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Polynomial Factorization over Finite Fields

Decompose a given monic sqaure-free f(x) ∈ Fq[x] of degree n into its monic irreducible

factors.

f(x) =
∏

i
pi(x)

Gauss->Legendre->Berlekamp->Cantor/Zassenhaus->Camion->vonzur Gathern/Shoup->Kaltofen/Shoup->Kedlaya-Umans

Kaltofen-Shoup algorithm with Kedlaya-Umans fast modular composition takes expected time

n3/2+o(1)(log q)1+o(1) + n1+o(1)(log q)2+o(1).

Drinfeld modules and Polynomial Factorization

I Panchishkin and Potemine (1989), van der Heiden (2005).
This Talk:

I Factor Degree Estimation using Euler-Poincare Characteristic of Drinfeld modules.
I Rank-2 Drinfeld module analogue of Kaltofen-Lobo’s blackbox Berlekamp algorithm.
I Drinfeld modules with complex multiplication, Hasse invariants/Deligne’s congruence.
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Degree Estimation using Euler Characteristic of Drinfeld Modules

Decompose a given monic f(x) ∈ Fq[x] of degree n into its monic
irreducible factors.

f(x) =
∏

i
pi(x)

Finding an irreducible factor degree with runtime exponent < 3/2
⇓

factorization with exponent < 3/2.

An algorithm to find the smallest irreducible factor degree using
Euler-Poincare characteristics of random Drinfeld modules.



Rank-2 Drinfeld Modules

Let Fq[x]〈σ〉 denote the skew polynomial ring with the commutation rule

σu(x) = u(x)qσ,∀u(x) ∈ Fq[x].

A rank-2 Drinfeld module over Fq(x) is (the Fq[x] module structure on the additive group
scheme over Fq(x) given by) a ring homomorphism

φ : Fq[x] −→ Fq(x)〈σ〉

x 7−→ x + gφ(x)σ + �φ(x)σ2

for some gφ(x) ∈ Fq[x] and non zero �φ(x) ∈ Fq[x].

For b(x) ∈ Fq[x], b(x) 7−→ b(x) +

2 deg(b)∑
i=1

φb,i(x)σi

︸ ︷︷ ︸
Call φb

.

Let M be an Fq[x] algebra, say M = Fq[x]/(f(x)). Retain the addition in M but define a new
Fq[x] action:

b(x) ? a(x) := φb(a) = b(x)a(x) +

2 deg(b)∑
i=1

φb,i(x)a(x)qi

Let φ(M) denote the new Fq[x] module structure thus endowed to M.
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Euler-Poincare Characteristic of Finite Fq[x] Modules: An Fq[x] measure of cardinality.

For a finite Fq[x] module A, χ(A) ∈ Fq[x] is the monic polynomial s.t.
I If A ∼= Fq[x]/(p(x)) for a monic irreducible p(x), then χ(A) = p(x).
I If 0→ A1 → A→ A2 → 0 is exact, then χ(A) = χ(A1)χ(A2).

For a finite Z module G, #G ∈ Z is the positive integer s.t.
I If G ∼= Z/(p) for a positive prime p, then #G = p.
I If 0→ G1 → G→ G2 → 0 is exact, then #G = #G1#G2.

Drinfeld module analogue of Hasse bound (Gekeler)
For a monic irreducible p(x) ∈ Fq[x]

χφ,p(x) := χ(φ(Fq[x]/(p(x)))) = p(x) + tφ,p(x)︸ ︷︷ ︸
≤deg(p)/2

#(E(Z/pZ)) = p + 1− tE,p︸︷︷︸
−2√p≤ ≤2√p

χφ,p(x) = p(x) + terms of degree at most deg(p)/2.
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Factor Degree Estimation

f(x) =
∏

i
pi(x)⇒ φ(Fq[x]/(f(x))) =

⊕
i
φ(Fq[x]/(pi(x)))

⇒ χφ,f(x) =
∏

i
χφ,pi =

∏
i
(pi(x) + tφ,pi(x))

Since ∀i,deg(tφ,pi (x)) ≤ deg(pi)/2,

χφ,f(x) = f(x) + terms of smaller degree.

If sf denotes the degree of the smallest degree factor of f(x),

χφ,f(x)− f(x) =
∑

j:deg(pj)=sf

(tφ,pj (x)
∏
i6=j

pi(x)) + terms of degree < (deg(f)− dsf/2e)

⇒ dsf/2e ≤ deg(f)− deg(χφ,f − f)

Theorem : Probφ
[
dsf/2e = deg(f)− deg(χφ,f − f)

]
≥ 1/4.
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Computing Euler-Poincare Characteristics

I Compute χφ,f as the characteristic polynomial of the (Fq-linear)
φx action on Fq[x]/(f(x)).

I Only need a Montecarlo algorithm for χφ,f(x) that succeeds
with constant probability !

For a ∈ φ(Fq(x)/f(x)), Ord(a) is the smallest degree monic g(x)
such that φg(a) = 0.

Theorem: It is likely that χφ,f equals the order Ord(a) of a
random a ∈ φ(Fq[x]/(f(x))).

Ord(a) can be computed with run time exponent 3/2 by (a Drinfeld
version of) automorphism-projection followed by Berlekamp-Massey
assuming the matrix multiplication exponent is 2.
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Drinfeld Analog of Berlekamp/Lenstra’s Algorithm

Ord(a) divides χφ,f(x) =
∏

i
χφ,pi(x) =

∏
i
(pi(x) + tφ,pi(x))︸ ︷︷ ︸

∈ Ipi

Ipi := {pi(x) + b(x),deg(b) ≤ deg(pi)/2}

I Image of φ 7−→ pi(x) + tφ,pi (x) ∈ Ipi is random enough.
I Factorization patterns in the short intervals Ipi are random enough.

A random polynomial of degree d > 1 has a linear factor with probability roughly 1− 1/e.

g(x) := Ord(a)/gcd(Ord(a), xq − x)

Likely φg(a) = 0 mod pi(x) for some but not all pi(x)

⇒ gcd(φg(a), f) is a non trivial factor of f (x).
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Polynomial Factorization Patterns in Short Intervals

For every f ∈ Fq[x] of degree d bounded by log q ≥ 3d log d, for every m ≥ 2 and for every
partition λ of d,(

1−
1
√q

)
P(λ) ≤

∣∣{g ∈ If ,m|λg = λ}
∣∣

|If ,m|
≤
(

1 +
1
√q

)
P(λ)

where If ,m := f (x) + Fq[x]deg≤m, λg denotes the partition of deg(g) induced by the
degrees of the irreducible factors of g and P(λ) is the fraction of permutations on d letters
whose cycle decomposition corresponds to λ.

Density Theorem

Let F/E be a finite Galois extension of the rational function field E := Fq(x1, . . . , xm) in
finitely many indeterminates. Let PF denote the set of Fq rational places in E that are
unramified in F. Fix an algebraic closure Fq of Fq and let α : Gal(F/E) −→ Gal((Fq ∩F)/Fq)
denote the restriction map. For a place p ∈ PF, let Θp denote the conjugacy class in ker(α)
of Artin symbols of places in F above p. For every conjugacy class Θ ⊆ ker(α),∣∣∣∣|{p ∈ PF|Θp = Θ}| −

|Θ|
|ker(α)|

qm
∣∣∣∣ ≤ |Θ|
|ker(α)|

[F : E]m+1qm/2.



Hasse Invariant: Joint work with Javad Doliskani and Éric Schost

Reduction of Drinfeld modules

For a prime ideal (p(x)) ⊂ Fq[x], if �φ is non zero modulo p, then the reduction
φ/p := φ⊗ Fq[x]/(p(x)) of φ at p is defined through the ring homomorphism

φ/p : Fq[x] −→ Fq[x]/(p(x))〈σ〉

x 7−→ x + (gφ(x) mod p)σ + (�φ(x) mod p)σ2

and the image of b(x) ∈ Fq[x] under φ/p is denoted by (φ/p)b.

Hasse Invariant

The Hasse invariant hφ,p(x) of φ at p is the coefficient of σdeg(p) in the expansion

(φ/p)p =

2 deg(p)∑
i=0

hi((φ/p))(x)σi.

φ is supersingular at p if and only if hφ,p(x) = 0 mod p(x)
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Deligne’s Congruence

Recursively define a sequence (rφ,k(x) ∈ Fq[x], k ∈ N) as

rφ,0(x) := 1, rφ,1(x) := gφ(x) and for m > 1,

rφ,m(x) :=
(
gφ(x)

)qm−1
rφ,m−1(x)− (xqm−1

− x)
(
�φ(x)

)qm−2
rφ,m−2(x)

Gekeler showed that rφ,m(x) is the value of the normalized Eisenstein series of weight
qm − 1 on φ and established Deligne’s congruence for Drinfeld modules, which ascertains
for any p of degree k ≥ 1 with �φ(x) 6= 0 mod p that

hφ,p(x) = rφ,k(x) mod p.

Hence rφ,k(x) is a lift to Fq[x] of all the Hasse invariants of φ at primes of degree k.

Further, rφ,k(x), rφ,k+1(x) are both zero precisely modulo the supersingular p of degree ≤ k.

To factor f(x), choose a Drinfeld module φ, compute gcd(rφ,k(x), rφ,k+1(x)) mod f (x) and
output its gcd with f(x) to separate the degree at most k irreducible factors of f(x) where φ is
supersingular.
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Drinfeld Modules with Complex Multiplication
A Drinfeld module φ has complex multiplication by an imaginary quadratic extension L/Fq(x)
if

EndFq(x)(φ)⊗Fq[x] Fq(x) ∼= L.

L

Fq(x)

∞

(1/x) (p(x)) (p(x))

P P1 P2

notsplit supersingular ordinary

To get a Drinfeld module with complex multiplication by L := Fq(x)(
√

b(x)), pick

gφ′ (x) :=
√

b(x) +
(√

b(x)
)q
, �φ′ (x) := 1

which is isomorphic to

gφ(x) := Jφ′ (x), �φ′ (x) :=
(
Jφ′ (x)

)q
, where

Jφ′ (x) :=
gφ′ (x)q+1

�φ′ (x)
= b(x)(q+1)/2

(
1 + b(x)(q−1)/2

)q+1

Algorithm: Choose b(x) = x− c at random, compute rφ,k for large enough k and split.
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Splitting Probabilities

L = Fq(x)(
√

b(x))

Fq(x)

∞

(1/x) (p1(x)) (p2(x))

P P1 P2

notsplit supersingular ordinary

Consider p1(x), p2(x) of degree at most k, what is the probability that b separates them ?

Fq(x)

K1 K2

K1K2

(b(x))

? ?

b is neither split nor inert in K1K2 with prob 1/2 if

g(K1K2) ≈ k ≤ √q

y2 − p1(x) y2 − p2(x)
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Fast Computation of the Hasse-Invariant
The recursion for computing rφ,n(x) can be written as

[
rφ,k−1
rφ,k

]
=

[
0 1

−[k− 1]d
qk−2

φ g
qk−1

φ

][
rφ,k−2
rφ,k−1

]
.

where [k− 1] := xqk−1 − x mod f(x). Define the following sequence of matrices

Ak :=

[
0 1

−[k− 1]d
qk−2

φ g
qk−1

φ

]
.

Then we have [
rφ,k−1
rφ,k

]
= AkAk−1 · · ·A2

[
rφ,0
rφ,1

]
.

Our goal is to compute the product

Bn := AnAn−1 · · ·A2 ∈ M(Fq(x)/(f))

for then we can read off rφ,n from Bn

[
rφ,0
rφ,1

]
.



Baby-Step-Giant-Step
Extend the Fq-linear qth-power Frobenius map τ : Fq[x]/(f)→ Fq[x]/(f) to the polynomial
ring M2(Fq[x]/(f))[Y] by leaving Y fixed and acting on the coefficient matrices entry-wise.
Let

A :=

[
0 1

−τ(x)dφ(x) τ(gφ(x))

]
+

[
0 0

dφ(x) 0

]
Y ∈ M2(Fq[x]/(f))[Y].

Then, for any k ≥ 1, we have
Ak = τ k−2(A)(x).

Let ` := d
√

ne, m := bn/`c ∼
√

n and define

B := τ`−1(A) · · · τ(A)A.

It follows from the above that

B(x) = A`+1A`−2 · · ·A2.

More generally, using the fact that for all i, j

Ai+j+2 = τ i+j(A)(x) = τ j
(
τ i(A)

(
τ−j(x)

))
,

we deduce for all i ≥ 1 that

τ i
(
B
(
τ−i(x)

))
= Ai+`+1 · · ·Ai+3Ai+2.

In particular, Bn can be computed as the product of the following matrices,

B
(
x
)
, τ`
(
B
(
τ−`(x)

))
, . . . , τm`

(
B
(
τ−m`(x)

))
.


