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Introduction

e Objects studied: families of polynomials over a field FF.
e Meta-Question: is a polynomial f “hard” to compute ?
e Models: formula, straight-line programs, circuits, ...
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Figure: Circuit computing the polynomial 4(x; + x2) + 4x2x3.

e Hardness in the case of circuits: depth and size.
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Complexity classes

Definition (VNP

The class VNP consists of all families of polynomials {7,} such that
there exists a family {g,} in VP with:

fo(X15 - - s Xk(n)) = Z Bo(n) (X015 Xk(n)s WL -+ -, Wp(n))
we{0,1},(n)

n
PERMA(X) = Y [I %00

o€Syi=1
PERM is VNP-complete.
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Sums of affine powers

Let F be any characteristic zero field. We consider f an univariate
polynomial with coefficients in F, this is, f € F[x].
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Sums of affine powers

Let F be any characteristic zero field. We consider f an univariate
polynomial with coefficients in F, this is, f € F[x].

Model (Univariate ~ A &

k
ZO[,'(X — a,-)e" with a;,a; € F
i=1

A polynomial can be written in many ways in this model, for example
f = 10x* + 20x2 + 2 € R[x] can be written as:

f= 10(x—0* 4+ 20(x—0)> 4+ 2(x—0)°=
= (x+1)° - (x-1p
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Associated measure

For f € F[x],

k
AffPowg () := min {k (f(x) = Za;(x —a;)% with aj,a; € K}
i=1

Example:

For f = 10x* 4 20x? + 2 we have that f(x) = (x +1)° — (x — 1), then
AffPowz (f) < 2

In fact, AffPowg(f) = 2.
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Related models
Model (Sparsest shift

f(x) = aj(x—a)®
i=1
f =10(x — 0)* +20(x — 0)> +2(x — 0)°

Model (Waring decomposition

f(x) = Zai(x — a;)? where d = deg(f)
i=1

f=(x+1)°—(x—1)°is not a Waring decomposition!



Goal: reconstruction algorithms

Given a polynomial f € F[x]|, compute the exact value s = AffPowg(f)
and a decomposition with s terms.

f= g@fil‘i . Algorithm

)64
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Theorem (Koiran,Garcia-Marco'15

Consider a polynomial identity of the form:

k
> ai(x—a)% =0
i=1

with (a;, e;) # (aj, ) for all i # j, and o # 0.
If d := max(e1,...,ex) = k> [(d +3)/2].

Corollary
Let f € R[x] be a polynomial of the form f =Y ;_; aj(x — a;)%.

Define ne := #{e; : ej < e}.
If2n. < [(e+3)/2] for all e € N, then AffPowg(f) = s and the
optimal representation of f is unique.
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Real polynomials

e Let f=(x+1)9—(x—1)4+i(x+i)—i(x—i)9eR[X]
AffPowc(f) < 4 but AffPowg(f) = |(d +1)/4].

e Orthogonality of Waring rank and sparsest shift:
For f € R[X],

d+3

Waringg (f) 4 Sparsestg(f) > >

except if f = a(x — a)“.

o 2Waringg(f) > Waringg(f) + AffPowg(f) > 452,
except if Waringg(f) = AffPowg(f).
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Uniqueness

Consider a polynomial identity of the form:

k

Za,—(x —3,)%=0

i=1
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An unexpected consequence

Let f € F[x] be a nonzero polynomial of degree d, then:

d+1

AffPow (f) < [TW

Corollary
Iff =53 ai(x — a;)% € Flx], with s = AffPowg(f). Then,

(d +2)2

. < d
e <d-+ 8




An unexpected consequence

Let f € F[x] be a nonzero polynomial of degree d, then:

d+1

AffPowy (f) < [ZW

Corollary

Iff =37 ;ai(x — a;)¥ € F[x], with s = AffPowg(f). Then,

(d +2)2
3

If f is a generic polynomial, then AffPowg(f) = (%W

e,-§d+




Characteristic zero

o Let f = (x+ 1) — dx91. AffPowc(f) = 2 but Waring(f) > d — 1
and Sparsestq(f) > (d +1)/2.
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Characteristic zero

o Let f = (x+ 1) — dx91. AffPowc(f) = 2 but Waring(f) > d — 1
and Sparsestq(f) > (d +1)/2.

e Orthogonality of Waring rank and sparsest shift:

Waringc(f).Sparsest(f) > d + 1

except if f = a(x — a)“.

e This is tight for

Vd d
f= j d—i
. (x+ &) =Vd E </> X
Jj=1 0<i<d
i=0 (mod V/d)

where £ is a v/d-th primitive root of unity:
Waring(f) < v/d and Sparsestc(f) < [(d +1)/V/d].
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Shifted differential equations

Definition (SDE

A SDE(k) is an order k differential equation

> Pix)g"(x) =0

1=

k
0

where P; € F[x] is a polynomial of degree deg P; < i.
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Shifted differential equations
Definition (SDE

A SDE(k) is an order k differential equation
k .
> Pi(x) M) =0
i=0

where P; € F[x] is a polynomial of degree deg P; < i.

f satisfies an SDE(k)

I

{Xff(i)(x) 0<i<k0< < i} is [F-linearly dependent.
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An example
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xf" = d(d-1)x%1 + (d—1)(d—2)x972
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are linearly dependent.
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An example

Let f = x9 + x9~1. The polynomials:

f = xd + xd=1
= dxd-1 + (d —1)x92
xf' = dx?  + (d —1)x97t
f" = d(d—-1)x9"2 4+ (d—1)(d—-2)x93
xf" = d(d-1)x%1 + (d—1)(d—2)x972

x2f" = d(d-1)x9 + (d-1)(d—-2)x?"1 |

are linearly dependent. Indeed,

x*f" —2(d — 1)x f' + d(d — 1)f =0,

so f satisfies the following SDE(2):

x?g" —2(d — 1)xg’ +d(d —1)g = 0.



Small SDEs

If f(x) =7 ; ai(x — a;)%, then f satisfies an SDE(2s — 1), which is
also satisfied by the (x — a;)%’s.
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Small SDEs

If f(x) =7 ; ai(x — a;)%, then f satisfies an SDE(2s — 1), which is
also satisfied by the (x — a;)%’s.

Proof idea:
Define Ci(f) = dim {x/f()(x) : 0<j<i<k,}.

For f = (x — a)¢, we have
{HFO0) s o<j<i<k}={(x-ayrix) s 0<j<i<k]
g{(x—a)d : e—kédﬁe}

Therefore, Ci((x —a)¢) < k+ 1.
It is enough to have

s(k—|—1)<(k+1)2(k+2)
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Algorithms
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Step 1

® Find a “small” SDE satisfied by f.
Hope that the powers (x — a;)¢ satisfy the same equation.

If f(x) =37 ; ai(x — a;)¢, then f satisfies an SDE(2s — 1), which is
also satisfied by the (x — a;)%'s.

So, there is a SDE fulfilling our wishes.

Issue:

What if we do not find the 'good’ SDE?
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@® Find the solutions of the SDE of the form (x — a)¢.

k
Y Pi(x)g(x) =0 (1)
i=0
For a given e € N, plug g = (x — a)¢ in (1) to obtain:
Qo(a) =0
: <= a€ Zeros(Qu N Q1A+ A Qe)
Qe(a) =0

Some issues:

e How large should e be ? = solved by the unexpected corollary

e We may obtain some “false positives”.
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©® Write f as a linear combination of these solutions
(and hope it is the good one)

We just have to solve a linear system.
If step 1 is good, we know that there is at least one solution.

Some issues:
e What if there are several solutions?

e How do we find the “shortest one”?
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Let f € F[x] be written as
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The key lemma

Lemma

Let f € F[x] be written as

S|
= ZO[,‘(X — ai)ei,
i=1

where the a; € F are all distinct. Whenever f satisfies a SDE(k), if

s
i > k
2 kst (3)

then (x — a;)® satisfies the same SDE.



An algorithm for large exponents

552

S
f= Za;(x —a;)%  with distinct a;, € > -
i=1



An algorithm for large exponents

552

S
f= Za;(x —a;)%  with distinct a;, € > -
i=1

a) {(x—a;)%|1<i<s}is linearly independent,



An algorithm for large exponents

552

S
f= Za;(x —a;)%  with distinct a;, € > -
i=1

a) {(x—a;)%|1<i<s}is linearly independent,

b) AffPowr(f) = s and the decomposition is unique,



An algorithm for large exponents

552

S
f= Za;(x —a;)%  with distinct a;, € > -
i=1

a) {(x—a;)%|1<i<s}is linearly independent,
b) AffPowr(f) = s and the decomposition is unique,

c) f does not satisfy any SDE(r) with r <s,



An algorithm for large exponents

s 2
_ . - 5s
f = Za;(x —a;)%  with distinct a;, € > >
i=1
a) {(x—a;)%|1<i<s}is linearly independent,
b) AffPowr(f) = s and the decomposition is unique,

c) f does not satisfy any SDE(r) with r <s,

d) If f satisfies a SDE(k) with k < 2s — 1, then so does (x — a;)¢,



An algorithm for large exponents

s 2
_ R 5s

f = ;a;(x —a;)%  with distinct a;, € > >

=
a) {(x—a;)%|1<i<s}is linearly independent,
b) AffPowr(f) = s and the decomposition is unique,
c) f does not satisfy any SDE(r) with r <s,
d) If f satisfies a SDE(k) with k < 2s — 1, then so does (x — a;)¢

e) We have e; < deg(f) + (s2/2).
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The algorithm

Step 1. Take r the minimum value such that f satisfies a SDE(r) and
compute explictly one of these SDE.

Step 2. Compute B = {(x — b))% |1 <i<r},
the set of all solutions of the SDE of the form (x — b)¢ with
(r4+1)?/2 < e < deg(f) + (r?/2).

Step 3. Determine a,...,q, such that f = 37 a;(x — b;)% and
outputs the expression.

We have |B| < r and B is F-linearly independent.
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e Find a SDE(t) satisfied by f.
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Weaken the hypothesis

Let f(x) = > "7 ; ai(x — a;)% with

e a; € I all distinct

o ny < (3/(/4)1/3 =1
Then AffPow(f) = s and there is an polynomial time algorithm for the
reconstruction problem.

Idea: if there is a gap in the exponents sequence, taking the “right”
derivative of f make large exponents “appear”.

e Find a SDE(t) satisfied by f.
e Compute the set of large exponents solutions
e Reconstruct coefficients of large exponents using the right derivative.

e Substract them and go on until 0 is found.
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The algorithm

Step 1. We take t the minimum value such that f satisfies a SDE(t)

Step 2.

Step 3.

Step 4.

Step 5.

and compute explicitly one of these SDE.

Consider B := {(x — b;)% |1 < i < I}, the set of all the
solutions of the SDE of the form (x — b)¢, assume that
d>dr>--->d.

We take r € {1,...,/} such that d, — d,+1 > r?/2 and
dr+1 < deg(f).

Wg set j .= d,11 + 1 and write f({') as
FU) =301 Bi - gy (x — b))%~ with fu,..., 5, € F.

We set 7 := S"_, Bi(x — b))% and h:=f — .



Towards repeated nodes.
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Small intervals

Let § € N. We aim now at reconstructing expressions of the form

S
f= E aj(x — a;)°¢
i=1

such that whenever a; = a;, then |e; — ¢j| < 4.

We rewrite f as
t

Z (x)(x — ai)%,

=1
where
e @Q; is a polynomial of degree < ¢, and
e a; # aj when j # j.
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Repeated nodes: the key lemma

(e

Let 5 € N and let f € F[x] be written as

fZEZqux—aw,

with distinct a; € F and deg(Q;) < 6.
If f satisfies a SDE(k) and

ade+&+<D,

then Qi(x) (x — a;)¢ satisfies the same SDE.

Y
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The algorithm

Let
t

Z x) (x — aj)°

=1
with deg(Q;) < 6 and ¢; > £ (t+1) +2t2(6 +1)2
Then, one can compute the optimal expression of f as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r)
Step 2. Compute the set B = {gi,...,gp} of solutions of the SDE of

the form
g(x) = R(x)(x — <)%,

with e < d + %2, where deg(R) < 0.

Step 3. Write f = > P | \jgi with \; € F and output the expression.



Multivariate reconstruction
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Multivariate model

Model (Multivariate AffPow

k
Zaiﬁf" with a; € F, deg(¢;) = 1
i=1

We will design algorithms in the “black box" setting: they have access to
the input polynomial only through an oracle so that for any point a € F”,
we can obtain f(a) in a single step by querying this oracle. We will use:

e Change of basis

e Solving linear systems
e Factorization

e PIT

e Derivatives

e Homogeneous components
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Essential variables

f(x1,x2,x3) = xf + X12X2 — 2X12X3 — 2X1X0X3 + xlxsg + x2x§
=(x+x3)0a —x3)? + (x1 — x3)°

g, ) =flzi,yi+yo — 21,21 — ) = 1y3 + 3

Proposition (Carlini

For a polynomial f € F[X], we have
f
EssVar(f) = dimp <§_X, [1<i< n>

Eliminating redundant variables can be done with a randomized
polynomial time algorithm [Kayal] = we will assume that f is regular.

EssVar(f) < AffPow(f)
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From reconstruction to polynomial equivalence

Take f such that EssVar(f) = AffPow(f), i.e. f =37 ;¢
Set
[41] 1(0)
ul b— .

A= : :
[¢n] €n(0)

so that )
F(X)=g(A-X+b) with g=> x
i=1
Definition (Polynomial equivalence
f~giff(X)=g(A-X) with A € GL,(F)
f=giff(X)=g(A X+ c) with A€ GL,(F),c € F"
AffPow(f) = EssVar(f) < f = g with g = » _ x for some (e;) € N”

i=1



The Hessian matrix

02f O*f
Ox10x1 """ Ox10xn
He(X) = : = :
92f >*f
OxpOx1 "7 OxnOxp
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The Hessian matrix

0?f 9*f
Ox10x1 """ Ox10xn
He(X) = S
O*f O%f
OxnOx1 " OXnOXn

Lemma (Kayal

Let g € F[X] be an n-variate polynomial. Let A € M,(F) be a linear
transformation, and let b € F". Let f(X) = g(A- X + b). Then,

He(X) = AT - Hg(A- X + b) - A.
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The Hessian matrix

0?f 9*f
Ox10x1 """ Ox10xn
He(X) = S
O*f O%f
OxnOx1 " OXnOXn

Lemma (Kayal

Let g € F[X] be an n-variate polynomial. Let A € M,(F) be a linear
transformation, and let b € F". Let f(X) = g(A- X + b). Then,

He(X) = AT - Hg(A- X + b) - A.
In particular,

det(Hr(X)) = det(A)? det(Hg(A - X + b)).

34 /51
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g {o if i # J,
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g 0 if i # j,
- eier —1)x

0x; - Ox; ifi=j
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Algorithm overview

When g =37 ; x7, we have

*g [0 ifi ],
 lee — X

Ox; - 0; if i =
det(H H ei(ei — 1)x;”

n

Let f be a regular polynomial such that f(X) =", ¢;(X)% where
01(X), ..., €n(X) are affine forms and e; > 2. Then we have

det(Hs(X)) = c- He

where ¢ € F is a nonzero constant.
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Let I be an algebraically closed field of characteristic different from 2
and let f, g € F[X] be homogeneous quadratic polynomials. Then,
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Quadratic polynomials
Proposition (Folklore

Let F be an algebraically closed field of characteristic different from 2
and let f, g € F[X] be homogeneous quadratic polynomials. Then,

f ~g <= EssVar(f) = EssVar(g).

Let I be an algebraically closed field of characteristic different from 2
and let f € F[X] be a polynomial of degree at most 2. Then, there
exists a unique r € [0, n] such that

) f =317

i) f=>"_;x*+c withc eF\ {0}, or

i) £ =321 X2+ x,.
Moreover, only one of these three scenarios can hold and r = EssVar(f).
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Linear term

I_Fg an e,_|_Xn_h—|-Xnandf_ (A-X+b),then

He(X) = (BT (7). <Hh(A -Ox—i— b) 8) ‘ (L;) ik A (?)

[He(X) ik = ([Blk) " - Ha(A - X + b) - [Blx

Let f be a regular polynomial such that £(X) = Y2771 0;(X)& + £a(X)
where {1, ..., L, are affine forms. Then there exists an integer
k € [1,n] and a nonzero constant c such that

n—1

det([He(X)]kk) = c- [ i(X)% 2

i=1

37 /51
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Wrapping up

There exists a polynomial-time randomized algorithm that receives as
input a blackbox access to a regular polynomial f € F[X] and finds an
optimal decomposition of f in the Affine Powers model if

AffPow(f) = n, or rejects otherwise.

e Compute blackbox access to D(X) = det(Hg(X)).
o If D#0: write D=c-[[t_; ¢ with t < n.

e Build the matrices A and b corresponding to the ¢;'s, and find a
solution Xg of A- X = —b.

o Set h(X) = g(X + Xo), and write h = >_7_, a;[6;]™*2 + [h]<2.

e Express [h<o =>4 Bit7" with t + r = n, and output the optimal
expression.

e If D=0, repeat previous procedure with det([H(X)]x k) for all k.
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Uniqueness

For s € N*, denote by E, :={e=(e1,...,en) € (N*)"|e1 > --- > epn}.
For each sequence e € E,, we consider the associated polynomial

L n e
Pe = Di1% -

Let f € F[X] be a regular polynomial. If AffPowr(f) = n, then there
exists a unique e = (e, ..., ep) € E, with e,_1 > 1 such that f = pe.

Let f € F[X] be a regular polynomial. If

n n
F= ZO&,‘E,—Q" = Zﬁ,’tidi
i=1 i=1

with ¢;, t; linear forms and e = (ey,...,ep),d = (d1,...,d,) € Ep,
then, e; = d; for all i, and there exists a permutation o € &,, such that

il = Bogiytagy) if e > 3.
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Repeated affine forms.
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Univariate decompositions

€ij

Test if f =g withg=>1", Jt':1 Qi jx; "

f=>T"1&li(X)) with gi(x) = th':1 ajjx% and ¢; an affine form.

Problem (Univariate decomposition

Given f e F[X], is f =g with g =1, gi(xi)?
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Univariate decompositions

Test if f = g with g = 27:1 Jt':1 aij Xl.e"'f
f =3 11&li(X)) with gi(x) = Z;’Zl ;i jx%i and ¢; an affine form.
Problem (Univariate decomposition

Given f e F[X], is f =g with g =1, gi(xi)?

Theorem (Theorem C.2 Kayal

Given an n-variate polynomial f(X) € F[X], there exists an algorithm
that finds a decomposition of f as

f(AX) :p(le"'vxt)+q(Xt+1a"'aXn)7

with A invertible, if it exists, in randomized polynomial time provided
det(Hy) is a regular polynomial, i.e. it has n essential variables.
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Univariate decompositions

€i.j

Test if f =g withg=>1", Jt':1 Qi jX;
f=>T"1&li(X)) with gi(x) = th’:l ajjx% and ¢; an affine form.
Problem (Univariate decomposition

Given f e F[X], is f =g with g =1, gi(xi)?

Theorem (Theorem C.2 Kayal

Given an n-variate polynomial f(X) € F[X], there exists an algorithm
that finds a decomposition of f as

f(AX) :p(le"'vxt)+q(Xt+1a"'aXn)7

with A invertible, if it exists, in randomized polynomial time provided
det(Hy) is a regular polynomial, i.e. it has n essential variables.

If f has a univariate decomposition, does taking an optimal
decomposition for each g; yield an optimal decomposition of f 7
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The algorithm idea

Let f € F[X], and let the g;'s be univariate polynomials sorted by
decreasing degree. Let d; :== deg(g;) and k :== max{i : d; > 3}. Let
l1,...,L, be linear forms such that f =", gi(¢;). Then,
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The algorithm idea

Let f € F[X], and let the g;'s be univariate polynomials sorted by
decreasing degree. Let d; := deg(g;) and k := max{i : d; > 3}. Let
l1,...,L, be linear forms such that f =", gi(¢;). Then,

k di—2

det(He(X)) = c- [ TT (¢ — o).

i=1 j=1
where ¢ € F, and «; j are the roots of g/'(x) for 1 < i < k.

Moreover, if 41, ...,£, are linearly independent, for any solution Xy € F”
to the system B - Xo = (a1,1,...,ax1)", where B is the k x n matrix
whose rows are the coefficients of the /1,...,¢;, we have that
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The algorithm idea

Let f € F[X], and let the g;'s be univariate polynomials sorted by
decreasing degree. Let d; := deg(g;) and k := max{i : d; > 3}. Let
l1,...,L, be linear forms such that f =", gi(¢;). Then,

k di—2

det(He(X)) = c- [ TT (¢ — o).

i=1 j=1
where ¢ € F, and «; j are the roots of g/'(x) for 1 < i < k.

Moreover, if 41, ...,£, are linearly independent, for any solution Xy € F”
to the system B - Xo = (a1,1,...,ax1)", where B is the k x n matrix
whose rows are the coefficients of the /1,...,¢;, we have that

(@) [f(X+ Xo)]>3 = Zf'(:l hi(¢;) for some unique h; € F[x], and
(b) EssVar([f(X + Xo)l2) = [{i | deg(gi) = 2}|.
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The bivariate case

If f = fA(x1) + fa(x2), set s; := AffPow(f;) and write

Si

.

fi= aijlx+a).
j=1
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The bivariate case

If f = fA(x1) + fa(x2), set s; := AffPow(f;) and write

Sj

o

fi= aij(xi+ai;)%.
Jj=1
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Sj

o

fi= aij(xi+ai;)%.
Jj=1

If e11 <1and ey; <1, define UnivAffPow(f) :=s; + s, — 1, and
otherwise UnivAffPow(f) := s1 + sp.

Let fi € F[x1],f2 € F[xz], then AffPow(fi + f) = UnivAffPow(f; + ).
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The bivariate case

If f = fA(x1) + fa(x2), set s; := AffPow(f;) and write

fi= aij(x + aij)%.
j=1
If e11 <1and ey; <1, define UnivAffPow(f) :=s; + s, — 1, and
otherwise UnivAffPow(f) := s1 + sp.

Let f, € F[x1].f € Flxa], then AffPow(fi + £,) = UnivAffPow(f, + £,).

Lemma

Lets,d € Zt and by, ..., bs different nonzero elements of F. If
S
)\1Xf aF )\ng = ny,-(xl + b,‘Xz)d7
i=1

with A1, Ao € F and ~; € F not all zero, then s > d.
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Allowing more affine forms.

44 / 51



Previous algorithm fails

Base case: f =g with g =Y 7| x7 + (¢ = h+(°.
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Previous algorithm fails

Base case: f = g with g = Z, 1 X7+ 08 = h+ (°. We have
Hy = Hp + Hpe and Hpe = €2 (672337, where el :==e---(e —i+1).

Lemma (Folklore

Let Ae Mp(FF) and u,v € F" two column vectors. Then,
det(A+ uvT) = det(A) + v adj(A)u,

where adj(A) denotes the adjugate matrix of A.

det(Hg) = det(Hp) + 27237 adj(Hp)

det(Hr) = det(A <H e Li(X)5 2 4 e2l(A- X + b)* P(X))

with P(X) = Y1, 52 (Hﬁgi ej%gj(x)e,'—2) € FX].



Higher order Hessian

Definition (Symmetric 4-th order Hessian
O*f

Va<b,i<j, (Hf)ab)ij) = CORICR Y
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Higher order Hessian
Definition (Symmetric 4-th order Hessian

.. — O*f
Va<b,i<j, (Hf)ap)ij) = BB 0Xi0x;

Let n € N*, m:= (";1) and f =377 07, with £; = 3771 bi jxj + bjg
affine forms and e; > 4 for all i. Let U be the square m X m matrix
with entries U(,-J)J( =byibyjforalll<k<m 1<i<j<n. lIf
det(U) # 0, there exists ¢ # 0 such that

det(H¢(X)) = c - Hff"_4,
i=1
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By linearity of the symmetric 4-th order Hessian, we have

X)=> Ho(X)=> et ue-ul)=U-D-UT,
k=1

k=1

where D = Diag(ef (5%, ..., em £e7=*), and uy is the column vector
whose (7, j)-th entry is bk,:bk,j with 1 </ <j<n. Thus,

det(H¢(X)) = det(U)? H e (5t

47 / 51



Probabilistic analysis

Let n € N* and m := ("}'), and consider the set of variables
Vi={Yun,ill<k<1<n 1<i<n} LetU bethe mx m square
matrix with entries U jy (k1) = Y(k,1),i Y(k,1).j» where 1 < i <j<n,
1< k <1< n. Then, det(U) € Z[V] is a nonzero polynomial of degree

2m.
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Probabilistic analysis

Lemma

Let n € N* and m := ("}'), and consider the set of variables
Vi={Yun,ill<k<1<n 1<i<n} LetU bethe mx m square
matrix with entries U jy (k1) = Y(k,1),i Y(k,1).j» where 1 < i <j<n,
1< k <1< n. Then, det(U) € Z[V] is a nonzero polynomial of degree
2m.

Proof.
Consider U given by: Yiky,i = Lif i € {k,I}; or yu i — O otherwise.

Let n>2 and m = (”erl). Let ¢; = ZJ'-'II bijxj + bio: 1<i<m
whose coefficients b; j are taken uniformly at random from a finite set S
and take f := Y 1", (5 € F[X] with e; > 4 for all i. Then,

det(H¢(X)) # O with probability at least 1 — %"’
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Conclusion
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Open questions |

e How can one handle with repeated nodes?
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Open questions |

e How can one handle with repeated nodes?

e Can we improve our algorithms for F = R?

e We have better structural results but we do not know how to derive
algorithms from them.

e Can we bound the bit size of an optimal decomposition by a
polynomial function of the size of 7

e Does Algorithm Distinct Nodes run in polynomial time?
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Open questions ||

A generic polynomial f of degree d has AffPow(f) = {%W

e For each d € N, can you provide a polynomial f;4 of degree d and
AffPow(fy) = [Z52]?
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Open questions ||

A generic polynomial f of degree d has AffPow(f) = {%W

e For each d € N, can you provide a polynomial f;4 of degree d and
AffPow(fy) = [Z52]?

Best answers known:

Theorem (Kayal, Koiran, Pecatte & Saha (2015

For every k € N and a1, ay € I, the polynomial f = [(x — a1)(x — a2)]*
of degree d = 2k satisfies that

AffPow(f) > Vd /2

When F = R, we provide polynomials f of degree d such that
AffPow(f) > d /4.
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Open questions ||

e Can we remove the hypothesis ¢; > 4 in the algorithm that

reconstruct upto ("erl) affine terms?

51 / 51



Open questions ||

e Can we remove the hypothesis ¢; > 4 in the algorithm that

reconstruct upto ("erl) affine terms?

e Can we design algorithms for more repeated affine form?

51 / 51



Open questions ||

e Can we remove the hypothesis ¢; > 4 in the algorithm that

reconstruct upto ("erl) affine terms?

e Can we design algorithms for more repeated affine form?

e We proved that UnivAffPow(f) = AffPow(f) for bivariate
polynomials. What about the general case?
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Thank you for your attention!
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