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Polynomial Factorization over Finite Fields

Decompose a given monic sqaure-free f(x) € Fy[x| of degree n into its monic irreducible

i) = [Tpitx)

Gauss->Legendre->Berlekamp->Cantor/Zassenhaus->Camion->vonzur Gathern/Shoup->Kaltofen/Shoup->Kedlaya-Umans

factors.

Kaltofen-Shoup algorithm with Kedlaya-Umans fast modular composition takes expected time

n3/2+0(1) (logq)1+o(1) + n1+0(1) (log q)2+u(1) .
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Drinfeld modules and Polynomial Factorization

» Panchishkin and Potemine (1989), van der Heiden (2005).

This Talk:
» Factor Degree Estimation using Euler-Poincare Characteristic of Drinfeld modules.
» Rank-2 Drinfeld module analogue of Kaltofen-Lobo’s blackbox Berlekamp algorithm.

» Drinfeld modules with complex multiplication, Hasse invariants/Deligne’s congruence.



Degree Estimation using Euler Characteristic of Drinfeld Modules

Decompose a given monic f(x) € F,[x] of degree n into its monic
irreducible factors.

i) = [Tpi(x)

Finding an irreducible factor degree with runtime exponent < 3/2

4

factorization with exponent < 3/2.

An algorithm to find the smallest irreducible factor degree using
Euler-Poincare characteristics of random Drinfeld modules.



Rank-2 Drinfeld Modules

Let F;[x] (o) denote the skew polynomial ring with the commutation rule
ou(x) = u(x)?o, Vu(x) € Fylx].

A rank-2 Drinfeld module over F(x) is (the IF;[x] module structure on the additive group
scheme over IF; (x) given by) a ring homomorphism

¢ : Folx] — Fy(x)(o)
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Let M be an IF,[x] algebra, say M = F;[x]/(f(x)). Retain the addition in M but define a new
IFy[x] action:
2deg(b)

b(x) x a(x) := dp(a) = b()a() + > Gp(x)a(x)
i=1

Let ¢(M) denote the new [F;[x] module structure thus endowed to M.



Euler-Poincare Characteristic of Finite IF;[x] Modules: An [F;[x] measure of cardinality.

For a finite Iy [x] module A, x(A) € Fy[x] is the monic polynomial s.t.
> If A = Fy[x]/(p(x)) for a monic irreducible p(x), then x(A) = p(x).
> 1f0 — Ay - A — Ay — 0is exact, then x(A) = x(A1)x(A2).

For a finite Z module G, #G € Z is the positive integer s.t.
> If G =2 Z/(p) for a positive prime p, then #G = p.
> If0 —» G — G — Gy — Ois exact, then #G = #G1#G,.
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Drinfeld module analogue of Hasse bound (Gekeler)

For a monic irreducible p(x) € Fy[x]

Xop (%) = X(@(Fqlx]/(p(x)))) = p(x) + tgp(x)
~——
<deg(p)/2

#(EZ/pL) =p+1—  igp
~—
—2VPs <2Vp
Xop(X) =p(x) + terms of degree at most deg(p)/2.
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Factor Degree Estimation

le ) = ¢(Fylx] @Mq X))
= Xo.f(x wal H (%) + tgp,(x))

Since Vi, deg(tg,p, (x)) < deg(pi)/2,

Xo,j(x) = f(x) + terms of smaller degree.

If s; denotes the degree of the smallest degree factor of f(x),

Xof(¥) —f(X) = D (tg, p (%) ) [ [ pi(x)) + terms of degree < (deg(f) — [s;/2])

jrdeg(pj)=s; i#f

= [s1/2] < deg(f) — deg(xs,5 — 1)

Theorem : Proby [[s;/2] = deg(f) — deg(xq; —f)] > 1/4.
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» Only need a Montecarlo algorithm for x4 ;(x) that succeeds
with constant probability !



Computing Euler-Poincare Characteristics

» Compute x4 s as the characteristic polynomial of the (IF;-linear)
¢« action on [, [x]/ (f(x)).

» Only need a Montecarlo algorithm for x4 ;(x) that succeeds
with constant probability !

Fora € ¢(IFy(x)/f(x)), Ord(a) is the smallest degree monic g(x)
such that ¢4(a) = 0.

Theorem: It is likely that x, ; equals the order Ord(a) of a
random a € ¢(IF, [x]/(f(x))).

Ord(a) can be computed with run time exponent 3/2 by (a Drinfeld
version of) automorphism-projection followed by Berlekamp-Massey
assuming the matrix multiplication exponent is 2.



Drinfeld Analog of Berlekamp/Lenstra’s Algorithm

Ord(a) divides x4 ;(x H Xopi (X H (i(x) + tpp,(x))

i

€ Ip,

Tp; := {pi(x) + b(x), deg(b) < deg(p:)/2}

> Image of ¢ — p;(x) + tg p,(x) € Iy, is random enough.
> Factorization patterns in the short intervals Z,; are random enough.



Drinfeld Analog of Berlekamp/Lenstra’s Algorithm

Ord(a) divides x4 ;(x H Xeo,p (X H pi(x) 4 tgp,(x))

€ Ip,

Tp; := {pi(x) + b(x), deg(b) < deg(p:)/2}

> Image of ¢ — p;(x) + tg p,(x) € Iy, is random enough.
> Factorization patterns in the short intervals Z,; are random enough.

A random polynomial of degree d > 1 has a linear factor with probability roughly 1 — 1/e.

g(x) :== Ord(a)/ gcd(Ord(a), x7 — x)
Likely ¢g(a) =0 mod p;(x) for some but not all p;(x)
= gcd(¢g(a), ) is a non trivial factor of f(x).



Polynomial Factorization Patterns in Short Intervals

For every f € IF4[x] of degree d bounded by log g > 3dlogd, for every m > 2 and for every
partition \ of d,

1 {8 € TrmlAs = A} < 1)
<1 ﬂ)P(A)Sﬂf,M < 1+\/E/ P(\)

where Ty, := f(x) 4 Fg[x]geg<m-> A denotes the partition of deg(g) induced by the
degrees of the irreducible factors of g and P()\) is the fraction of permutations on d letters
whose cycle decomposition corresponds to .

Density Theorem

Let F/E be a finite Galois extension of the rational function field E := Fy(x1, ..., xn) in
finitely many indeterminates. Let Pr denote the set of IF; rational places in E that are
unramified in F. Fix an algebraic closure Iy of F; and let o : Gal(F/E) — Gal((FyNF)/Fy)
denote the restriction map. For a place p € Pr, let ©, denote the conjugacy class in ker(a)
of Artin symbols of places in F above p. For every conjugacy class © C ker(a),

©1 | . 1Ol
|ker(a)| = |ker(a)]

I{p € Pr|©p = O} - [F: EJ" g/,



Hasse Invariant: Joint work with Javad Doliskani and Eric Schost

Reduction of Drinfeld modules

For a prime ideal (p(x)) C Fy[x], if 9 is non zero modulo p, then the reduction
¢/p = ¢ @ Fy[x]/(p(x)) of ¢ at p is defined through the ring homomorphism

¢/p : Fqlx] — Falx]/(p(x))(0)

x+— x+ (g4(x) mod p)o + (04(x) mod p)o?
and the image of b(x) € F,[x] under ¢/p is denoted by (¢/p)p.
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¢ is supersingular at p if and only if b, (x) = 0 mod p(x)



Deligne’s Congruence
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Recursively define a sequence (tg4 x(x) € Fy[x],k € N) as

te0(x) :=1,1t4 1(x) := gy (x) and for m > 1,
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Gekeler showed that t ,, (x) is the value of the normalized Eisenstein series of weight
g™ — 1 on ¢ and established Deligne’s congruence for Drinfeld modules, which ascertains
for any p of degree k > 1 with 04(x) # 0 mod p that

ho,p(¥) =ty x(x) mod p.

Hence vy 1 (x) is a lift to Iy [x] of all the Hasse invariants of ¢ at primes of degree k.
Further, t, 1 (x), t4 x41(x) are both zero precisely modulo the supersingular p of degree < k.

To factor f(x), choose a Drinfeld module ¢, compute ged(tg k(x), tg k4+1(x)) mod f(x) and
output its gcd with f(x) to separate the degree at most k irreducible factors of f(x) where ¢ is
supersingular.



Drinfeld Modules with Complex Multiplication

A Drinfeld module ¢ has complex multiplication by an imaginary quadratic extension L/F;(x)
if
End?,,(.r) (¢) ®E, [x] IFV](X) =L
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notsplit
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Drinfeld Modules with Complex Multiplication

A Drinfeld module ¢ has complex multiplication by an imaginary quadratic extension L/F;(x)
if
Enqu(.r) (¢) ®E, [x] IFV](X) =L

L o B B Pa
notsplit supersingular \t(dinm/
Fy(x) (1/x) (p(x)) (p(x))

To get a Drinfeld module with complex multiplication by L := F4(x)(1/b(x)), pick

g (x) == v/B() + (\/b(x))”’,%, (x) =1
which is isomorphic to
80 (%) 1= Jr (), 04/ (x) := (Jy (x))", where

()i
Jgr (x) = % = b(x)(‘/H'l)/z (1 + b(x)(q—l)/2>

Algorithm: Choose b(x) = x — c at random, compute t,  for large enough k and split.

g+1



Splitting Probabilities

L =TF,(x)(y/b(x)) oo pY RUI R

supersingular \(idinm/

Fa(x) (1/x) (P2 (%)) (p2(x))

notsplit




Splitting Probabilities

L =TF,(x)(y/b(x)) oo B P B
notsplit supersingular \idinai/
Fy(x) (1/x) (P2 (%)) (p2(x))

Consider p1(x), p2(x) of degree at most k, what is the probability that b separates them ?

KiK3 b is neither split nor inert in K1 Ky with prob 1/2 if

/ \ g(KiKa) ~k <\ /9
v —Pl\ /— p2(x) \ /

Fa(x) (b(x))



Fast Computation of the Hasse-Invariant

The recursion for computing t4 ,(x) can be written as

{%”k*l} = 0 k—2 kl—l {%*k*z} .
To.k —k—=10e ol | lrek—1

where [k — 1] := ' —x mod f(x). Define the following sequence of matrices

A { 0 1
k= l]k_2 t]k_l .

—[k- 1]D¢ 9
Then we have

|:t¢,k—1:| _ AkAk—l . ~A2 {t¢,0:| .
Y.k t,1

Our goal is to compute the product

By := ApAy_1--- A € M(Fq(x)/(f))

for then we can read off To.n from B, {E“”O} .
1



Baby-Step-Giant-Step
Extend the IFy-linear g*"-power Frobenius map 7 : Fy[x]/(f) — Fy[x]/(}) to the polynomial
ring M (F4[x]/(f))[Y] by leaving Y fixed and acting on the coefficient matrices entry-wise.
Let

a 0 1 0 0
A= —T(X)0¢(x) T(g¢(x))] + |:U¢(X) O:| Y € MZ(]F’?[X}/(T))[Y]

Then, for any k > 1, we have
A =72 (A) ().

Let ¢ := [\/n], m := |n/L] ~ v/n and define

B:=7""1A) - T(AA
It follows from the above that

B(x) = A¢p1A0—2 - - Ay.
More generally, using the fact that for all 7, j

Az = TH(A) ) = 7 (T(A) (- @),
we deduce for all i > 1 that
7! (B(Tf'v(x))> = Aiter1 - AigsAiga.

In particular, B, can be computed as the product of the following matrices,

B(x), 7 (B(r=(x)) )., 7" (B(r™" () ).



