Reconstruction algorithms for sums of affine powers Specfun seminar - Paris 05-2018

Ignacio Garcia-Marco, Pascal Koiran, Timothée Pecatte

Contents

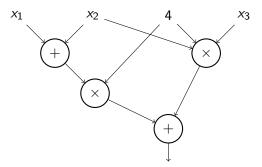
- 1 Algebraic Complexity
- 2 Models
- **3** Structural results
- 4 Tools
- 6 Algorithms
- **6** The multivariate case

Motivation: algebraic complexity

• Objects studied: families of polynomials over a field $\mathbb F.$

- Objects studied: families of polynomials over a field $\mathbb{F}.$
- Meta-Question: is a polynomial f "hard" to compute ?

- Objects studied: families of polynomials over a field $\mathbb{F}.$
- Meta-Question: is a polynomial f "hard" to compute ?
- Models: formula, straight-line programs, circuits, ...



- Objects studied: families of polynomials over a field $\mathbb{F}.$
- Meta-Question: is a polynomial f "hard" to compute ?
- Models: formula, straight-line programs, circuits, ...

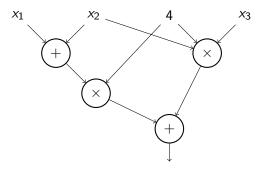


Figure: Circuit computing the polynomial $4(x_1 + x_2) + 4x_2x_3$.

- Objects studied: families of polynomials over a field $\mathbb{F}.$
- Meta-Question: is a polynomial f "hard" to compute ?
- Models: formula, straight-line programs, circuits, ...

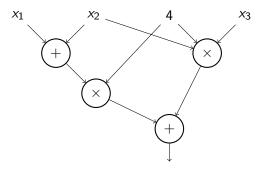


Figure: Circuit computing the polynomial $4(x_1 + x_2) + 4x_2x_3$.

• Hardness in the case of circuits: *depth* and *size*.

Definition (VP)

The class VP consists of all families of polynomials $\{f_n\}$ such that:

- arithmetic circuits of polynomial size compute f_n ,
- the number of variables and the degree are $n^{O(1)}$.

Definition (VP)

The class VP consists of all families of polynomials $\{f_n\}$ such that:

- arithmetic circuits of polynomial size compute f_n ,
- the number of variables and the degree are $n^{O(1)}$.

Example

$$\mathsf{DET}_n(X) = \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)}$$

Definition (VNP)

The class VNP consists of all families of polynomials $\{f_n\}$ such that there exists a family $\{g_n\}$ in VP with:

$$f_n(x_1,...,x_{k(n)}) = \sum_{w \in \{0,1\}^{p(n)}} g_{p(n)}(x_1,...,x_{k(n)}, w_1...,w_{p(n)})$$

Definition (VNP)

The class VNP consists of all families of polynomials $\{f_n\}$ such that there exists a family $\{g_n\}$ in VP with:

$$f_n(x_1,...,x_{k(n)}) = \sum_{w \in \{0,1\}^{p(n)}} g_{p(n)}(x_1,...,x_{k(n)}, w_1...,w_{p(n)})$$

Example

$$\mathsf{PERM}_n(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$$

Definition (VNP)

The class VNP consists of all families of polynomials $\{f_n\}$ such that there exists a family $\{g_n\}$ in VP with:

$$f_n(x_1,...,x_{k(n)}) = \sum_{w \in \{0,1\}^{p(n)}} g_{p(n)}(x_1,...,x_{k(n)}, w_1...,w_{p(n)})$$

Example

$$\mathsf{PERM}_n(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$$

PERM is VNP-complete.

Models of interest

Sums of affine powers

Let \mathbb{F} be any characteristic zero field. We consider f an univariate polynomial with coefficients in \mathbb{F} , this is, $f \in \mathbb{F}[x]$.

Sums of affine powers

Let \mathbb{F} be any characteristic zero field. We consider f an **univariate** polynomial with **coefficients in** \mathbb{F} , this is, $f \in \mathbb{F}[x]$.

Model (Univariate $\Sigma \wedge \Sigma$)

$$\sum_{i=1}^{k} \alpha_i (x - a_i)^{e_i} \quad \text{with } \alpha_i, a_i \in \mathbb{F}$$

Let \mathbb{F} be any characteristic zero field. We consider f an **univariate** polynomial with **coefficients in** \mathbb{F} , this is, $f \in \mathbb{F}[x]$.

Model (Univariate $\Sigma \wedge \Sigma$)

$$\sum_{i=1}^{k} lpha_i (x - a_i)^{e_i}$$
 with $lpha_i, a_i \in \mathbb{F}$

A polynomial can be written in many ways in this model, for example $f = 10x^4 + 20x^2 + 2 \in \mathbb{R}[x]$ can be written as:

$$f = 10 (x - 0)^4 + 20 (x - 0)^2 + 2 (x - 0)^0 =$$

Let \mathbb{F} be any characteristic zero field. We consider f an **univariate** polynomial with **coefficients in** \mathbb{F} , this is, $f \in \mathbb{F}[x]$.

Model (Univariate $\Sigma \wedge \Sigma$)

$$\sum_{i=1}^{k} lpha_i (x - a_i)^{e_i}$$
 with $lpha_i, a_i \in \mathbb{F}$

A polynomial can be written in many ways in this model, for example $f = 10x^4 + 20x^2 + 2 \in \mathbb{R}[x]$ can be written as:

For $f \in \mathbb{F}[x]$,

Definition

$$\mathsf{AffPow}_{\mathbb{K}}(f) := \min\left\{ \mathbf{k} : f(x) = \sum_{i=1}^{k} \alpha_i (x - a_i)^{e_i} \quad \text{with } \alpha_i, a_i \in \mathbb{K} \right\}$$

For $f \in \mathbb{F}[x]$,

Definition

$$\mathsf{AffPow}_{\mathbb{K}}(f) := \min\left\{ \mathbf{k} : f(x) = \sum_{i=1}^{k} \alpha_i (x - a_i)^{\mathbf{e}_i} \quad \text{ with } \alpha_i, a_i \in \mathbb{K} \right\}$$

Example:

For $f = 10x^4 + 20x^2 + 2$ we have that $f(x) = (x+1)^5 - (x-1)^5$, then $\operatorname{AffPow}_{\mathbb{R}}(f) \leq 2$

For $f \in \mathbb{F}[x]$,

Definition

$$\mathsf{AffPow}_{\mathbb{K}}(f) := \min\left\{ \mathbf{k} : f(x) = \sum_{i=1}^{k} \alpha_i (x - a_i)^{\mathbf{e}_i} \quad \text{ with } \alpha_i, a_i \in \mathbb{K} \right\}$$

Example:

For $f = 10x^4 + 20x^2 + 2$ we have that $f(x) = (x+1)^5 - (x-1)^5$, then AffPow_R $(f) \le 2$ In fact, AffPow_R(f) = 2.

Related models

Model (Sparsest shift)

$$f(x) = \sum_{i=1}^{s} \alpha_i (x-a)^{e_i}$$

$$f = 10 (x - 0)^4 + 20 (x - 0)^2 + 2 (x - 0)^0$$

Related models

Model (Sparsest shift)

$$f(x) = \sum_{i=1}^{s} \alpha_i (x-a)^{e_i}$$

$$f = 10 (x - 0)^4 + 20 (x - 0)^2 + 2 (x - 0)^0$$

Model (Waring decomposition)

$$f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^d$$
 where $d = \deg(f)$

 $f = (x + 1)^5 - (x - 1)^5$ is not a Waring decomposition!

Problem

Given a polynomial $f \in \mathbb{F}[x]$, compute the exact value $s = AffPow_{\mathbb{F}}(f)$ and a decomposition with s terms.

$$f = \mathop{\scriptstyle \sum}_{i=0}^{d} f_{i} x^{i} \quad \longrightarrow \quad \text{Algorithm} \quad \stackrel{\text{AffPow}(f) = s}{\longrightarrow} \quad f = \mathop{\scriptstyle \sum}_{i=1}^{s} \alpha_{i} (x - a_{i})^{e_{i}}$$

Structural results

Structural results

Real polynomials

Theorem (Koiran, Garcia-Marco'15)

Consider a polynomial identity of the form:

$$\sum_{i=1}^k \alpha_i (x - a_i)^{e_i} = 0$$

with $(a_i, e_i) \neq (a_j, e_j)$ for all $i \neq j$, and $\alpha_i \neq 0$.

Theorem (Koiran, Garcia-Marco'15)

Consider a polynomial identity of the form:

$$\sum_{i=1}^k \alpha_i (x-a_i)^{e_i} = 0$$

with $(a_i, e_i) \neq (a_j, e_j)$ for all $i \neq j$, and $\alpha_i \neq 0$. If $d := \max(e_1, \dots, e_k) \Longrightarrow k \geq \lceil (d+3)/2 \rceil$.

Theorem (Koiran,Garcia-Marco'15)

Consider a polynomial identity of the form:

$$\sum_{i=1}^k \alpha_i (x-a_i)^{e_i} = 0$$

with $(a_i, e_i) \neq (a_j, e_j)$ for all $i \neq j$, and $\alpha_i \neq 0$. If $d := \max(e_1, \dots, e_k) \Longrightarrow k \geq \lceil (d+3)/2 \rceil$.

Corollary

Let $f \in \mathbb{R}[x]$ be a polynomial of the form $f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$.

Theorem (Koiran,Garcia-Marco'15)

Consider a polynomial identity of the form:

$$\sum_{i=1}^k \alpha_i (x-a_i)^{e_i} = 0$$

with $(a_i, e_i) \neq (a_j, e_j)$ for all $i \neq j$, and $\alpha_i \neq 0$. If $d := \max(e_1, \dots, e_k) \Longrightarrow k \geq \lceil (d+3)/2 \rceil$.

Corollary

Let $f \in \mathbb{R}[x]$ be a polynomial of the form $f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$. Define $n_e := \#\{e_i : e_i \leq e\}$. If $2n_e < \lceil (e+3)/2 \rceil$ for all $e \in \mathbb{N}$, then $AffPow_{\mathbb{R}}(f) = s$ and the optimal representation of f is unique.

Real polynomials

• Let $f = (x+1)^d - (x-1)^d + i(x+i)^d - i(x-i)^d \in \mathbb{R}[X]$. AffPow_C $(f) \le 4$ but AffPow_R $(f) = \lfloor (d+1)/4 \rfloor$.

Real polynomials

- Let $f = (x+1)^d (x-1)^d + i(x+i)^d i(x-i)^d \in \mathbb{R}[X]$. AffPow_C $(f) \le 4$ but AffPow_R $(f) = \lfloor (d+1)/4 \rfloor$.
- Orthogonality of Waring rank and sparsest shift: For $f \in \mathbb{R}[X]$,

$$\mathsf{Waring}_{\mathbb{R}}(f) + \mathsf{Sparsest}_{\mathbb{R}}(f) \geq rac{d+3}{2}$$

except if $f = \alpha (x - a)^d$.

Real polynomials

- Let $f = (x+1)^d (x-1)^d + i(x+i)^d i(x-i)^d \in \mathbb{R}[X]$. AffPow_C $(f) \le 4$ but AffPow_R $(f) = \lfloor (d+1)/4 \rfloor$.
- Orthogonality of Waring rank and sparsest shift: For $f \in \mathbb{R}[X]$,

$$\mathsf{Waring}_{\mathbb{R}}(f) + \mathsf{Sparsest}_{\mathbb{R}}(f) \geq \frac{d+3}{2}$$

except if $f = \alpha (x - a)^d$.

2Waring_ℝ(f) ≥ Waring_ℝ(f) + AffPow_ℝ(f) ≥ d+3/2,
 except if Waring_ℝ(f) = AffPow_ℝ(f).

Structural results

Characteristic zero

Proposition

Consider a polynomial identity of the form:

$$\sum_{i=1}^k \alpha_i (x-a_i)^{e_i} = 0$$

with $(a_i, e_i) \neq (a_j, e_j)$ for all $i \neq j$, and $\alpha_i \neq 0$.

Consider a polynomial identity of the form:

$$\sum_{i=1}^k \alpha_i (x-a_i)^{e_i} = 0$$

with $(a_i, e_i) \neq (a_j, e_j)$ for all $i \neq j$, and $\alpha_i \neq 0$. If $d := \max(e_1, \dots, e_k) \Longrightarrow k > \sqrt{2(d+1)}$.

Consider a polynomial identity of the form:

$$\sum_{i=1}^k \alpha_i (x-a_i)^{e_i} = 0$$

with $(a_i, e_i) \neq (a_j, e_j)$ for all $i \neq j$, and $\alpha_i \neq 0$. If $d := \max(e_1, \dots, e_k) \Longrightarrow k > \sqrt{2(d+1)}$.

Corollary

Let $f \in \mathbb{F}[x]$ be a polynomial of the form $f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$.

Consider a polynomial identity of the form:

$$\sum_{i=1}^k \alpha_i (x-a_i)^{e_i} = 0$$

with
$$(a_i, e_i) \neq (a_j, e_j)$$
 for all $i \neq j$, and $\alpha_i \neq 0$.
If $d := \max(e_1, \dots, e_k) \Longrightarrow k > \sqrt{2(d+1)}$.

Corollary

Let $f \in \mathbb{F}[x]$ be a polynomial of the form $f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$.

If $2n_e \leq \sqrt{2(e+1)}$ for all $e \in \mathbb{N}$, then $AffPow_{\mathbb{F}}(f) = s$ and the optimal representation of f is unique.

Let $f \in \mathbb{F}[x]$ be a nonzero polynomial of degree d, then:

$$\textit{AffPow}_{\mathbb{K}}(f) \leq \left\lceil rac{d+1}{2}
ight
ceil$$

Let $f \in \mathbb{F}[x]$ be a nonzero polynomial of degree d, then:

$$AffPow_{\mathbb{K}}(f) \leq \left\lceil rac{d+1}{2}
ight
ceil$$

Corollary

If
$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i} \in \mathbb{F}[x]$$
, with $s = AffPow_{\mathbb{K}}(f)$. Then,

$$e_i \leq d + \frac{(d+2)^2}{8}$$

Let $f \in \mathbb{F}[x]$ be a nonzero polynomial of degree d, then:

$$\textit{AffPow}_{\mathbb{K}}(f) \leq \left\lceil rac{d+1}{2}
ight
ceil$$

Corollary

If
$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i} \in \mathbb{F}[x]$$
, with $s = AffPow_{\mathbb{K}}(f)$. Then,

$$e_i \leq d + \frac{(d+2)^2}{8}$$

Proposition

If f is a generic polynomial, then $AffPow_{\mathbb{F}}(f) = \left\lceil \frac{d+1}{2} \right\rceil$

Characteristic zero

• Let $f = (x+1)^d - dx^{d-1}$. AffPow_C(f) = 2 but $Waring_C(f) \ge d-1$ and $Sparsest_C(f) \ge (d+1)/2$.

Characteristic zero

- Let $f = (x+1)^d dx^{d-1}$. AffPow_C(f) = 2 but $Waring_C(f) \ge d-1$ and $Sparsest_C(f) \ge (d+1)/2$.
- Orthogonality of Waring rank and sparsest shift:

 $\mathsf{Waring}_{\mathbb{C}}(f).\mathsf{Sparsest}_{\mathbb{C}}(f) \geq d+1$ except if $f = lpha (x-a)^d.$

Characteristic zero

- Let $f = (x+1)^d dx^{d-1}$. AffPow_C(f) = 2 but $Waring_C(f) \ge d-1$ and $Sparsest_C(f) \ge (d+1)/2$.
- Orthogonality of Waring rank and sparsest shift:

$$\mathsf{Waring}_{\mathbb{C}}(f).\mathsf{Sparsest}_{\mathbb{C}}(f) \geq d+1$$

except if $f = lpha (x-a)^d.$

• This is tight for

$$f = \sum_{j=1}^{\sqrt{d}} (x + \xi^j)^d = \sqrt{d} \sum_{\substack{0 \le i \le d \\ i \equiv 0 \pmod{\sqrt{d}}}} \binom{d}{i} x^{d-i}$$

where ξ is a \sqrt{d} -th primitive root of unity: Waring_C(f) $\leq \sqrt{d}$ and Sparsest_C(f) $\leq \lceil (d+1)/\sqrt{d} \rceil$.

The tool: Shifted Differential Equations

Definition (SDE)

A SDE(k) is an order k differential equation

$$\sum_{i=0}^{k} P_i(x) g^{(i)}(x) = 0$$

where $P_i \in \mathbb{F}[x]$ is a polynomial of degree deg $P_i \leq i$.

Definition (SDE)

A SDE(k) is an order k differential equation

$$\sum_{i=0}^{k} P_i(x) g^{(i)}(x) = 0$$

where $P_i \in \mathbb{F}[x]$ is a polynomial of degree deg $P_i \leq i$.

Remark

$$f$$
 satisfies an $ext{SDE}(k)$
 $(x^j f^{(i)}(x) : 0 \le i \le k, 0 \le j \le i)$ is \mathbb{F} -linearly dependent.

An example

Let $f = x^d + x^{d-1}$. The polynomials:

$$\begin{array}{rcl} f &=& x^d &+& x^{d-1} \\ f' &=& d \, x^{d-1} &+& (d-1) \, x^{d-2} \\ x \, f' &=& d \, x^d &+& (d-1) \, x^{d-1} \\ f'' &=& d(d-1) \, x^{d-2} &+& (d-1)(d-2) \, x^{d-3} \\ x \, f'' &=& d(d-1) \, x^{d-1} &+& (d-1)(d-2) \, x^{d-2} \\ x^2 f'' &=& d(d-1) \, x^d &+& (d-1)(d-2) \, x^{d-1} \end{array} \right\}$$

are linearly dependent.

An example

Let $f = x^d + x^{d-1}$. The polynomials:

$$\begin{array}{rcl} f &=& x^d &+& x^{d-1} \\ f' &=& d \, x^{d-1} &+& (d-1) \, x^{d-2} \\ x \, f' &=& d \, x^d &+& (d-1) \, x^{d-1} \\ f'' &=& d(d-1) \, x^{d-2} &+& (d-1)(d-2) \, x^{d-3} \\ x \, f'' &=& d(d-1) \, x^{d-1} &+& (d-1)(d-2) \, x^{d-2} \\ x^2 f'' &=& d(d-1) \, x^d &+& (d-1)(d-2) \, x^{d-1} \end{array} \right\}$$

are linearly dependent. Indeed,

$$x^{2}f'' - 2(d-1)xf' + d(d-1)f = 0,$$

An example

Let $f = x^d + x^{d-1}$. The polynomials:

$$\begin{array}{rcl} f &=& x^d &+& x^{d-1} \\ f' &=& d \, x^{d-1} &+& (d-1) \, x^{d-2} \\ x \, f' &=& d \, x^d &+& (d-1) \, x^{d-1} \\ f'' &=& d(d-1) \, x^{d-2} &+& (d-1)(d-2) \, x^{d-3} \\ x \, f'' &=& d(d-1) \, x^{d-1} &+& (d-1)(d-2) \, x^{d-2} \\ x^2 f'' &=& d(d-1) \, x^d &+& (d-1)(d-2) \, x^{d-1} \end{array} \right\}$$

are linearly dependent. Indeed,

$$x^{2}f'' - 2(d-1)xf' + d(d-1)f = 0,$$

so f satisfies the following SDE(2):

$$x^{2}g'' - 2(d-1)xg' + d(d-1)g = 0.$$

Proposition

If $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$, then f satisfies an SDE(2s - 1), which is also satisfied by the $(x - a_i)^{e_i}$'s.

Proposition

If $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$, then f satisfies an SDE(2s - 1), which is also satisfied by the $(x - a_i)^{e_i}$'s.

Proof idea: Define $C_k(f) = \dim \{x^j f^{(i)}(x) : 0 \le j \le i \le k, \}$.

Proposition

If $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$, then f satisfies an SDE(2s - 1), which is also satisfied by the $(x - a_i)^{e_i}$'s.

Proof idea:

Define $C_k(f) = \dim \{x^j f^{(i)}(x) : 0 \le j \le i \le k, \}.$

For
$$f = (x - a)^e$$
, we have

$$\begin{cases} x^j f^{(i)}(x) : 0 \le j \le i \le k \end{cases} = \begin{cases} (x - a)^j f^{(i)}(x) : 0 \le j \le i \le k \end{cases}$$

$$\subseteq \left\{ (x - a)^d : e - k \le d \le e \right\}$$

Proposition

If $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$, then f satisfies an SDE(2s - 1), which is also satisfied by the $(x - a_i)^{e_i}$'s.

Proof idea:

Define
$$C_k(f) = \dim \left\{ x^j f^{(i)}(x) : 0 \le j \le i \le k, \right\}.$$

For
$$f = (x - a)^e$$
, we have
 $\left\{ x^j f^{(i)}(x) : 0 \le j \le i \le k \right\} = \left\{ (x - a)^j f^{(i)}(x) : 0 \le j \le i \le k \right\}$
 $\subseteq \left\{ (x - a)^d : e - k \le d \le e \right\}$

Therefore, $C_k((x-a)^e) \leq k+1$.

Proposition

If $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$, then f satisfies an SDE(2s - 1), which is also satisfied by the $(x - a_i)^{e_i}$'s.

Proof idea:

Define
$$C_k(f) = \dim \left\{ x^j f^{(i)}(x) : 0 \le j \le i \le k, \right\}.$$

For
$$f = (x - a)^e$$
, we have
 $\left\{ x^j f^{(i)}(x) : 0 \le j \le i \le k \right\} = \left\{ (x - a)^j f^{(i)}(x) : 0 \le j \le i \le k \right\}$
 $\subseteq \left\{ (x - a)^d : e - k \le d \le e \right\}$

Therefore, $C_k((x-a)^e) \le k+1$. It is enough to have

$$s(k+1) < \frac{(k+1)(k+2)}{2}$$

Algorithms

The strategy

Input:
$$f = \sum_{i=0}^{d} f_i x^i$$
.

Decomposition wanted: $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$.

Input: $f = \sum_{i=0}^{d} f_i x^i$.

Decomposition wanted: $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$.

1 Find a "small" SDE satisfied by f. Hope that the powers $(x - a_i)^{e_i}$ satisfy the same equation. **Input:** $f = \sum_{i=0}^{d} f_i x^i$.

Decomposition wanted: $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$.

- **1** Find a "small" SDE satisfied by f. Hope that the powers $(x - a_i)^{e_i}$ satisfy the same equation.
- **2** Find the solutions of the SDE of the form $(x a)^e$.

Input: $f = \sum_{i=0}^{d} f_i x^i$.

Decomposition wanted: $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$.

- **1** Find a "small" SDE satisfied by f. Hope that the powers $(x - a_i)^{e_i}$ satisfy the same equation.
- **2** Find the solutions of the SDE of the form $(x a)^e$.
- Write f as a linear combination of these solutions (and hope it is the good one)

Find a "small" SDE satisfied by f. Hope that the powers (x - a_i)^{e_i} satisfy the same equation.

1 Find a "small" SDE satisfied by f. Hope that the powers $(x - a_i)^{e_i}$ satisfy the same equation.

Proposition

If $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$, then f satisfies an SDE(2s - 1), which is also satisfied by the $(x - a_i)^{e_i}$'s.

1 Find a "small" SDE satisfied by f. Hope that the powers $(x - a_i)^{e_i}$ satisfy the same equation.

Proposition

If $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$, then f satisfies an SDE(2s - 1), which is also satisfied by the $(x - a_i)^{e_i}$'s.

So, there is a SDE fulfilling our wishes.

Find a "small" SDE satisfied by f. Hope that the powers (x - a_i)^{e_i} satisfy the same equation.

Proposition

If $f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$, then f satisfies an SDE(2s - 1), which is also satisfied by the $(x - a_i)^{e_i}$'s.

So, there is a SDE fulfilling our wishes. Issue:

What if we do not find the 'good' SDE?

$$\sum_{i=0}^{k} P_i(x) g^{(i)}(x) \equiv 0$$
 (1)

$$\sum_{i=0}^{k} P_i(x) g^{(i)}(x) \equiv 0$$
 (1)

For a given $e \in \mathbb{N}$, plug $g = (x - a)^e$ in (1) to obtain:

$$\sum_{i=0}^{k} P_i(x) g^{(i)}(x) \equiv 0$$
 (1)

For a given $e \in \mathbb{N}$, plug $g = (x - a)^e$ in (1) to obtain:

Some issues:

• How large should *e* be ?

$$\sum_{i=0}^{k} P_i(x) g^{(i)}(x) \equiv 0$$
 (1)

For a given $e \in \mathbb{N}$, plug $g = (x - a)^e$ in (1) to obtain:

Some issues:

• How large should e be ? \Rightarrow solved by the unexpected corollary

$$\sum_{i=0}^{k} P_i(x) g^{(i)}(x) \equiv 0$$
 (1)

For a given $e \in \mathbb{N}$, plug $g = (x - a)^e$ in (1) to obtain:

Some issues:

- How large should e be ? \Rightarrow solved by the unexpected corollary
- We may obtain some "false positives".

Write f as a linear combination of these solutions (and hope it is the good one)

3 Write *f* as a linear combination of these solutions (and hope it is the good one)

We just have to solve a linear system.

3 Write *f* as a linear combination of these solutions (and hope it is the good one)

We just have to solve a linear system. If step 1 is good, we know that there is at least one solution.

Write f as a linear combination of these solutions (and hope it is the good one)

We just have to solve a linear system. If step 1 is good, we know that there is at least one solution.

Some issues:

• What if there are several solutions?

3 Write *f* as a linear combination of these solutions (and hope it is the good one)

We just have to solve a linear system. If step 1 is good, we know that there is at least one solution.

Some issues:

- What if there are several solutions?
- How do we find the "shortest one"?

Distinct nodes

Large exponents

Lemma

Let $f \in \mathbb{F}[x]$ be written as

$$f=\sum_{i=1}^{s}\alpha_{i}(x-a_{i})^{e_{i}},$$

where the $a_i \in \mathbb{F}$ are all distinct. Whenever f satisfies a SDE(k), if

 e_i is big

then $(x - a_i)^{e_i}$ satisfies the same SDE.

Lemma

Let $f \in \mathbb{F}[x]$ be written as

$$f=\sum_{i=1}^{s}\alpha_{i}(x-a_{i})^{e_{i}},$$

where the $a_i \in \mathbb{F}$ are all distinct. Whenever f satisfies a SDE(k), if

$$e_i \ge ks + \binom{s}{2}$$

then $(x - a_i)^{e_i}$ satisfies the same SDE.

$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$$
 with distinct a_i , $e_i > \frac{5s^2}{2}$

$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i} \quad \text{with distinct } a_i, \quad e_i > \frac{5s^2}{2}$$

$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i} \quad \text{with distinct } a_i, \quad e_i > \frac{5s^2}{2}$$

a) $\{(x - a_i)^{e_i} | 1 \le i \le s\}$ is linearly independent,

b) AffPow_{\mathbb{F}}(f) = s and the decomposition is unique,

$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i} \quad \text{with distinct } a_i, \quad e_i > \frac{5s^2}{2}$$

- b) AffPow_{\mathbb{F}}(f) = s and the decomposition is unique,
- c) f does not satisfy any SDE(r) with r < s,

$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i} \quad \text{with distinct } a_i, \quad e_i > \frac{5s^2}{2}$$

- b) AffPow_{\mathbb{F}}(f) = s and the decomposition is unique,
- c) f does not satisfy any SDE(r) with r < s,
- d) If f satisfies a SDE(k) with $k \leq 2s 1$, then so does $(x a_i)^{e_i}$,

$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i} \quad \text{with distinct } a_i, \quad e_i > \frac{5s^2}{2}$$

- b) AffPow_{\mathbb{F}}(f) = s and the decomposition is unique,
- c) f does not satisfy any SDE(r) with r < s,
- d) If f satisfies a SDE(k) with $k \leq 2s 1$, then so does $(x a_i)^{e_i}$,
- e) We have $e_i \le \deg(f) + (s^2/2)$.

Step 1. Take r the minimum value such that f satisfies a SDE(r) and compute explicitly one of these SDE.

- **Step 1.** Take r the minimum value such that f satisfies a SDE(r) and compute explicitly one of these SDE.
- Step 2. Compute $B = \{(x b_i)^{d_i} | 1 \le i \le r\}$, the set of all solutions of the SDE of the form $(x - b)^e$ with $(r + 1)^2/2 \le e \le \deg(f) + (r^2/2)$.

- **Step 1.** Take r the minimum value such that f satisfies a SDE(r) and compute explicitly one of these SDE.
- Step 2. Compute $B = \{(x b_i)^{d_i} | 1 \le i \le r\}$, the set of all solutions of the SDE of the form $(x - b)^e$ with $(r + 1)^2/2 \le e \le \deg(f) + (r^2/2)$.
- **Step 3.** Determine $\alpha_1, \ldots, \alpha_r$ such that $f = \sum_{i=1}^r \alpha_i (x b_i)^{d_i}$ and outputs the expression.

- **Step 1.** Take r the minimum value such that f satisfies a SDE(r) and compute explicitly one of these SDE.
- Step 2. Compute $B = \{(x b_i)^{d_i} | 1 \le i \le r\}$, the set of all solutions of the SDE of the form $(x - b)^e$ with $(r + 1)^2/2 \le e \le \deg(f) + (r^2/2)$.
- **Step 3.** Determine $\alpha_1, \ldots, \alpha_r$ such that $f = \sum_{i=1}^r \alpha_i (x b_i)^{d_i}$ and outputs the expression.

Lemma

We have $|B| \leq r$ and B is \mathbb{F} -linearly independent.

Distinct nodes

Large and small exponents

Theorem

Let
$$f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$$
 with

- $a_i \in \mathbb{F}$ all distinct
- $n_k \leq (3k/4)^{1/3} 1$

Then AffPow(f) = s and there is an polynomial time algorithm for the reconstruction problem.

Theorem

Let
$$f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$$
 with

- $a_i \in \mathbb{F}$ all distinct
- $n_k \leq (3k/4)^{1/3} 1$

Then AffPow(f) = s and there is an polynomial time algorithm for the reconstruction problem.

Theorem

Let
$$f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$$
 with

- $a_i \in \mathbb{F}$ all distinct
- $n_k \leq (3k/4)^{1/3} 1$

Then AffPow(f) = s and there is an polynomial time algorithm for the reconstruction problem.

Idea: if there is a **gap** in the exponents sequence, taking the "right" derivative of f make large exponents "appear".

• Find a SDE(t) satisfied by f.

Theorem

Let
$$f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$$
 with

- $a_i \in \mathbb{F}$ all distinct
- $n_k \leq (3k/4)^{1/3} 1$

Then AffPow(f) = s and there is an polynomial time algorithm for the reconstruction problem.

- Find a SDE(t) satisfied by f.
- Compute the set of large exponents solutions

Theorem

Let
$$f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$$
 with

- $a_i \in \mathbb{F}$ all distinct
- $n_k \leq (3k/4)^{1/3} 1$

Then AffPow(f) = s and there is an polynomial time algorithm for the reconstruction problem.

- Find a SDE(t) satisfied by f.
- Compute the set of large exponents solutions
- Reconstruct coefficients of large exponents using the right derivative.

Theorem

Let
$$f(x) = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$$
 with

- $a_i \in \mathbb{F}$ all distinct
- $n_k \leq (3k/4)^{1/3} 1$

Then AffPow(f) = s and there is an polynomial time algorithm for the reconstruction problem.

- Find a SDE(t) satisfied by f.
- Compute the set of large exponents solutions
- Reconstruct coefficients of large exponents using the right derivative.
- Substract them and go on until 0 is found.

Step 1. We take t the minimum value such that f satisfies a SDE(t) and compute explicitly one of these SDE.

- **Step 1.** We take t the minimum value such that f satisfies a SDE(t) and compute explicitly one of these SDE.
- **Step 2.** Consider $B := \{(x b_i)^{d_i} | 1 \le i \le l\}$, the set of all the solutions of the SDE of the form $(x b)^e$, assume that $d_1 \ge d_2 \ge \cdots \ge d_l$.

- **Step 1.** We take t the minimum value such that f satisfies a SDE(t) and compute explicitly one of these SDE.
- **Step 2.** Consider $B := \{(x b_i)^{d_i} | 1 \le i \le l\}$, the set of all the solutions of the SDE of the form $(x b)^e$, assume that $d_1 \ge d_2 \ge \cdots \ge d_l$.
- Step 3. We take $r \in \{1, \ldots, l\}$ such that $d_r d_{r+1} > r^2/2$ and $d_{r+1} < \deg(f)$.

- **Step 1.** We take t the minimum value such that f satisfies a SDE(t) and compute explicitly one of these SDE.
- **Step 2.** Consider $B := \{(x b_i)^{d_i} | 1 \le i \le l\}$, the set of all the solutions of the SDE of the form $(x b)^e$, assume that $d_1 \ge d_2 \ge \cdots \ge d_l$.
- Step 3. We take $r \in \{1, \ldots, l\}$ such that $d_r d_{r+1} > r^2/2$ and $d_{r+1} < \deg(f)$.
- Step 4. We set $j := d_{r+1} + 1$ and write $f^{(j)}$ as $f^{(j)} = \sum_{i=1}^{r} \beta_i \cdot \frac{d_i!}{(d_i-j)!} (x-b_i)^{d_i-j} \text{ with } \beta_1, \dots, \beta_r \in \mathbb{F}.$

- **Step 1.** We take t the minimum value such that f satisfies a SDE(t) and compute explicitly one of these SDE.
- **Step 2.** Consider $B := \{(x b_i)^{d_i} | 1 \le i \le l\}$, the set of all the solutions of the SDE of the form $(x b)^e$, assume that $d_1 \ge d_2 \ge \cdots \ge d_l$.
- Step 3. We take $r \in \{1, \ldots, l\}$ such that $d_r d_{r+1} > r^2/2$ and $d_{r+1} < \deg(f)$.
- **Step 4.** We set $j := d_{r+1} + 1$ and write $f^{(j)}$ as $f^{(j)} = \sum_{i=1}^r \beta_i \cdot \frac{d_i!}{(d_i-j)!} (x-b_i)^{d_i-j}$ with $\beta_1, \ldots, \beta_r \in \mathbb{F}$.

Step 5. We set $\tilde{f} := \sum_{i=1}^{r} \beta_i (x - b_i)^{d_i}$ and $h := f - \tilde{f}$.

Towards repeated nodes.

Let $\delta \in \mathbb{N}$. We aim now at reconstructing expressions of the form

$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$$

such that whenever $a_i = a_j$, then $|e_i - e_j| \le \delta$.

Let $\delta \in \mathbb{N}$. We aim now at reconstructing expressions of the form

$$f = \sum_{i=1}^{s} \alpha_i (x - a_i)^{e_i}$$

such that whenever $a_i = a_j$, then $|e_i - e_j| \le \delta$.

We rewrite f as

$$f=\sum_{i=1}^t Q_i(x)(x-a_i)^{e_i},$$

where

- Q_i is a polynomial of degree $\leq \delta$, and
- $a_i \neq a_j$ when $i \neq j$.

Lemma

Let $\delta \in \mathbb{N}$ and let $f \in \mathbb{F}[x]$ be written as

$$f=\sum_{i=1}^t Q_i(x) (x-a_i)^{e_i},$$

with distinct $a_i \in \mathbb{F}$ and $\deg(Q_i) \leq \delta$.

Lemma

Let $\delta \in \mathbb{N}$ and let $f \in \mathbb{F}[x]$ be written as

$$f = \sum_{i=1}^{t} Q_i(x) \left(x - a_i\right)^{e_i},$$

with distinct $a_i \in \mathbb{F}$ and $\deg(Q_i) \leq \delta$.

If f satisfies a SDE(k) and

$$e_i \geq t(k+\delta) + {t \choose 2},$$

then $Q_i(x) (x - a_i)^{e_i}$ satisfies the same SDE.

Let

$$f = \sum_{i=1}^{t} Q_i(x) \left(x - a_i\right)^{e_i},$$

with $\deg(Q_i) \leq \delta$ and $e_i \geq \frac{t^2(t+1)}{2} + 2t^2(\delta+1)^2$.

Let

$$f = \sum_{i=1}^{t} Q_i(x) \left(x - a_i\right)^{e_i},$$

with $\deg(Q_i) \leq \delta$ and $e_i \geq \frac{t^2(t+1)}{2} + 2t^2(\delta+1)^2$.

Then, one can compute the **optimal** expression of f as follows:

Step 1. Take *r* the minimum value such that f satisfies a SDE(r)

The algorithm

Let

$$f = \sum_{i=1}^{t} Q_i(x) \left(x - a_i\right)^{e_i},$$

with deg $(Q_i) \leq \delta$ and $e_i \geq \frac{t^2(t+1)}{2} + 2t^2(\delta+1)^2$.

Then, one can compute the **optimal** expression of f as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r)

Step 2. Compute the set $B = \{g_1, \dots, g_p\}$ of solutions of the SDE of the form

$$g(x) = R(x)(x-c)^{e_{1}}$$
 with $e < d + rac{d^{2}}{8}$, where $\deg(R) \leq \delta$.

The algorithm

Let

$$f = \sum_{i=1}^t Q_i(x) \left(x - a_i\right)^{e_i},$$

with $\deg(Q_i) \leq \delta$ and $e_i \geq \frac{t^2(t+1)}{2} + 2t^2(\delta+1)^2$.

Then, one can compute the **optimal** expression of f as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r)

Step 2. Compute the set $B = \{g_1, \dots, g_p\}$ of solutions of the SDE of the form

$$g(x) = R(x)(x-c)^e,$$
 with $e < d + rac{d^2}{8}$, where $\deg(R) \le \delta.$

Step 3. Write $f = \sum_{i=1}^{p} \lambda_i g_i$ with $\lambda_i \in \mathbb{F}$ and output the expression.

Multivariate reconstruction

Multivariate model

Model (Multivariate AffPow)

$$\sum_{i=1}^{k} \alpha_{i} \ell_{i}^{e_{i}} \quad \text{with } \alpha_{i} \in \mathbb{F}, \mathsf{deg}(\ell_{i}) = 1$$

Multivariate model

$$\sum_{i=1}^{\kappa} \alpha_i \ell_i^{e_i} \quad \text{with } \alpha_i \in \mathbb{F}, \mathsf{deg}(\ell_i) = 1$$

We will design algorithms in the "black box" setting:

$$\sum_{i=1}^{n} lpha_i \ell_i^{m{e}_i}$$
 with $lpha_i \in \mathbb{F}, \mathsf{deg}(\ell_i) = 1$

• Change of basis

$$\sum_{i=1}^{n} lpha_i \ell_i^{m{e}_i}$$
 with $lpha_i \in \mathbb{F}, \mathsf{deg}(\ell_i) = 1$

- Change of basis
- Solving linear systems

$$\sum_{i=1}^{n} lpha_i \ell_i^{m{e}_i}$$
 with $lpha_i \in \mathbb{F}, \mathsf{deg}(\ell_i) = 1$

- Change of basis
- Solving linear systems
- Factorization

$$\sum_{i=1}^{n} lpha_i \ell_i^{m{e}_i}$$
 with $lpha_i \in \mathbb{F}, \mathsf{deg}(\ell_i) = 1$

- Change of basis
- Solving linear systems
- Factorization
- PIT

Model (Multivariate AffPow)

$$\sum_{i=1}^{n} lpha_i \ell_i^{e_i}$$
 with $lpha_i \in \mathbb{F}, \mathsf{deg}(\ell_i) = 1$

- Change of basis
- Solving linear systems
- Factorization
- PIT
- Derivatives

$$\sum_{i=1}^{n} lpha_i \ell_i^{m{e}_i}$$
 with $lpha_i \in \mathbb{F}, \mathsf{deg}(\ell_i) = 1$

- Change of basis
- Solving linear systems
- Factorization
- PIT
- Derivatives
- Homogeneous components

$$f(x_1, x_2, x_3) = x_1^3 + x_1^2 x_2 - 2x_1^2 x_3 - 2x_1 x_2 x_3 + x_1 x_3^2 + x_2 x_3^2$$

$$f(x_1, x_2, x_3) = x_1^3 + x_1^2 x_2 - 2x_1^2 x_3 - 2x_1 x_2 x_3 + x_1 x_3^2 + x_2 x_3^2$$

= $(x_2 + x_3)(x_1 - x_3)^2 + (x_1 - x_3)^3$

$$f(x_1, x_2, x_3) = x_1^3 + x_1^2 x_2 - 2x_1^2 x_3 - 2x_1 x_2 x_3 + x_1 x_3^2 + x_2 x_3^2$$

= $(x_2 + x_3)(x_1 - x_3)^2 + (x_1 - x_3)^3$
 $g(y_1, y_2) = f(z_1, y_1 + y_2 - z_1, z_1 - y_2) = y_1 y_2^2 + y_2^3$

$$f(x_1, x_2, x_3) = x_1^3 + x_1^2 x_2 - 2x_1^2 x_3 - 2x_1 x_2 x_3 + x_1 x_3^2 + x_2 x_3^2$$

= $(x_2 + x_3)(x_1 - x_3)^2 + (x_1 - x_3)^3$
 $g(y_1, y_2) = f(z_1, y_1 + y_2 - z_1, z_1 - y_2) = y_1 y_2^2 + y_2^3$

Proposition (Carlini)

For a polynomial $f \in \mathbb{F}[X]$, we have

$$\textit{EssVar}(f) = \dim_{\mathbb{F}} \left\langle \frac{\partial f}{\partial x_i} \, | \, 1 \leq i \leq n \right\rangle$$

$$f(x_1, x_2, x_3) = x_1^3 + x_1^2 x_2 - 2x_1^2 x_3 - 2x_1 x_2 x_3 + x_1 x_3^2 + x_2 x_3^2$$

= $(x_2 + x_3)(x_1 - x_3)^2 + (x_1 - x_3)^3$
 $g(y_1, y_2) = f(z_1, y_1 + y_2 - z_1, z_1 - y_2) = y_1 y_2^2 + y_2^3$

Proposition (Carlini)

For a polynomial $f \in \mathbb{F}[X]$, we have

$$\textit{EssVar}(f) = \dim_{\mathbb{F}} \left\langle \frac{\partial f}{\partial x_i} \, | \, 1 \leq i \leq n \right\rangle$$

Eliminating redundant variables can be done with a randomized polynomial time algorithm [Kayal] \Rightarrow we will assume that f is regular.

$$f(x_1, x_2, x_3) = x_1^3 + x_1^2 x_2 - 2x_1^2 x_3 - 2x_1 x_2 x_3 + x_1 x_3^2 + x_2 x_3^2$$

= $(x_2 + x_3)(x_1 - x_3)^2 + (x_1 - x_3)^3$
 $g(y_1, y_2) = f(z_1, y_1 + y_2 - z_1, z_1 - y_2) = y_1 y_2^2 + y_2^3$

Proposition (Carlini)

For a polynomial $f \in \mathbb{F}[X]$, we have

$$\textit{EssVar}(f) = \dim_{\mathbb{F}} \left\langle \frac{\partial f}{\partial x_i} \, | \, 1 \leq i \leq n \right\rangle$$

Eliminating redundant variables can be done with a randomized polynomial time algorithm [Kayal] \Rightarrow we will assume that f is regular.

 $\mathsf{EssVar}(f) \leq \mathsf{AffPow}(f)$

Take f such that EssVar(f) = AffPow(f), i.e. $f = \sum_{i=1}^{n} \ell_i^{e_i}$.

Take f such that EssVar(f) = AffPow(f), i.e. $f = \sum_{i=1}^{n} \ell_i^{e_i}$. Set

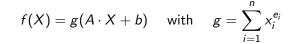
$$A = \begin{pmatrix} [\ell_1] \\ \vdots \\ [\ell_n] \end{pmatrix}, \qquad b = \begin{pmatrix} \ell_1(0) \\ \vdots \\ \ell_n(0) \end{pmatrix}$$

so that

Take f such that EssVar(f) = AffPow(f), i.e. $f = \sum_{i=1}^{n} \ell_i^{e_i}$. Set

$$A = \begin{pmatrix} [\ell_1] \\ \vdots \\ [\ell_n] \end{pmatrix}, \qquad b = \begin{pmatrix} \ell_1(0) \\ \vdots \\ \ell_n(0) \end{pmatrix}$$

so that



Take f such that EssVar(f) = AffPow(f), i.e. $f = \sum_{i=1}^{n} \ell_i^{e_i}$. Set

$$A = \begin{pmatrix} [\ell_1] \\ \vdots \\ [\ell_n] \end{pmatrix}, \qquad b = \begin{pmatrix} \ell_1(0) \\ \vdots \\ \ell_n(0) \end{pmatrix}$$

so that

$$f(X) = g(A \cdot X + b)$$
 with $g = \sum_{i=1}^{n} x_i^{e_i}$

n

Definition (Polynomial equivalence)

$$f \sim g$$
 if $f(X) = g(A \cdot X)$ with $A \in GL_n(\mathbb{F})$

 $f \equiv g \text{ if } f(X) = g(A \cdot X + c) \text{ with } A \in \operatorname{GL}_n(\mathbb{F}), c \in \mathbb{F}^n$

Take f such that EssVar(f) = AffPow(f), i.e. $f = \sum_{i=1}^{n} \ell_i^{e_i}$. Set

$$A = \begin{pmatrix} [\ell_1] \\ \vdots \\ [\ell_n] \end{pmatrix}, \qquad b = \begin{pmatrix} \ell_1(0) \\ \vdots \\ \ell_n(0) \end{pmatrix}$$

so that

$$f(X) = g(A \cdot X + b)$$
 with $g = \sum_{i=1}^{n} x_i^{e_i}$

n

Definition (Polynomial equivalence)

$$f \sim g$$
 if $f(X) = g(A \cdot X)$ with $A \in GL_n(\mathbb{F})$

 $f \equiv g \text{ if } f(X) = g(A \cdot X + c) \text{ with } A \in \operatorname{GL}_n(\mathbb{F}), c \in \mathbb{F}^n$

$$\mathsf{AffPow}(f) = \mathsf{EssVar}(f) \Leftrightarrow f \equiv g \text{ with } g = \sum_{i=1}^n x_i^{\mathsf{e}_i} \text{ for some } (e_i) \in \mathbb{N}^n$$

The Hessian matrix

$$H_f(X) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}$$

The Hessian matrix

$$H_f(X) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}$$

Lemma (Kayal)

Let $g \in \mathbb{F}[X]$ be an n-variate polynomial. Let $A \in \mathcal{M}_n(\mathbb{F})$ be a linear transformation, and let $b \in \mathbb{F}^n$. Let $f(X) = g(A \cdot X + b)$. Then,

$$H_f(X) = A^T \cdot H_g(A \cdot X + b) \cdot A.$$

The Hessian matrix

$$H_f(X) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}$$

Lemma (Kayal)

Let $g \in \mathbb{F}[X]$ be an n-variate polynomial. Let $A \in \mathcal{M}_n(\mathbb{F})$ be a linear transformation, and let $b \in \mathbb{F}^n$. Let $f(X) = g(A \cdot X + b)$. Then,

$$H_f(X) = A^T \cdot H_g(A \cdot X + b) \cdot A.$$

In particular,

$$\det(H_f(X)) = \det(A)^2 \det(H_g(A \cdot X + b)).$$

Algorithm overview

When $g = \sum_{i=1}^{n} x_i^{e_i}$, we have

$$\frac{\partial^2 g}{\partial x_i \cdot \partial x_j} = \begin{cases} 0 & \text{if } i \neq j, \\ e_i(e_i - 1)x_i^{e_i - 2} & \text{if } i = j \end{cases}$$

Algorithm overview

When $g = \sum_{i=1}^{n} x_i^{e_i}$, we have

$$\frac{\partial^2 g}{\partial x_i \cdot \partial x_j} = \begin{cases} 0 & \text{if } i \neq j, \\ e_i(e_i - 1)x_i^{e_i - 2} & \text{if } i = j \end{cases}$$

$$\det(H_g(X)) = \prod_{i=1} e_i(e_i-1)x_i^{e_i-2}.$$

Algorithm overview

When $g = \sum_{i=1}^{n} x_i^{e_i}$, we have

$$\frac{\partial^2 g}{\partial x_i \cdot \partial x_j} = \begin{cases} 0 & \text{if } i \neq j, \\ e_i(e_i - 1)x_i^{e_i - 2} & \text{if } i = j \end{cases}$$

$$\det(H_g(X)) = \prod_{i=1} e_i(e_i-1)x_i^{e_i-2}.$$

Lemma

Let f be a regular polynomial such that $f(X) = \sum_{i=1}^{n} \ell_i(X)^{e_i}$ where $\ell_1(X), \ldots, \ell_n(X)$ are affine forms and $e_i \ge 2$. Then we have

$$\det(H_f(X)) = c \cdot \prod_{i=1}^n \ell_i(X)^{e_i-2}$$

where $c \in \mathbb{F}$ is a nonzero constant.

Proposition (Folklore)

Let \mathbb{F} be an algebraically closed field of characteristic different from 2 and let $f, g \in \mathbb{F}[X]$ be homogeneous quadratic polynomials. Then,

 $f \sim g \iff \textit{EssVar}(f) = \textit{EssVar}(g).$

Proposition (Folklore)

Let \mathbb{F} be an algebraically closed field of characteristic different from 2 and let $f, g \in \mathbb{F}[X]$ be homogeneous quadratic polynomials. Then,

$$f \sim g \iff \textit{EssVar}(f) = \textit{EssVar}(g).$$

Theorem

Let \mathbb{F} be an algebraically closed field of characteristic different from 2 and let $f \in \mathbb{F}[X]$ be a polynomial of degree at most 2. Then, there exists a unique $r \in [0, n]$ such that

i)
$$f \equiv \sum_{i=1}^{r} x_i^2$$
,
ii) $f \equiv \sum_{i=1}^{r} x_i^2 + c$ with $c \in \mathbb{F} \setminus \{0\}$, or
iii) $f \equiv \sum_{i=1}^{r-1} x_i^2 + x_r$.

Moreover, only one of these three scenarios can hold and r = EssVar(f).

If
$$g = \sum_{i=1}^{n-1} x_i^{e_i} + x_n = h + x_n$$
 and $f = g(A \cdot X + b)$, then

If
$$g = \sum_{i=1}^{n-1} x_i^{e_i} + x_n = h + x_n$$
 and $f = g(A \cdot X + b)$, then

$$H_f(X) = (B^T \ \ell^T) \cdot \begin{pmatrix} H_h(A \cdot X + b) & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} B \\ \ell \end{pmatrix} \quad \text{with } A = \begin{pmatrix} B \\ \ell \end{pmatrix}$$

If
$$g = \sum_{i=1}^{n-1} x_i^{e_i} + x_n = h + x_n$$
 and $f = g(A \cdot X + b)$, then

$$H_f(X) = (B^T \ \ell^T) \cdot \begin{pmatrix} H_h(A \cdot X + b) & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} B \\ \ell \end{pmatrix} \quad \text{with } A = \begin{pmatrix} B \\ \ell \end{pmatrix}$$

$$[H_f(X)]_{k,k} = ([B]_k)^T \cdot H_h(A \cdot X + b) \cdot [B]_k$$

If
$$g = \sum_{i=1}^{n-1} x_i^{e_i} + x_n = h + x_n$$
 and $f = g(A \cdot X + b)$, then

$$H_f(X) = (B^T \ \ell^T) \cdot \begin{pmatrix} H_h(A \cdot X + b) & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} B \\ \ell \end{pmatrix} \quad \text{with } A = \begin{pmatrix} B \\ \ell \end{pmatrix}$$

$$[H_f(X)]_{k,k} = ([B]_k)^T \cdot H_h(A \cdot X + b) \cdot [B]_k$$

Lemma

Let f be a regular polynomial such that $f(X) = \sum_{i=1}^{n-1} \ell_i(X)^{e_i} + \ell_n(X)$ where ℓ_1, \ldots, ℓ_n are affine forms. Then there exists an integer $k \in \llbracket 1, n \rrbracket$ and a nonzero constant c such that

$$\det([H_f(X)]_{k,k}) = c \cdot \prod_{i=1}^{n-1} \ell_i(X)^{e_i-2}$$

Wrapping up

Theorem

There exists a polynomial-time randomized algorithm that receives as input a blackbox access to a regular polynomial $f \in \mathbb{F}[X]$ and finds an optimal decomposition of f in the Affine Powers model if AffPow(f) = n, or rejects otherwise.

Theorem

There exists a polynomial-time randomized algorithm that receives as input a blackbox access to a regular polynomial $f \in \mathbb{F}[X]$ and finds an optimal decomposition of f in the Affine Powers model if AffPow(f) = n, or rejects otherwise.

• Compute blackbox access to $D(X) = \det(H_g(X))$.

- Compute blackbox access to $D(X) = \det(H_g(X))$.
- If $D \neq 0$: write $D = c \cdot \prod_{i=1}^{t} \ell_i^{m_i}$ with $t \leq n$.

- Compute blackbox access to $D(X) = \det(H_g(X))$.
- If $D \neq 0$: write $D = c \cdot \prod_{i=1}^{t} \ell_i^{m_i}$ with $t \leq n$.
- Build the matrices A and b corresponding to the ℓ_i 's, and find a solution X_0 of $A \cdot X = -b$.

- Compute blackbox access to $D(X) = \det(H_g(X))$.
- If $D \neq 0$: write $D = c \cdot \prod_{i=1}^{t} \ell_i^{m_i}$ with $t \leq n$.
- Build the matrices A and b corresponding to the ℓ_i's, and find a solution X₀ of A · X = −b.
- Set $h(X) = g(X + X_0)$, and write $h = \sum_{i=1}^{t} \alpha_i [\ell_i]^{m_i+2} + [h]_{\leq 2}$.

- Compute blackbox access to $D(X) = \det(H_g(X))$.
- If $D \neq 0$: write $D = c \cdot \prod_{i=1}^{t} \ell_i^{m_i}$ with $t \leq n$.
- Build the matrices A and b corresponding to the ℓ_i 's, and find a solution X_0 of $A \cdot X = -b$.
- Set $h(X) = g(X + X_0)$, and write $h = \sum_{i=1}^{t} \alpha_i [\ell_i]^{m_i+2} + [h]_{\leq 2}$.
- Express $[h]_{\leq 2} = \sum_{i=1}^{r} \beta_i t_i^{e_i}$ with t + r = n, and output the optimal expression.

- Compute blackbox access to $D(X) = \det(H_g(X))$.
- If $D \neq 0$: write $D = c \cdot \prod_{i=1}^{t} \ell_i^{m_i}$ with $t \leq n$.
- Build the matrices A and b corresponding to the ℓ_i 's, and find a solution X_0 of $A \cdot X = -b$.
- Set $h(X) = g(X + X_0)$, and write $h = \sum_{i=1}^{t} \alpha_i [\ell_i]^{m_i+2} + [h]_{\leq 2}$.
- Express $[h]_{\leq 2} = \sum_{i=1}^{r} \beta_i t_i^{e_i}$ with t + r = n, and output the optimal expression.
- If D = 0, repeat previous procedure with det $([H_f(X)]_{k,k})$ for all k.

For $s \in \mathbb{N}^*$, denote by $E_n := \{ \underline{e} = (e_1, \ldots, e_n) \in (\mathbb{N}^*)^n \mid e_1 \geq \cdots \geq e_n \}.$

For $s \in \mathbb{N}^*$, denote by $E_n := \{\underline{e} = (e_1, \ldots, e_n) \in (\mathbb{N}^*)^n \mid e_1 \ge \cdots \ge e_n\}$. For each sequence $\underline{e} \in E_n$, we consider the associated polynomial $p_{\underline{e}} := \sum_{i=1}^n x_i^{e_i}$.

For $s \in \mathbb{N}^*$, denote by $E_n := \{\underline{e} = (e_1, \dots, e_n) \in (\mathbb{N}^*)^n \mid e_1 \geq \dots \geq e_n\}$. For each sequence $\underline{e} \in E_n$, we consider the associated polynomial $p_{\underline{e}} := \sum_{i=1}^n x_i^{e_i}$.

Proposition

Let $f \in \mathbb{F}[X]$ be a regular polynomial. If $AffPow_{\mathbb{F}}(f) = n$, then there exists a unique $\underline{e} = (e_1, \ldots, e_n) \in E_n$ with $e_{n-1} > 1$ such that $f \equiv p_{\underline{e}}$.

For $s \in \mathbb{N}^*$, denote by $E_n := \{\underline{e} = (e_1, \dots, e_n) \in (\mathbb{N}^*)^n \mid e_1 \ge \dots \ge e_n\}$. For each sequence $\underline{e} \in E_n$, we consider the associated polynomial $p_{\underline{e}} := \sum_{i=1}^n x_i^{e_i}$.

Proposition

Let $f \in \mathbb{F}[X]$ be a regular polynomial. If $AffPow_{\mathbb{F}}(f) = n$, then there exists a unique $\underline{e} = (e_1, \ldots, e_n) \in E_n$ with $e_{n-1} > 1$ such that $f \equiv p_{\underline{e}}$.

Proposition

Let $f \in \mathbb{F}[X]$ be a regular polynomial. If

$$f = \sum_{i=1}^{n} \alpha_i \ell_i^{e_i} = \sum_{i=1}^{n} \beta_i t_i^{d_i}$$

with ℓ_i , t_i linear forms and $\underline{e} = (e_1, \ldots, e_n)$, $\underline{d} = (d_1, \ldots, d_n) \in E_n$, then, $e_i = d_i$ for all i, and there exists a permutation $\sigma \in \mathfrak{S}_n$ such that $\alpha_i \ell_i^{e_i} = \beta_{\sigma(i)} t_{\sigma(i)}^{d_{\sigma(i)}}$ if $e_i \ge 3$.

Repeated affine forms.

Test if
$$f \equiv g$$
 with $g = \sum_{i=1}^{n} \sum_{j=1}^{t_i} \alpha_{i,j} x_i^{\mathbf{e}_{i,j}}$.

Test if $f \equiv g$ with $g = \sum_{i=1}^{n} \sum_{j=1}^{t_i} \alpha_{i,j} x_i^{\mathbf{e}_{i,j}}$. $f = \sum_{i=1}^{n} g_i(\ell_i(X))$ with $g_i(x) = \sum_{j=1}^{t_i} \alpha_{i,j} x^{\mathbf{e}_{i,j}}$ and ℓ_i an affine form.

Test if $f \equiv g$ with $g = \sum_{i=1}^{n} \sum_{j=1}^{t_i} \alpha_{i,j} x_i^{e_{i,j}}$. $f = \sum_{i=1}^{n} g_i(\ell_i(X))$ with $g_i(x) = \sum_{j=1}^{t_i} \alpha_{i,j} x^{e_{i,j}}$ and ℓ_i an affine form.

Problem (Univariate decomposition)

Given $f \in \mathbb{F}[X]$, is $f \equiv g$ with $g = \sum_{i=1}^{n} g_i(x_i)$?

Test if $f \equiv g$ with $g = \sum_{i=1}^{n} \sum_{j=1}^{t_i} \alpha_{i,j} x_i^{e_{i,j}}$. $f = \sum_{i=1}^{n} g_i(\ell_i(X))$ with $g_i(x) = \sum_{j=1}^{t_i} \alpha_{i,j} x^{e_{i,j}}$ and ℓ_i an affine form.

Problem (Univariate decomposition)

Given $f \in \mathbb{F}[X]$, is $f \equiv g$ with $g = \sum_{i=1}^{n} g_i(x_i)$?

Theorem (Theorem C.2,Kayal)

Given an n-variate polynomial $f(X) \in \mathbb{F}[X]$, there exists an algorithm that finds a decomposition of f as

$$f(A \cdot X) = p(x_1, \ldots, x_t) + q(x_{t+1}, \ldots, x_n),$$

with A invertible, if it exists, in randomized polynomial time provided $det(H_f)$ is a regular polynomial, i.e. it has n essential variables.

Test if $f \equiv g$ with $g = \sum_{i=1}^{n} \sum_{j=1}^{t_i} \alpha_{i,j} x_i^{e_{i,j}}$. $f = \sum_{i=1}^{n} g_i(\ell_i(X))$ with $g_i(x) = \sum_{j=1}^{t_i} \alpha_{i,j} x^{e_{i,j}}$ and ℓ_i an affine form.

Problem (Univariate decomposition)

Given $f \in \mathbb{F}[X]$, is $f \equiv g$ with $g = \sum_{i=1}^{n} g_i(x_i)$?

Theorem (Theorem C.2,Kayal)

Given an n-variate polynomial $f(X) \in \mathbb{F}[X]$, there exists an algorithm that finds a decomposition of f as

$$f(A \cdot X) = p(x_1, \ldots, x_t) + q(x_{t+1}, \ldots, x_n),$$

with A invertible, if it exists, in randomized polynomial time provided $det(H_f)$ is a regular polynomial, i.e. it has n essential variables.

If f has a univariate decomposition, does taking an optimal decomposition for each g_i yield an optimal decomposition of f?

Proposition

Let $f \in \mathbb{F}[X]$, and let the g_i 's be univariate polynomials sorted by decreasing degree. Let $d_i := \deg(g_i)$ and $k := \max\{i : d_i \ge 3\}$. Let ℓ_1, \ldots, ℓ_n be linear forms such that $f = \sum_{i=1}^n g_i(\ell_i)$. Then,

Proposition

Let $f \in \mathbb{F}[X]$, and let the g_i 's be univariate polynomials sorted by decreasing degree. Let $d_i := \deg(g_i)$ and $k := \max\{i : d_i \ge 3\}$. Let ℓ_1, \ldots, ℓ_n be linear forms such that $f = \sum_{i=1}^n g_i(\ell_i)$. Then,

$$\det(H_f(X)) = c \cdot \prod_{i=1}^k \prod_{j=1}^{d_i-2} (\ell_i - \alpha_{i,j}),$$

where $c \in \mathbb{F}$, and $\alpha_{i,j}$ are the roots of $g''_i(x)$ for $1 \le i \le k$.

Proposition

Let $f \in \mathbb{F}[X]$, and let the g_i 's be univariate polynomials sorted by decreasing degree. Let $d_i := \deg(g_i)$ and $k := \max\{i : d_i \ge 3\}$. Let ℓ_1, \ldots, ℓ_n be linear forms such that $f = \sum_{i=1}^n g_i(\ell_i)$. Then,

$$\det(H_f(X)) = c \cdot \prod_{i=1}^k \prod_{j=1}^{d_i-2} (\ell_i - \alpha_{i,j}),$$

where $c \in \mathbb{F}$, and $\alpha_{i,j}$ are the roots of $g''_i(x)$ for $1 \le i \le k$.

Moreover, if ℓ_1, \ldots, ℓ_n are linearly independent, for any solution $X_0 \in \mathbb{F}^n$ to the system $B \cdot X_0 = (\alpha_{1,1}, \ldots, \alpha_{k,1})^T$, where B is the $k \times n$ matrix whose rows are the coefficients of the ℓ_1, \ldots, ℓ_k , we have that

Proposition

Let $f \in \mathbb{F}[X]$, and let the g_i 's be univariate polynomials sorted by decreasing degree. Let $d_i := \deg(g_i)$ and $k := \max\{i : d_i \ge 3\}$. Let ℓ_1, \ldots, ℓ_n be linear forms such that $f = \sum_{i=1}^n g_i(\ell_i)$. Then,

$$\det(H_f(X)) = c \cdot \prod_{i=1}^k \prod_{j=1}^{d_i-2} (\ell_i - \alpha_{i,j}),$$

where $c \in \mathbb{F}$, and $\alpha_{i,j}$ are the roots of $g''_i(x)$ for $1 \le i \le k$.

Moreover, if ℓ_1, \ldots, ℓ_n are linearly independent, for any solution $X_0 \in \mathbb{F}^n$ to the system $B \cdot X_0 = (\alpha_{1,1}, \ldots, \alpha_{k,1})^T$, where B is the $k \times n$ matrix whose rows are the coefficients of the ℓ_1, \ldots, ℓ_k , we have that (a) $[f(X + X_0)]_{\geq 3} = \sum_{i=1}^k h_i(\ell_i)$ for some unique $h_i \in \mathbb{F}[x]$, and (b) $\text{EssVar}([f(X + X_0)]_2) = |\{i \mid \deg(g_i) = 2\}|.$

If $f = f_1(x_1) + f_2(x_2)$, set $s_i := AffPow(f_i)$ and write

$$f_i = \sum_{j=1}^{s_i} \alpha_{i,j} (x_i + a_{i,j})^{e_{i,j}}.$$

If $f = f_1(x_1) + f_2(x_2)$, set $s_i := AffPow(f_i)$ and write

$$f_i = \sum_{j=1}^{s_i} \alpha_{i,j} (x_i + a_{i,j})^{e_{i,j}}.$$

If $e_{1,1} \leq 1$ and $e_{2,1} \leq 1$, define UnivAffPow $(f) := s_1 + s_2 - 1$, and otherwise UnivAffPow $(f) := s_1 + s_2$.

If $f = f_1(x_1) + f_2(x_2)$, set $s_i := AffPow(f_i)$ and write

$$f_i = \sum_{j=1}^{s_i} \alpha_{i,j} (x_i + a_{i,j})^{e_{i,j}}.$$

If $e_{1,1} \leq 1$ and $e_{2,1} \leq 1$, define UnivAffPow $(f) := s_1 + s_2 - 1$, and otherwise UnivAffPow $(f) := s_1 + s_2$.

Proposition

Let $f_1 \in \mathbb{F}[x_1], f_2 \in \mathbb{F}[x_2]$, then $AffPow(f_1 + f_2) = UnivAffPow(f_1 + f_2)$.

If $f = f_1(x_1) + f_2(x_2)$, set $s_i := AffPow(f_i)$ and write

$$f_i = \sum_{j=1}^{s_i} \alpha_{i,j} (x_i + a_{i,j})^{e_{i,j}}.$$

If $e_{1,1} \leq 1$ and $e_{2,1} \leq 1$, define UnivAffPow $(f) := s_1 + s_2 - 1$, and otherwise UnivAffPow $(f) := s_1 + s_2$.

Proposition

Let $f_1 \in \mathbb{F}[x_1], f_2 \in \mathbb{F}[x_2]$, then $AffPow(f_1 + f_2) = UnivAffPow(f_1 + f_2)$.

Lemma

Let $s, d \in \mathbb{Z}^+$ and b_1, \ldots, b_s different nonzero elements of \mathbb{F} . If

$$\lambda_1 x_1^d + \lambda_2 x_2^d = \sum_{i=1}^s \gamma_i (x_1 + b_i x_2)^d,$$

with $\lambda_1, \lambda_2 \in \mathbb{F}$ and $\gamma_i \in \mathbb{F}$ not all zero, then $s \geq d$.

Allowing more affine forms.

Base case: $f \equiv g$ with $g = \sum_{i=1}^{n} x_i^{e_i} + \ell^e = h + \ell^e$.

Base case: $f \equiv g$ with $g = \sum_{i=1}^{n} x_i^{e_i} + \ell^e = h + \ell^e$. We have $H_g = H_h + H_{\ell^e}$ and $H_{\ell^e} = e^2 \ell^{e-2} \beta \beta^T$, where $e^i := e \cdots (e - i + 1)$.

Base case: $f \equiv g$ with $g = \sum_{i=1}^{n} x_i^{e_i} + \ell^e = h + \ell^e$. We have $H_g = H_h + H_{\ell^e}$ and $H_{\ell^e} = e^2 \ \ell^{e-2} \beta \beta^T$, where $e^i := e \cdots (e - i + 1)$.

Lemma (Folklore)

Let $A \in \mathcal{M}_n(\mathbb{F})$ and $u, v \in \mathbb{F}^n$ two column vectors. Then,

$$\det(A + uv^{T}) = \det(A) + v^{T} \operatorname{adj}(A)u,$$

where adj(A) denotes the adjugate matrix of A.

Base case: $f \equiv g$ with $g = \sum_{i=1}^{n} x_i^{e_i} + \ell^e = h + \ell^e$. We have $H_g = H_h + H_{\ell^e}$ and $H_{\ell^e} = e^2 \ \ell^{e-2} \beta \beta^T$, where $e^i := e \cdots (e - i + 1)$.

Lemma (Folklore)

Let $A \in \mathcal{M}_n(\mathbb{F})$ and $u, v \in \mathbb{F}^n$ two column vectors. Then,

$$\det(A + uv^{T}) = \det(A) + v^{T} \operatorname{adj}(A)u,$$

where adj(A) denotes the adjugate matrix of A.

$$\det(H_g) = \det(H_h) + e^2 \ell^{e-2} \beta^T \operatorname{adj}(H_h) \beta$$

Base case: $f \equiv g$ with $g = \sum_{i=1}^{n} x_i^{e_i} + \ell^e = h + \ell^e$. We have $H_g = H_h + H_{\ell^e}$ and $H_{\ell^e} = e^2 \ \ell^{e-2} \beta \beta^T$, where $e^i := e \cdots (e - i + 1)$.

Lemma (Folklore)

wi

Let $A \in \mathcal{M}_n(\mathbb{F})$ and $u, v \in \mathbb{F}^n$ two column vectors. Then,

$$\det(A + uv^{T}) = \det(A) + v^{T} \operatorname{adj}(A)u,$$

where adj(A) denotes the adjugate matrix of A.

$$\det(H_g) = \det(H_h) + e^2 \ell^{e-2} \beta^T \operatorname{adj}(H_h) \beta$$

$$det(H_f) = det(A)^2 \left(\prod_{i=1}^n e_i^2 \ell_i(X)^{e_i-2} + e^2 \ell(A \cdot X + b)^{e-2} P(X) \right)$$

th $P(X) = \sum_{i=1}^n \beta_i^2 \left(\prod_{j \neq i} e_j^2 \ell_j(X)^{e_i-2} \right) \in \mathbb{F}[X].$

Definition (Symmetric 4-th order Hessian)

$$\forall a \leq b, i \leq j, \quad (\overline{H}_f)_{(a,b),(i,j)} = \frac{\partial^4 f}{\partial x_a \partial x_b \partial x_i \partial x_j}$$

Definition (Symmetric 4-th order Hessian)

$$\forall a \leq b, i \leq j, \quad (\overline{H}_f)_{(a,b),(i,j)} = \frac{\partial^4 f}{\partial x_a \partial x_b \partial x_i \partial x_j}$$

Proposition

Let $n \in \mathbb{N}^*$, $m := \binom{n+1}{2}$ and $f = \sum_{i=1}^m \ell_i^{e_i}$, with $\ell_i = \sum_{j=1}^n b_{i,j}x_j + b_{i,0}$ affine forms and $e_i \ge 4$ for all i. Let U be the square $m \times m$ matrix with entries $U_{(i,j),k} := b_{k,i} b_{k,j}$ for all $1 \le k \le m$, $1 \le i \le j \le n$. If $\det(U) \ne 0$, there exists $c \ne 0$ such that

$$\det(\overline{H}_f(X)) = c \cdot \prod_{i=1}^m \ell_i^{e_i-4},$$

By linearity of the symmetric 4-th order Hessian, we have

$$\overline{H}_f(X) = \sum_{k=1}^m \overline{H}_{\ell_k}(X) = \sum_{k=1}^m e_k^4 \, \ell_k^{e_k - 4}(u_k \cdot u_k^T) = U \cdot D \cdot U^T,$$

where $D = \text{Diag}(e_1^4 \ell_1^{e_1-4}, \dots, e_m^4 \ell_m^{e_m-4})$, and u_k is the column vector whose (i, j)-th entry is $b_{k,i}b_{k,j}$ with $1 \le i \le j \le n$. Thus,

$$\det(\overline{H}_f(X)) = \det(U)^2 \prod_{k=1}^m e_k^4 \, \ell_k^{e_k-4}.$$

Probabilistic analysis

Lemma

Let $n \in \mathbb{N}^*$ and $m := \binom{n+1}{2}$, and consider the set of variables $\mathcal{V} := \{y_{(k,l),i} \mid 1 \le k \le l \le n, 1 \le i \le n\}$. Let U be the $m \times m$ square matrix with entries $U_{(i,j),(k,l)} := y_{(k,l),i} y_{(k,l),j}$, where $1 \le i \le j \le n$, $1 \le k \le l \le n$. Then, det $(U) \in \mathbb{Z}[\mathcal{V}]$ is a nonzero polynomial of degree 2m.

Probabilistic analysis

Lemma

Let $n \in \mathbb{N}^*$ and $m := \binom{n+1}{2}$, and consider the set of variables $\mathcal{V} := \{y_{(k,l),i} \mid 1 \le k \le l \le n, 1 \le i \le n\}$. Let U be the $m \times m$ square matrix with entries $U_{(i,j),(k,l)} := y_{(k,l),i} y_{(k,l),j}$, where $1 \le i \le j \le n$, $1 \le k \le l \le n$. Then, det $(U) \in \mathbb{Z}[\mathcal{V}]$ is a nonzero polynomial of degree 2m.

Proof.

Consider \tilde{U} given by: $y_{(k,l),i} \mapsto 1$ if $i \in \{k, l\}$; or $y_{(k,l),i} \mapsto 0$ otherwise.

Probabilistic analysis

Lemma

Let $n \in \mathbb{N}^*$ and $m := \binom{n+1}{2}$, and consider the set of variables $\mathcal{V} := \{y_{(k,l),i} \mid 1 \le k \le l \le n, 1 \le i \le n\}$. Let U be the $m \times m$ square matrix with entries $U_{(i,j),(k,l)} := y_{(k,l),i} y_{(k,l),j}$, where $1 \le i \le j \le n$, $1 \le k \le l \le n$. Then, det $(U) \in \mathbb{Z}[\mathcal{V}]$ is a nonzero polynomial of degree 2m.

Proof.

Consider \tilde{U} given by: $y_{(k,l),i} \mapsto 1$ if $i \in \{k, l\}$; or $y_{(k,l),i} \mapsto 0$ otherwise.

Theorem

Let $n \ge 2$ and $m := \binom{n+1}{2}$. Let $\ell_i = \sum_{j=1}^n b_{i,j}x_j + b_{i,0} : 1 \le i \le m$ whose coefficients $b_{i,j}$ are taken uniformly at random from a finite set Sand take $f := \sum_{i=1}^m \ell_i^{e_i} \in \mathbb{F}[X]$ with $e_i \ge 4$ for all i. Then, $\det(\overline{H}_f(X)) \ne 0$ with probability at least $1 - \frac{2m}{|S|}$.

Conclusion

• How can one handle with repeated nodes?

- How can one handle with repeated nodes?
- Can we improve our algorithms for $\mathbb{F} = \mathbb{R}$?
 - We have better structural results but we do not know how to derive algorithms from them.

- How can one handle with repeated nodes?
- Can we improve our algorithms for $\mathbb{F} = \mathbb{R}$?
 - We have better structural results but we do not know how to derive algorithms from them.
- Can we bound the bit size of an optimal decomposition by a polynomial function of the size of *f*?
 - Does Algorithm Distinct Nodes run in polynomial time?

Open questions II

A generic polynomial f of degree d has AffPow(f) = $\left\lceil \frac{d+1}{2} \right\rceil$.

• For each $d \in \mathbb{N}$, can you provide a polynomial f_d of degree d and AffPow $(f_d) = \left\lceil \frac{d+1}{2} \right\rceil$?

Open questions II

A generic polynomial f of degree d has AffPow(f) = $\left\lceil \frac{d+1}{2} \right\rceil$.

• For each $d \in \mathbb{N}$, can you provide a polynomial f_d of degree d and AffPow $(f_d) = \left\lceil \frac{d+1}{2} \right\rceil$?

Best answers known:

Theorem (Kayal, Koiran, Pecatte & Saha (2015))

For every $k \in \mathbb{N}$ and $a_1, a_2 \in \mathbb{F}$, the polynomial $f = [(x - a_1)(x - a_2)]^k$ of degree d = 2k satisfies that

AffPow(f) $\geq \sqrt{d}/2$

Open questions II

A generic polynomial f of degree d has AffPow(f) = $\left\lceil \frac{d+1}{2} \right\rceil$.

• For each $d \in \mathbb{N}$, can you provide a polynomial f_d of degree d and AffPow $(f_d) = \left\lceil \frac{d+1}{2} \right\rceil$?

Best answers known:

Theorem (Kayal, Koiran, Pecatte & Saha (2015))

For every $k \in \mathbb{N}$ and $a_1, a_2 \in \mathbb{F}$, the polynomial $f = [(x - a_1)(x - a_2)]^k$ of degree d = 2k satisfies that

AffPow(f) $\geq \sqrt{d}/2$

Theorem

When $\mathbb{F} = \mathbb{R}$, we provide polynomials f of degree d such that $AffPow(f) \ge d/4$.

• Can we remove the hypothesis $e_i \ge 4$ in the algorithm that reconstruct upto $\binom{n+1}{2}$ affine terms?

- Can we remove the hypothesis $e_i \ge 4$ in the algorithm that reconstruct upto $\binom{n+1}{2}$ affine terms?
- Can we design algorithms for more repeated affine form?

- Can we remove the hypothesis $e_i \ge 4$ in the algorithm that reconstruct upto $\binom{n+1}{2}$ affine terms?
- Can we design algorithms for more repeated affine form?
- We proved that UnivAffPow(f) = AffPow(f) for bivariate polynomials. What about the general case?

Thank you for your attention!