr(ϕ?ψ)

ϕ? is the adjoint of ϕ: 〈ϕ?(x), y〉K = 〈x , ϕ(y)〉K
+ More generally, the same formula defines a perfect pairing:

HomF (K/V ,K )×HomF (V⊥,K ) −→ F

Theorem

LG
(
k , c ,V

)⊥
= LRS

(
n−k , c−1,V⊥

)
Xavier Caruso Skew residues and linearized Goppa codes



Decoding algorithm

Decoding linearized Reed–Solomon codes

Input: ϕ = ρc,V (f ) + e with ws-rk(e) ≤ n−k
2

= w

Output: f

0. Compute P ∈ K [X ; θ] of degree n with εci (P) = 0

1. Compute g ∈ K [X ; θ] with εci (g) = ϕ

2. Compute U,V ,R ∈ K [X ; θ] with

Ug + VP = R and degU ≤ w , degR < w+k

3. Return the quotient in the left division of R by U

Complexity: Õ
(

min
(
n

ω+1
2 r , n r

4
5−ω
))

operations in F

Decoding linearized Goppa codes

Use the isomorphism of codes LG(k , c ,V ) ' LRS(k , c ,W )
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(

min
(
n

ω+1
2 r , n r

4
5−ω
))

operations in F

Decoding linearized Goppa codes

Use the isomorphism of codes LG(k , c ,V ) ' LRS(k , c ,W )

Xavier Caruso Skew residues and linearized Goppa codes



Decoding algorithm

Decoding linearized Reed–Solomon codes

Input: ϕ = ρc,V (f ) + e with ws-rk(e) ≤ n−k
2

= w

Output: f

0. Compute P ∈ K [X ; θ] of degree n with εci (P) = 0

1. Compute g ∈ K [X ; θ] with εci (g) = ϕ

2. Compute U,V ,R ∈ K [X ; θ] with

Ug + VP = R and degU ≤ w , degR < w+k

3. Return the quotient in the left division of R by U

Complexity: Õ
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