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Introduction

• Objects studied: families of polynomials over a field F.

• Meta-Question: is a polynomial f “hard” to compute ?

• Models: formula, straight-line programs, circuits, ...
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Figure: Circuit computing the polynomial 4(x1 + x2) + 4x2x3.

• Hardness in the case of circuits: depth and size.

3 / 51



Introduction

• Objects studied: families of polynomials over a field F.

• Meta-Question: is a polynomial f “hard” to compute ?

• Models: formula, straight-line programs, circuits, ...

x1 x2 4 x3

+

×

×

+

Figure: Circuit computing the polynomial 4(x1 + x2) + 4x2x3.

• Hardness in the case of circuits: depth and size.

3 / 51



Introduction

• Objects studied: families of polynomials over a field F.

• Meta-Question: is a polynomial f “hard” to compute ?

• Models: formula, straight-line programs, circuits, ...

x1 x2 4 x3

+

×

×

+

Figure: Circuit computing the polynomial 4(x1 + x2) + 4x2x3.

• Hardness in the case of circuits: depth and size.

3 / 51



Introduction

• Objects studied: families of polynomials over a field F.

• Meta-Question: is a polynomial f “hard” to compute ?

• Models: formula, straight-line programs, circuits, ...

x1 x2 4 x3

+

×

×

+

Figure: Circuit computing the polynomial 4(x1 + x2) + 4x2x3.

• Hardness in the case of circuits: depth and size.

3 / 51



Introduction

• Objects studied: families of polynomials over a field F.

• Meta-Question: is a polynomial f “hard” to compute ?

• Models: formula, straight-line programs, circuits, ...

x1 x2 4 x3

+

×

×

+

Figure: Circuit computing the polynomial 4(x1 + x2) + 4x2x3.

• Hardness in the case of circuits: depth and size.

3 / 51



Complexity classes

Definition (VP)

The class VP consists of all families of polynomials {fn} such that:

• arithmetic circuits of polynomial size compute fn,

• the number of variables and the degree are nO(1).

Example

DETn(X ) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

xi ,σ(i)
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Complexity classes

Definition (VNP)

The class VNP consists of all families of polynomials {fn} such that
there exists a family {gn} in VP with:

fn(x1, . . . , xk(n)) =
∑

w∈{0,1}p(n)
gp(n)

(
x1, . . . , xk(n), w1 . . . ,wp(n)

)

Example

PERMn(X ) =
∑
σ∈Sn

n∏
i=1

xi ,σ(i)

PERM is VNP-complete.
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Models of interest
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Sums of affine powers

Let F be any characteristic zero field. We consider f an univariate
polynomial with coefficients in F, this is, f ∈ F[x ].

Model (Univariate Σ ∧ Σ)
k∑

i=1

αi (x − ai )
ei with αi , ai ∈ F

A polynomial can be written in many ways in this model, for example
f = 10x4 + 20x2 + 2 ∈ R[x ] can be written as:

f = 10 (x − 0)4 + 20 (x − 0)2 + 2 (x − 0)0 =
= (x + 1)5 − (x − 1)5
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Associated measure

For f ∈ F[x ],

Definition

AffPowK(f ) := min

{
k : f (x) =

k∑
i=1

αi (x − ai )
ei with αi , ai ∈ K

}

Example:

For f = 10x4 + 20x2 + 2 we have that f (x) = (x + 1)5 − (x − 1)5, then
AffPowR(f ) ≤ 2

In fact, AffPowR(f ) = 2.
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Related models

Model (Sparsest shift)

f (x) =
s∑

i=1

αi (x − a)ei

f = 10 (x − 0)4 + 20 (x − 0)2 + 2 (x − 0)0

Model (Waring decomposition)

f (x) =
s∑

i=1

αi (x − ai )
d where d = deg(f )

f = (x + 1)5 − (x − 1)5 is not a Waring decomposition!
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Goal: reconstruction algorithms

Problem

Given a polynomial f ∈ F[x ], compute the exact value s = AffPowF(f )
and a decomposition with s terms.

Algorithmf =
d∑
i=0
fix

i
AffPow(f ) = s

f =
s∑
i=1
αi(x− ai)

ei
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Structural results
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Structural results

Real polynomials
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Uniqueness

Theorem (Koiran,Garcia-Marco’15)
Consider a polynomial identity of the form:

k∑
i=1

αi (x − ai )
ei = 0

with (ai , ei ) 6= (aj , ej) for all i 6= j , and αi 6= 0.

If d := max(e1, . . . , ek) =⇒ k ≥ d(d + 3)/2e.

Corollary

Let f ∈ R[x ] be a polynomial of the form f =
∑s

i=1 αi (x − ai )
ei .

Define ne := #{ei : ei ≤ e}.
If 2ne < d(e + 3)/2e for all e ∈ N, then AffPowR(f ) = s and the
optimal representation of f is unique.
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Real polynomials

• Let f = (x + 1)d − (x − 1)d + i(x + i)d − i(x − i)d ∈ R[X ].
AffPowC(f ) ≤ 4 but AffPowR(f ) = b(d + 1)/4c.

• Orthogonality of Waring rank and sparsest shift:
For f ∈ R[X ],

WaringR(f ) + SparsestR(f ) ≥ d + 3

2

except if f = α(x − a)d .

• 2WaringR(f ) ≥WaringR(f ) + AffPowR(f ) ≥ d+3
2 ,

except if WaringR(f ) = AffPowR(f ).
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Structural results

Characteristic zero
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Uniqueness

Proposition
Consider a polynomial identity of the form:

k∑
i=1

αi (x − ai )
ei = 0

with (ai , ei ) 6= (aj , ej) for all i 6= j , and αi 6= 0.

If d := max(e1, . . . , ek) =⇒ k >
√

2(d + 1).

Corollary

Let f ∈ F[x ] be a polynomial of the form f =
∑s

i=1 αi (x − ai )
ei .

If 2ne ≤
√

2(e + 1) for all e ∈ N, then AffPowF(f ) = s and the optimal
representation of f is unique.
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An unexpected consequence

Proposition

Let f ∈ F[x ] be a nonzero polynomial of degree d , then:

AffPowK(f ) ≤
⌈
d + 1

2

⌉

Corollary

If f =
∑s

i=1 αi (x − ai )
ei ∈ F[x ], with s = AffPowK(f ). Then,

ei ≤ d +
(d + 2)2

8

Proposition

If f is a generic polynomial, then AffPowF(f ) =
⌈
d+1
2

⌉
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Characteristic zero

• Let f = (x + 1)d − dxd−1. AffPowC(f ) = 2 but WaringC(f ) ≥ d − 1
and SparsestC(f ) ≥ (d + 1)/2.

• Orthogonality of Waring rank and sparsest shift:

WaringC(f ).SparsestC(f ) ≥ d + 1

except if f = α(x − a)d .

• This is tight for

f =

√
d∑

j=1

(x + ξj)d =
√
d

∑
0≤i≤d

i≡0 (mod
√
d)

(
d

i

)
xd−i

where ξ is a
√
d-th primitive root of unity:

WaringC(f ) ≤
√
d and SparsestC(f ) ≤ d(d + 1)/

√
de.
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The tool: Shifted Differential Equations
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Shifted differential equations

Definition (SDE)

A SDE(k) is an order k differential equation

k∑
i=0

Pi (x) g (i)(x) = 0

where Pi ∈ F[x ] is a polynomial of degree degPi ≤ i .

Remark

f satisfies an SDE(k)~w�{
x j f (i)(x) : 0 ≤ i ≤ k , 0 ≤ j ≤ i

}
is F-linearly dependent.
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An example

Let f = xd + xd−1. The polynomials:

f = xd + xd−1

f ′ = d xd−1 + (d − 1) xd−2

x f ′ = d xd + (d − 1) xd−1

f ′′ = d(d − 1) xd−2 + (d − 1)(d − 2) xd−3

x f ′′ = d(d − 1) xd−1 + (d − 1)(d − 2) xd−2

x2f ′′ = d(d − 1) xd + (d − 1)(d − 2) xd−1


are linearly dependent.

Indeed,

x2f ′′ − 2(d − 1)x f ′ + d(d − 1)f = 0,

so f satisfies the following SDE(2):

x2g ′′ − 2(d − 1)xg ′ + d(d − 1)g = 0.
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Small SDEs

Proposition

If f (x) =
∑s

i=1 αi (x − ai )
ei , then f satisfies an SDE(2s − 1), which is

also satisfied by the (x − ai )
ei ’s.

Proof idea:
Define Ck(f ) = dim

{
x j f (i)(x) : 0 ≤ j ≤ i ≤ k ,

}
.

For f = (x − a)e , we have{
x j f (i)(x) : 0 ≤ j ≤ i ≤ k

}
=
{

(x − a)j f (i)(x) : 0 ≤ j ≤ i ≤ k
}

⊆
{

(x − a)d : e − k ≤ d ≤ e
}

Therefore, Ck( (x − a)e ) ≤ k + 1.
It is enough to have

s(k + 1) <
(k + 1)(k + 2)

2
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The strategy

Input: f =
∑d

i=0 fix
i .

Decomposition wanted: f (x) =
∑s

i=1 αi (x − ai )
ei .

1 Find a “small” SDE satisfied by f .
Hope that the powers (x − ai )

ei satisfy the same equation.

2 Find the solutions of the SDE of the form (x − a)e .

3 Write f as a linear combination of these solutions
(and hope it is the good one)
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Step 1

1 Find a “small” SDE satisfied by f .
Hope that the powers (x − ai )

ei satisfy the same equation.

Proposition

If f (x) =
∑s

i=1 αi (x − ai )
ei , then f satisfies an SDE(2s − 1), which is

also satisfied by the (x − ai )
ei ’s.

So, there is a SDE fulfilling our wishes.

Issue:

What if we do not find the ’good’ SDE?
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Step 2

2 Find the solutions of the SDE of the form (x − a)e .

k∑
i=0

Pi (x)g (i)(x) ≡ 0 (1)

For a given e ∈ N, plug g = (x − a)e in (1) to obtain:
Q0(a) = 0

...

Qe(a) = 0

⇐⇒ a ∈ Zeros(Q0 ∧ Q1 ∧ · · · ∧ Qe)

Some issues:

• How large should e be ?

• We may obtain some “false positives”.
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Step 3

3 Write f as a linear combination of these solutions
(and hope it is the good one)

We just have to solve a linear system.
If step 1 is good, we know that there is at least one solution.

Some issues:

• What if there are several solutions?

• How do we find the “shortest one”?
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Distinct nodes

Large exponents

21 / 51



The key lemma

Lemma

Let f ∈ F[x ] be written as

f =
s∑

i=1

αi (x − ai )
ei ,

where the ai ∈ F are all distinct. Whenever f satisfies a SDE(k), if

ei is big

then (x − ai )
ei satisfies the same SDE.
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An algorithm for large exponents

f =
s∑

i=1

αi (x − ai )
ei with distinct ai , ei >

5s2

2

a) {(x − ai )
ei | 1 ≤ i ≤ s} is linearly independent,

b) AffPowF(f ) = s and the decomposition is unique,

c) f does not satisfy any SDE(r) with r < s,

d) If f satisfies a SDE(k) with k ≤ 2s − 1, then so does (x − ai )
ei ,

e) We have ei ≤ deg(f ) + (s2/2).
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The algorithm

Step 1. Take r the minimum value such that f satisfies a SDE(r) and
compute explictly one of these SDE.

Step 2. Compute B = {(x − bi )
di | 1 ≤ i ≤ r},

the set of all solutions of the SDE of the form (x − b)e with
(r + 1)2/2 ≤ e ≤ deg(f ) + (r2/2).

Step 3. Determine α1, . . . , αr such that f =
∑r

i=1 αi (x − bi )
di and

outputs the expression.

Lemma

We have |B| ≤ r and B is F-linearly independent.
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Distinct nodes

Large and small exponents

24 / 51



Weaken the hypothesis

Theorem

Let f (x) =
∑s

i=1 αi (x − ai )
ei with

• ai ∈ F all distinct

• nk ≤ (3k/4)1/3 − 1

Then AffPow(f ) = s and there is an polynomial time algorithm for the
reconstruction problem.

Idea: if there is a gap in the exponents sequence, taking the “right”
derivative of f make large exponents “appear”.

• Find a SDE(t) satisfied by f .

• Compute the set of large exponents solutions

• Reconstruct coefficients of large exponents using the right derivative.

• Substract them and go on until 0 is found.
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The algorithm

Step 1. We take t the minimum value such that f satisfies a SDE(t)
and compute explicitly one of these SDE.

Step 2. Consider B := {(x − bi )
di | 1 ≤ i ≤ l}, the set of all the

solutions of the SDE of the form (x − b)e , assume that
d1 ≥ d2 ≥ · · · ≥ dl .

Step 3. We take r ∈ {1, . . . , l} such that dr − dr+1 > r2/2 and
dr+1 < deg(f ).

Step 4. We set j := dr+1 + 1 and write f (j) as
f (j) =

∑r
i=1 βi ·

di !
(di−j)!(x − bi )

di−j with β1, . . . , βr ∈ F.

Step 5. We set f̃ :=
∑r

i=1 βi (x − bi )
di and h := f − f̃ .
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Towards repeated nodes.
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Small intervals

Let δ ∈ N. We aim now at reconstructing expressions of the form

f =
s∑

i=1

αi (x − ai )
ei

such that whenever ai = aj , then |ei − ej | ≤ δ.

We rewrite f as

f =
t∑

i=1

Qi (x)(x − ai )
ei ,

where

• Qi is a polynomial of degree ≤ δ, and

• ai 6= aj when i 6= j .
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Repeated nodes: the key lemma

Lemma

Let δ ∈ N and let f ∈ F[x ] be written as

f =
t∑

i=1

Qi (x) (x − ai )
ei ,

with distinct ai ∈ F and deg(Qi ) ≤ δ.

If f satisfies a SDE(k) and

ei ≥ t(k + δ) +

(
t

2

)
,

then Qi (x) (x − ai )
ei satisfies the same SDE.
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The algorithm

Let

f =
t∑

i=1

Qi (x) (x − ai )
ei ,

with deg(Qi ) ≤ δ and ei ≥ t2(t+1)
2 + 2t2(δ + 1)2.

Then, one can compute the optimal expression of f as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r)

Step 2. Compute the set B = {g1, . . . , gp} of solutions of the SDE of
the form

g(x) = R(x)(x − c)e ,

with e < d + d2

8 , where deg(R) ≤ δ.

Step 3. Write f =
∑p

i=1 λigi with λi ∈ F and output the expression.
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Multivariate model

Model (Multivariate AffPow)
k∑

i=1

αi`
ei
i with αi ∈ F, deg(`i ) = 1

We will design algorithms in the “black box” setting: they have access to
the input polynomial only through an oracle so that for any point a ∈ Fn,
we can obtain f (a) in a single step by querying this oracle. We will use:

• Change of basis

• Solving linear systems

• Factorization

• PIT

• Derivatives

• Homogeneous components
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Essential variables

f (x1, x2, x3) = x31 + x21x2 − 2x21x3 − 2x1x2x3 + x1x
2
3 + x2x

2
3

= (x2 + x3)(x1 − x3)2 + (x1 − x3)3

g(y1, y2) = f (z1, y1 + y2 − z1, z1 − y2) = y1y
2
2 + y32

Proposition (Carlini)

For a polynomial f ∈ F[X ], we have

EssVar(f ) = dimF

〈
∂f

∂xi
| 1 ≤ i ≤ n

〉
Eliminating redundant variables can be done with a randomized
polynomial time algorithm [Kayal] ⇒ we will assume that f is regular.

EssVar(f ) ≤ AffPow(f )
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From reconstruction to polynomial equivalence

Take f such that EssVar(f ) = AffPow(f ), i.e. f =
∑n

i=1 `
ei
i .

Set

A =

[`1]
...

[`n]

 , b =

`1(0)
...

`n(0)


so that

f (X ) = g(A · X + b) with g =
n∑

i=1

xeii

Definition (Polynomial equivalence)

f ∼ g if f (X ) = g(A · X ) with A ∈ GLn(F)

f ≡ g if f (X ) = g(A · X + c) with A ∈ GLn(F), c ∈ Fn

AffPow(f ) = EssVar(f )⇔ f ≡ g with g =
n∑

i=1

xeii for some (ei ) ∈ Nn
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The Hessian matrix

Hf (X ) =


∂2f

∂x1∂x1
. . . ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn



Lemma (Kayal)

Let g ∈ F[X ] be an n-variate polynomial. Let A ∈Mn(F) be a linear
transformation, and let b ∈ Fn. Let f (X ) = g(A · X + b). Then,

Hf (X ) = AT · Hg (A · X + b) · A.

In particular,

det(Hf (X )) = det(A)2 det(Hg (A · X + b)).
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Algorithm overview

When g =
∑n

i=1 x
ei
i , we have

∂2g

∂xi · ∂xj
=

{
0 if i 6= j ,

ei (ei − 1)xei−2i if i = j

det(Hg (X )) =
n∏

i=1

ei (ei − 1)xei−2i .

Lemma

Let f be a regular polynomial such that f (X ) =
∑n

i=1 `i (X )ei where
`1(X ), . . . , `n(X ) are affine forms and ei ≥ 2. Then we have

det(Hf (X )) = c ·
n∏

i=1

`i (X )ei−2

where c ∈ F is a nonzero constant.
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Quadratic polynomials

Proposition (Folklore)
Let F be an algebraically closed field of characteristic different from 2
and let f , g ∈ F[X ] be homogeneous quadratic polynomials. Then,

f ∼ g ⇐⇒ EssVar(f ) = EssVar(g).

Theorem
Let F be an algebraically closed field of characteristic different from 2
and let f ∈ F[X ] be a polynomial of degree at most 2. Then, there
exists a unique r ∈ [[0, n]] such that

i) f ≡
∑r

i=1 x
2
i ,

ii) f ≡
∑r

i=1 x
2
i + c with c ∈ F \ {0}, or

iii) f ≡
∑r−1

i=1 x
2
i + xr .

Moreover, only one of these three scenarios can hold and r = EssVar(f ).
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Linear term

If g =
∑n−1

i=1 xeii + xn = h + xn and f = g(A · X + b), then

Hf (X ) = (BT `T ) ·
(
Hh(A · X + b) 0

0 0

)
·
(
B
`

)
with A =

(
B
`

)

[Hf (X )]k,k = ([B]k)T · Hh(A · X + b) · [B]k

Lemma

Let f be a regular polynomial such that f (X ) =
∑n−1

i=1 `i (X )ei + `n(X )
where `1, . . . , `n are affine forms. Then there exists an integer
k ∈ [[1, n]] and a nonzero constant c such that

det([Hf (X )]k,k) = c ·
n−1∏
i=1

`i (X )ei−2
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Wrapping up

Theorem
There exists a polynomial-time randomized algorithm that receives as
input a blackbox access to a regular polynomial f ∈ F[X ] and finds an
optimal decomposition of f in the Affine Powers model if
AffPow(f ) = n, or rejects otherwise.

• Compute blackbox access to D(X ) = det(Hg (X )).

• If D 6= 0: write D = c ·
∏t

i=1 `
mi
i with t ≤ n.

• Build the matrices A and b corresponding to the `i ’s, and find a
solution X0 of A · X = −b.

• Set h(X ) = g(X + X0), and write h =
∑t

i=1 αi [`i ]
mi+2 + [h]≤2.

• Express [h]≤2 =
∑r

i=1 βi t
ei
i with t + r = n, and output the optimal

expression.

• If D = 0, repeat previous procedure with det([Hf (X )]k,k) for all k.
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optimal decomposition of f in the Affine Powers model if
AffPow(f ) = n, or rejects otherwise.

• Compute blackbox access to D(X ) = det(Hg (X )).

• If D 6= 0: write D = c ·
∏t

i=1 `
mi
i with t ≤ n.
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Uniqueness

For s ∈ N∗, denote by En := {e = (e1, . . . , en) ∈ (N∗)n | e1 ≥ · · · ≥ en}.

For each sequence e ∈ En, we consider the associated polynomial
pe :=

∑n
i=1 x

ei
i .

Proposition

Let f ∈ F[X ] be a regular polynomial. If AffPowF(f ) = n, then there
exists a unique e = (e1, . . . , en) ∈ En with en−1 > 1 such that f ≡ pe .

Proposition

Let f ∈ F[X ] be a regular polynomial. If

f =
n∑

i=1

αi`
ei
i =

n∑
i=1

βi t
di
i

with `i , ti linear forms and e = (e1, . . . , en), d = (d1, . . . , dn) ∈ En,
then, ei = di for all i , and there exists a permutation σ ∈ Sn such that

αi`
ei
i = βσ(i)t

dσ(i)
σ(i) if ei ≥ 3.
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Repeated affine forms.
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Univariate decompositions

Test if f ≡ g with g =
∑n

i=1

∑ti
j=1 αi ,j x

ei,j
i .

f =
∑n

i=1 gi (`i (X )) with gi (x) =
∑ti

j=1 αi ,j x
ei,j and `i an affine form.

Problem (Univariate decomposition)

Given f ∈ F[X ], is f ≡ g with g =
∑n

i=1 gi (xi )?

Theorem (Theorem C.2,Kayal)

Given an n-variate polynomial f (X ) ∈ F[X ], there exists an algorithm
that finds a decomposition of f as

f (A · X ) = p(x1, . . . , xt) + q(xt+1, . . . , xn),

with A invertible, if it exists, in randomized polynomial time provided
det(Hf ) is a regular polynomial, i.e. it has n essential variables.

If f has a univariate decomposition, does taking an optimal
decomposition for each gi yield an optimal decomposition of f ?
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The algorithm idea

Proposition

Let f ∈ F[X ], and let the gi ’s be univariate polynomials sorted by
decreasing degree. Let di := deg(gi ) and k := max{i : di ≥ 3}. Let
`1, . . . , `n be linear forms such that f =

∑n
i=1 gi (`i ). Then,

det(Hf (X )) = c ·
k∏

i=1

di−2∏
j=1

(`i − αi ,j),

where c ∈ F, and αi ,j are the roots of g ′′i (x) for 1 ≤ i ≤ k.

Moreover, if `1, . . . , `n are linearly independent, for any solution X0 ∈ Fn

to the system B · X0 = (α1,1, . . . , αk,1)T , where B is the k × n matrix
whose rows are the coefficients of the `1, . . . , `k , we have that

(a) [f (X + X0)]≥3 =
∑k

i=1 hi (`i ) for some unique hi ∈ F[x ], and

(b) EssVar([f (X + X0)]2) = |{i |deg(gi ) = 2}|.
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The bivariate case

If f = f1(x1) + f2(x2), set si := AffPow(fi ) and write

fi =

si∑
j=1

αi ,j(xi + ai ,j)
ei,j .

If e1,1 ≤ 1 and e2,1 ≤ 1, define UnivAffPow(f ) := s1 + s2 − 1, and
otherwise UnivAffPow(f ) := s1 + s2.

Proposition

Let f1 ∈ F[x1],f2 ∈ F[x2], then AffPow(f1 + f2) = UnivAffPow(f1 + f2).

Lemma

Let s, d ∈ Z+ and b1, . . . , bs different nonzero elements of F. If

λ1x
d
1 + λ2x

d
2 =

s∑
i=1

γi (x1 + bix2)d ,

with λ1, λ2 ∈ F and γi ∈ F not all zero, then s ≥ d .
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Allowing more affine forms.
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Previous algorithm fails

Base case: f ≡ g with g =
∑n

i=1 x
ei
i + `e = h + `e .

We have
Hg = Hh + H`e and H`e = e2 `e−2ββT , where e i := e · · · (e − i + 1).

Lemma (Folklore)

Let A ∈Mn(F) and u, v ∈ Fn two column vectors. Then,

det(A + uvT ) = det(A) + vT adj(A)u,

where adj(A) denotes the adjugate matrix of A.

det(Hg ) = det(Hh) + e2 `e−2βT adj(Hh)β

det(Hf ) = det(A)2

(
n∏

i=1

e2

i `i (X )ei−2 + e2 `(A · X + b)e−2 P(X )

)

with P(X ) =
∑n

i=1 β
2
i

(∏
j 6=i e

2

j `j(X )ei−2
)
∈ F[X ].
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Higher order Hessian

Definition (Symmetric 4-th order Hessian)

∀a ≤ b, i ≤ j , (H f )(a,b),(i ,j) =
∂4f

∂xa∂xb∂xi∂xj

Proposition

Let n ∈ N∗, m :=
(n+1

2

)
and f =

∑m
i=1 `

ei
i , with `i =

∑n
j=1 bi ,jxj + bi ,0

affine forms and ei ≥ 4 for all i . Let U be the square m ×m matrix
with entries U(i ,j),k := bk,i bk,j for all 1 ≤ k ≤ m, 1 ≤ i ≤ j ≤ n. If
det(U) 6= 0, there exists c 6= 0 such that

det(H f (X )) = c ·
m∏
i=1

`ei−4i ,
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det(U) 6= 0, there exists c 6= 0 such that

det(H f (X )) = c ·
m∏
i=1

`ei−4i ,
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Proof

By linearity of the symmetric 4-th order Hessian, we have

H f (X ) =
m∑

k=1

H`k (X ) =
m∑

k=1

e4

k `
ek−4
k (uk · uTk ) = U · D · UT ,

where D = Diag(e4

1 `
e1−4
1 , . . . , e4

m `
em−4
m ), and uk is the column vector

whose (i , j)-th entry is bk,ibk,j with 1 ≤ i ≤ j ≤ n. Thus,

det(H f (X )) = det(U)2
m∏

k=1

e4

k `
ek−4
k .
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Probabilistic analysis

Lemma

Let n ∈ N∗ and m :=
(n+1

2

)
, and consider the set of variables

V := {y(k,l),i | 1 ≤ k ≤ l ≤ n, 1 ≤ i ≤ n}. Let U be the m ×m square
matrix with entries U(i ,j),(k,l) := y(k,l),i y(k,l),j , where 1 ≤ i ≤ j ≤ n,
1 ≤ k ≤ l ≤ n. Then, det(U) ∈ Z[V] is a nonzero polynomial of degree
2m.

Proof.

Consider Ũ given by: y(k,l),i 7→ 1 if i ∈ {k , l}; or y(k,l),i 7→ 0 otherwise.

Theorem

Let n ≥ 2 and m :=
(n+1

2

)
. Let `i =

∑n
j=1 bi ,jxj + bi ,0 : 1 ≤ i ≤ m

whose coefficients bi ,j are taken uniformly at random from a finite set S
and take f :=

∑m
i=1 `

ei
i ∈ F[X ] with ei ≥ 4 for all i . Then,

det(H f (X )) 6= 0 with probability at least 1− 2m
|S | .
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Conclusion
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Open questions I

• How can one handle with repeated nodes?

• Can we improve our algorithms for F = R?
• We have better structural results but we do not know how to derive

algorithms from them.

• Can we bound the bit size of an optimal decomposition by a
polynomial function of the size of f ?

• Does Algorithm Distinct Nodes run in polynomial time?
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Open questions II

A generic polynomial f of degree d has AffPow(f ) =
⌈
d+1
2

⌉
.

• For each d ∈ N, can you provide a polynomial fd of degree d and
AffPow(fd) =

⌈
d+1
2

⌉
?

Best answers known:

Theorem (Kayal, Koiran, Pecatte & Saha (2015))

For every k ∈ N and a1, a2 ∈ F, the polynomial f = [(x − a1)(x − a2)]k

of degree d = 2k satisfies that

AffPow(f ) ≥
√
d/2

Theorem
When F = R, we provide polynomials f of degree d such that
AffPow(f ) ≥ d/4.
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Open questions III

• Can we remove the hypothesis ei ≥ 4 in the algorithm that
reconstruct upto

(n+1
2

)
affine terms?

• Can we design algorithms for more repeated affine form?

• We proved that UnivAffPow(f ) = AffPow(f ) for bivariate
polynomials. What about the general case?
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Thank you for your attention!
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