Asymptotic Enumeration of Compacted Binary Trees with Height Restrictions INRIA 12/2017

Michael Wallner

joint work with Antoine Genitrini, Bernhard Gittenberger and Manuel Kauers

Laboratoire d'Informatique de Paris Nord, Université Paris Nord, France

December 11th, 2017

Based on the paper: Asymptotic Enumeration of Compacted Binary Trees, submitted to a journal. ArXiv:1703.10031

Creating a compacted tree

Example

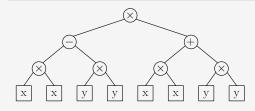
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

which represents $(x^2 - y^2)(x^2 + y^2)$.

Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

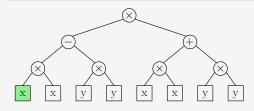
which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

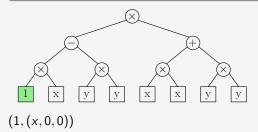
which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

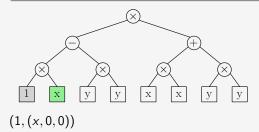
which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

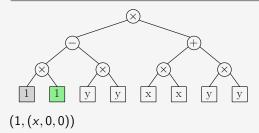
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

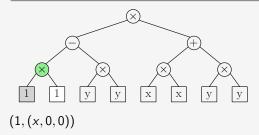
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

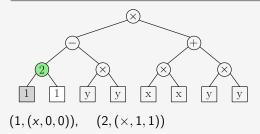
which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

which represents $(x^2 - y^2)(x^2 + y^2)$.



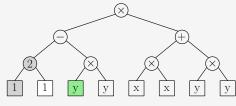
Example

wh

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

ich represents $(x^2 - y^2)(x^2 + y^2)$.

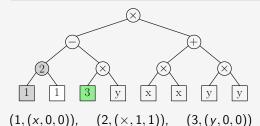


 $(1, (x, 0, 0)), (2, (\times, 1, 1))$

Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

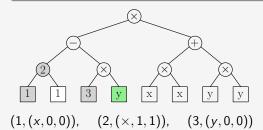
which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

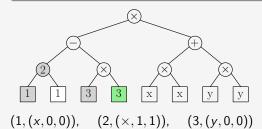
which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

which represents $(x^2 - y^2)(x^2 + y^2)$.

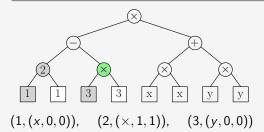


Example

wh

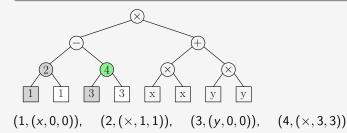
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

ich represents $(x^2 - y^2)(x^2 + y^2)$.



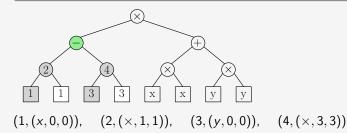
Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

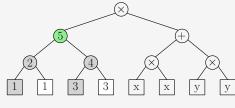
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

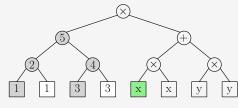
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

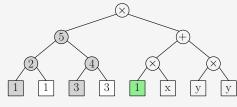
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

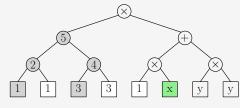
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

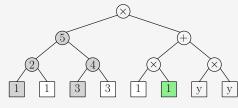
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

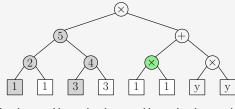
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

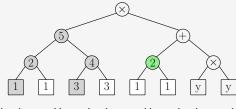
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

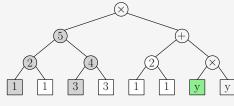
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

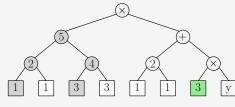
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

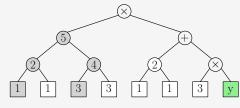
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

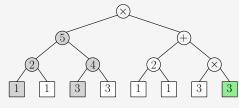
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

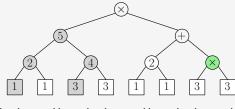
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

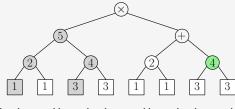
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

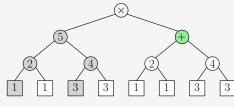
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



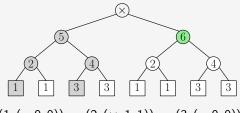
Example

wh

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

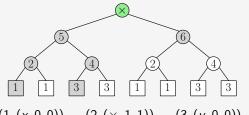
ich represents $(x^2 - y^2)(x^2 + y^2)$.



Example

Consider the labeled tree necessary to store the arithmetic expression

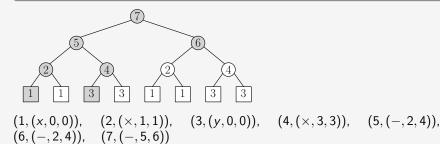
$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$
 which represents $(x^2 - y^2)(x^2 + y^2)$.



Example

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

which represents $(x^2 - y^2)(x^2 + y^2)$.

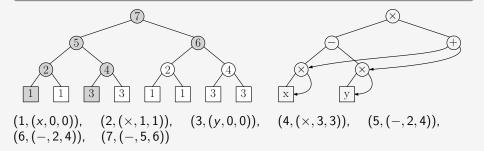


Example

wh

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

ich represents $(x^2 - y^2)(x^2 + y^2)$.



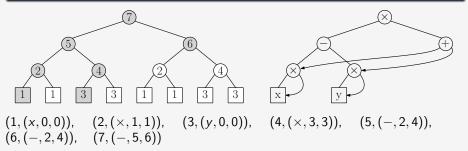
Example

whi

Consider the labeled tree necessary to store the arithmetic expression

$$(* (- (* x x) (* y y)) (+ (* x x) (* y y)))$$

ch represents $(x^2 - y^2)(x^2 + y^2)$.



Definition

Compacted tree is the DAG computed by this procedure.

Applications: XML-Compression, Compilers, LISP, Data storage, etc.

- Restrict to unlabeled binary tree
- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree
 - Bijection
 - Traverse tree post-order
 - If subtree appears twice, delete second one and replace by pointer → directed acyclic graph (DAG)
- Analyzed by Flajolet, Sipala, Steyaert: A tree of size *n* has a compacted form of expected size that is asymptotically equal to

$$C \frac{n}{\sqrt{\log n}},$$

- Applications: XML-Compression, Compilers, LISP, Data storage, etc.
- Restrict to unlabeled binary tree
- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree
 - Bijection
 - Traverse tree post-order
 - If subtree appears twice, delete second one and replace by pointer \rightarrow directed acyclic graph (DAG)
- Analyzed by Flajolet, Sipala, Steyaert: A tree of size *n* has a compacted form of expected size that is asymptotically equal to

$$C\frac{n}{\sqrt{\log n}},$$

- Applications: XML-Compression, Compilers, LISP, Data storage, etc.
- Restrict to unlabeled binary tree
- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree
 - Bijection
 - Traverse tree post-order
 - If subtree appears twice, delete second one and replace by pointer \rightarrow directed acyclic graph (DAG)
- Analyzed by Flajolet, Sipala, Steyaert: A tree of size n has a compacted form of expected size that is asymptotically equal to

$$C \frac{n}{\sqrt{\log n}},$$

- Applications: XML-Compression, Compilers, LISP, Data storage, etc.
- Restrict to unlabeled binary tree
- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree
 - Bijection
 - Traverse tree post-order
 - If subtree appears twice, delete second one and replace by pointer
 - ightarrow directed acyclic graph (DAG)
- Analyzed by Flajolet, Sipala, Steyaert: A tree of size *n* has a compacted form of expected size that is asymptotically equal to

$$C \frac{n}{\sqrt{\log n}},$$

- Applications: XML-Compression, Compilers, LISP, Data storage, etc.
- Restrict to unlabeled binary tree
- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree
 - Bijection
 - Traverse tree post-order
 - If subtree appears twice, delete second one and replace by pointer → directed acyclic graph (DAG)
- Analyzed by Flajolet, Sipala, Steyaert: A tree of size n has a compacted form of expected size that is asymptotically equal to

$$C\frac{n}{\sqrt{\log n}},$$

- Applications: XML-Compression, Compilers, LISP, Data storage, etc.
- Restrict to unlabeled binary tree
- Important property: Subtrees are unique
- Efficient algorithm to compute compacted tree
 - Bijection
 - Traverse tree post-order
 - If subtree appears twice, delete second one and replace by pointer → directed acyclic graph (DAG)
- Analyzed by Flajolet, Sipala, Steyaert: A tree of size n has a compacted form of expected size that is asymptotically equal to

$$C\frac{n}{\sqrt{\log n}},$$

where C is explicit related to the type of trees and the statistical model.

Reverse question

How many compacted trees of (compacted) size n exist?

Goals

1 Understand compacted trees

- 2 Find a recurrence relation for compacted trees
- Use exponential generating functions to count DAGs
- 4 Solve the (simplified) problem(s)

Goals

- **1** Understand compacted trees
- 2 Find a recurrence relation for compacted trees
- Use exponential generating functions to count DAGs
- 4 Solve the (simplified) problem(s)

Goals

- 1 Understand compacted trees
- 2 Find a recurrence relation for compacted trees
- 3 Use exponential generating functions to count DAGs

Solve the (simplified) problem(s)

Goals

- 1 Understand compacted trees
- 2 Find a recurrence relation for compacted trees
- 3 Use exponential generating functions to count DAGs
- **4** Solve the (simplified) problem(s)

Goals

- 1 Understand compacted trees
- 2 Find a recurrence relation for compacted trees
- 3 Use exponential generating functions to count DAGs
- 4 Solve the (simplified) problem(s)

Methods

- **1** Recurrence relations
- 2 Bijections
- 3 Generating functions
- 4 Symbolic method

- 5 Differential equations
- **6** Singularity analysis
- Chebyshev polynomials
- 8 Guess and prove

Size of a compacted tree: number of internal nodes

Number of compacted trees of size n: c_n

- Size of a compacted tree: number of internal nodes
- Number of compacted trees of size *n*: *c*_n

Size of a compacted tree: number of internal nodes

Number of compacted trees of size n: c_n

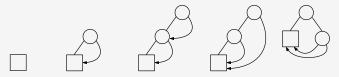


Figure: All compacted binary trees of size n = 0, 1, 2.

Size of a compacted tree: number of internal nodes

Number of compacted trees of size n: c_n

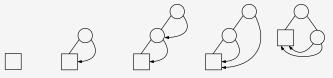


Figure: All compacted binary trees of size n = 0, 1, 2.

Example (Compacted binary trees)

size	<i>n</i> = 0	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
Cn	1	1	3	15	111	1119	14487

$$n! \leq c_n \leq \frac{1}{n+1} {\binom{2n}{n}} \cdot n!$$

Hence, $c_n = O(n!4^n n^{-1/2})$.

Idea

Every compacted tree of size n can be build from a binary tree of size n by adding pointers.

Idea

Every compacted tree of size n can be build from a binary tree of size n by adding pointers.

Attention: Pointers are not allowed to violate uniqueness

Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

Idea

Every compacted tree of size n can be build from a binary tree of size n by adding pointers.

- Attention: Pointers are not allowed to violate uniqueness
- Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

Idea

Every compacted tree of size n can be build from a binary tree of size n by adding pointers.

- Attention: Pointers are not allowed to violate uniqueness
- Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

- **1** Take a binary tree of size *n*
- 2 Add leaf as left child on first free spot in postorder traversal
- Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

Idea

Every compacted tree of size n can be build from a binary tree of size n by adding pointers.

- Attention: Pointers are not allowed to violate uniqueness
- Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

- **1** Take a binary tree of size *n*
- 2 Add leaf as left child on first free spot in postorder traversal
- 3 Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

Idea

Every compacted tree of size n can be build from a binary tree of size n by adding pointers.

- Attention: Pointers are not allowed to violate uniqueness
- Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

- **1** Take a binary tree of size *n*
- 2 Add leaf as left child on first free spot in postorder traversal
- 3 Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

Idea

Every compacted tree of size n can be build from a binary tree of size n by adding pointers.

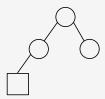
- Attention: Pointers are not allowed to violate uniqueness
- Observation: Only cherries (nodes with 2 pointers) might violate uniqueness

- **1** Take a binary tree of size *n*
- 2 Add leaf as left child on first free spot in postorder traversal
- 3 Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

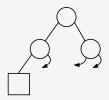
- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

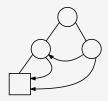
- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness



- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

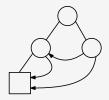


- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

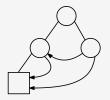


Procedure

- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness



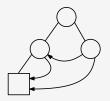
- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

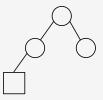


Valid compacted tree

Procedure

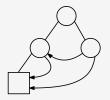
- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

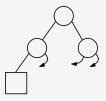




Procedure

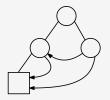
- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- 3 Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

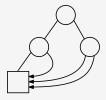




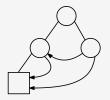
Procedure

- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness

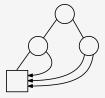




- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness



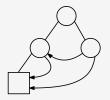
Valid compacted tree

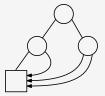


Invalid compacted tree

Procedure

- **1** Take a binary tree of size *n* (called *spine*)
- 2 Add leaf as left child on first free spot in postorder traversal
- **3** Add pointers such that out-degree of all internal nodes is 2
- 4 Connect pointers to leaf or internal nodes NOT violating uniqueness





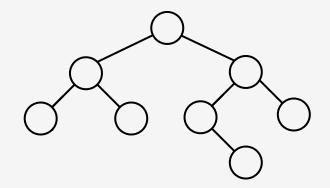
Valid compacted tree

Invalid compacted tree

This spine is associated to 3 valid compacted trees.

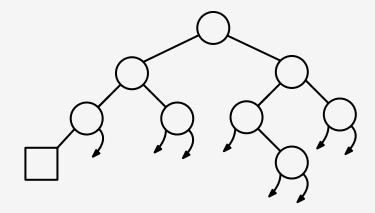
A bigger example

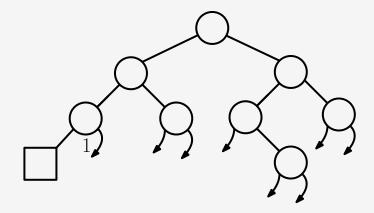
We take a binary tree of size 8.

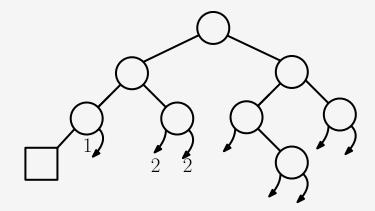


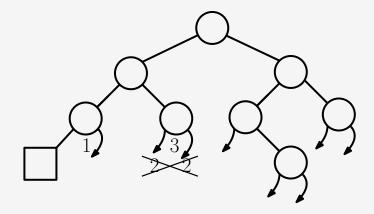
A bigger example

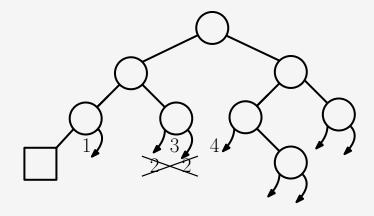
We take a binary tree of size 8.

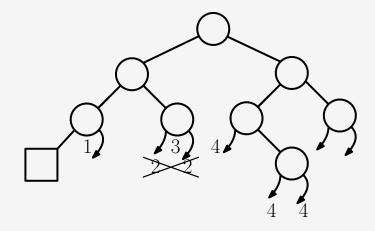


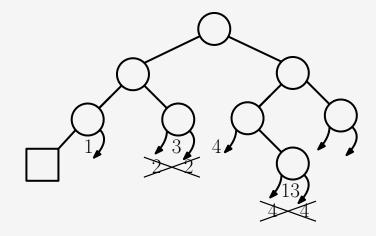


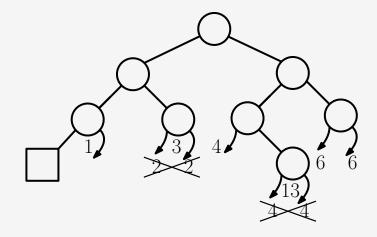


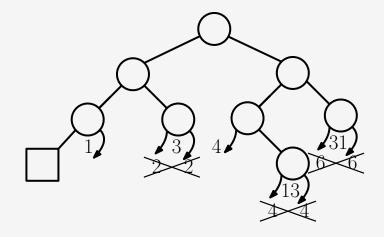




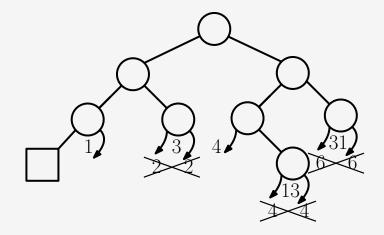






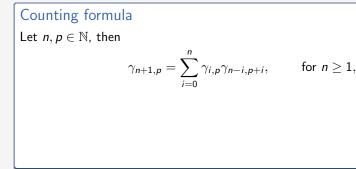


We take a binary tree of size 8.

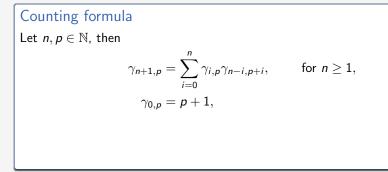


In total, this spine corresponds to $1 \cdot 3 \cdot 4 \cdot 13 \cdot 31 = 4836$ compacted trees.

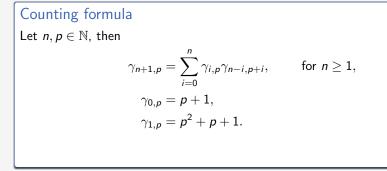
A recurrence relation



- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i



- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i



- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i

Counting formula Let $n, p \in \mathbb{N}$, then $\gamma_{n+1,p} = \sum_{i=0}^{n} \gamma_{i,p} \gamma_{n-i,p+i}, \quad \text{for } n \ge 1,$ $\gamma_{0,p} = p + 1,$ $\gamma_{1,p} = p^2 + p + 1.$ We are interested in $c_n = \gamma_{n,0}.$

- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i

Counting formula Let $n, p \in \mathbb{N}$, then $\gamma_{n+1,p} = \sum_{i=0}^{n} \gamma_{i,p} \gamma_{n-i,p+i}, \quad \text{for } n \ge 1,$ $\gamma_{0,p} = p + 1,$ $\gamma_{1,p} = p^2 + p + 1.$ We are interested in $c_n = \gamma_{n,0}.$

• Helps us to efficiently compute c_n

Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters

Summands possess 3 (!) dependencies on i

Counting formula Let $n, p \in \mathbb{N}$, then $\gamma_{n+1,p} = \sum_{i=0}^{n} \gamma_{i,p} \gamma_{n-i,p+i}, \quad \text{for } n \ge 1,$ $\gamma_{0,p} = p + 1,$ $\gamma_{1,p} = p^2 + p + 1.$ We are interested in $c_n = \gamma_{n,0}.$

- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on i

Counting formula Let $n, p \in \mathbb{N}$, then $\gamma_{n+1,p} = \sum_{i=0}^{n} \gamma_{i,p} \gamma_{n-i,p+i}, \quad \text{for } n \ge 1,$ $\gamma_{0,p} = p + 1,$ $\gamma_{1,p} = p^2 + p + 1.$ We are interested in $c_n = \gamma_{n,0}$.

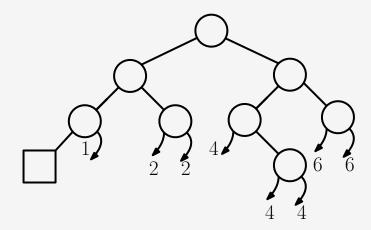
- Helps us to efficiently compute c_n
- Asymptotic analysis failed (so far)
 One reason: asymptotically every summand matters
- Summands possess 3 (!) dependencies on *i*

Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. $c_n \leq r_n$.

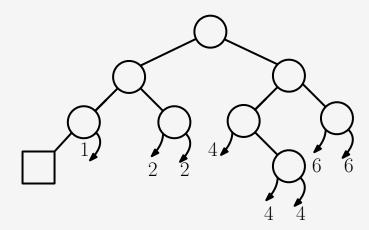
Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. $c_n \leq r_n$.



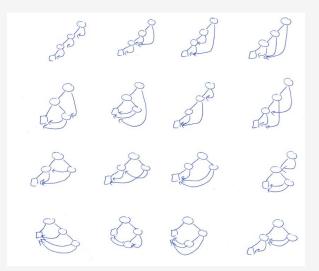
Relaxed compacted binary trees

Drop the condition of uniqueness of the subtrees, i.e. $c_n \leq r_n$.



In total, this spine corresponds to $1 \cdot 3 \cdot 4 \cdot 4^2 \cdot 6^2 = 6912$ relaxed trees. (Recall, that the same spine corresponds to 4836 compacted trees.)

Relaxed compacted binary trees of size 3



Relaxed compacted binary trees of size 3

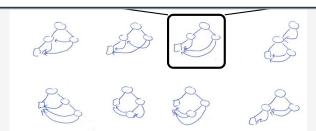
The relaxed tree of size 3 which is not a compacted tree

compacted tree

binary tree

relaxed tree

Reason: subtrees not unique



Counting formula Let $n, p \in \mathbb{N}$, then $\delta_{n+1,p} = \sum_{i=0}^{n} \delta_{i,p} \delta_{n-i,p+i}, \quad \text{for } n \ge 0,$ $\delta_{0,p} = p + 1, \qquad \overbrace{\delta_{1,p} = p^2 + p + 1}^2.$ We are interested in $r_n = \delta_{n,0}$.

Counting formula Let $n, p \in \mathbb{N}$, then $\delta_{n+1,p} = \sum_{i=0}^{n} \delta_{i,p} \delta_{n-i,p+i}, \quad \text{for } n \ge 0,$ $\delta_{0,p} = p + 1, \quad \underbrace{\delta_{1,p} = p^2 + p + 1}_{p-1}.$ We are interested in $r_n = \delta_{n,0}.$

Recursion still too complicated.

Counting formula Let $n, p \in \mathbb{N}$, then $\delta_{n+1,p} = \sum_{i=0}^{n} \delta_{i,p} \delta_{n-i,p+i}, \quad \text{for } n \ge 0,$ $\delta_{0,p} = p+1, \quad \underbrace{\delta_{1,p} = p^2 \neq p \pm 1}_{\text{OUV}}.$ We are interested in $r_n = \delta_{n,0}$.

Recursion still too complicated.

Exam	ple (F	Relaxed	binary t	rees)				
	size	<i>n</i> = 0	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
	Cn	1	1	3	15	111	1119	14487
	r _n	1	1	3	16	127	1363	18628

Operations on trees

We restrict to a subclass of relaxed binary trees: bounded right height.

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

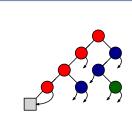
The right height of a binary tree is the maximal number of **right children on** any path from the root to a leaf.

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

Example

The right height of a binary tree is the maximal number of **right children on** any path from the root to a leaf.

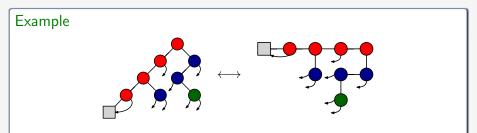


A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of level 1 in blue, and the node of level 3 in green.

We restrict to a subclass of relaxed binary trees: bounded right height.

Right height

The right height of a binary tree is the maximal number of **right children on** any path from the root to a leaf.



A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of level 1 in blue, and the node of level 3 in green.

Compacted Binary Trees | Operations on trees

Relaxed trees of right height $\leq k$

-9-9-...-9-9-

Figure: Right height ≤ 0 .

Compacted Binary Trees | Operations on trees

Relaxed trees of right height $\leq k$

ݤ**−**ݤ- ... **-**ݤ**−**ݤ

Figure: Right height ≤ 0 .

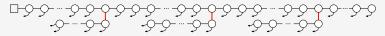


Figure: Right height ≤ 1 .

Relaxed trees of right height $\leq k$

-9-...-9-9

Figure: Right height ≤ 0 .

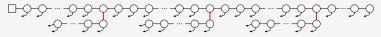


Figure: Right height ≤ 1 .

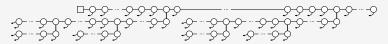


Figure: Right height ≤ 2 .

Relaxed trees of right height $\leq k$

�−�-...*-*Ŷ−Ŷ

Figure: Right height ≤ 0 .

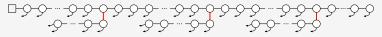


Figure: Right height ≤ 1 .

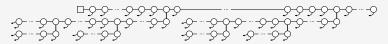


Figure: Right height ≤ 2 .

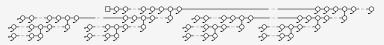


Figure: Right height \leq 3.

Main idea: Exponential generating functions

• Asymptotic growth: $n!\rho^n \Rightarrow$ exponential generating functions (EGF)

- Upper bound guarantees positive radius of convergence
- Problem: unlabeled structures!

Main idea: Exponential generating functions

- Asymptotic growth: $n!\rho^n \Rightarrow$ exponential generating functions (EGF)
- Upper bound guarantees positive radius of convergence
- Problem: unlabeled structures!

- Asymptotic growth: $n!\rho^n \Rightarrow$ exponential generating functions (EGF)
- Upper bound guarantees positive radius of convergence
- Problem: unlabeled structures!

- Asymptotic growth: $n!\rho^n \Rightarrow$ exponential generating functions (EGF)
- Upper bound guarantees positive radius of convergence
- Problem: unlabeled structures!

Idea: derive symbolic method for compacted trees

- Asymptotic growth: $n!\rho^n \Rightarrow$ exponential generating functions (EGF)
- Upper bound guarantees positive radius of convergence
- Problem: unlabeled structures! Idea: dorive symbolic method for comp

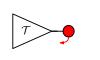
Idea: derive symbolic method for compacted trees

Let $T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$ be an EGF of the class \mathcal{T} .

- Asymptotic growth: $n!\rho^n \Rightarrow$ exponential generating functions (EGF)
- Upper bound guarantees positive radius of convergence
- Problem: unlabeled structures! Idea: derive symbolic method for compacted trees
- Let $T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$ be an EGF of the class \mathcal{T} .

$T(z) \mapsto zT(z)$

Append a new node with a pointer to the class \mathcal{T} .



- Asymptotic growth: $n!\rho^n \Rightarrow$ exponential generating functions (EGF)
- Upper bound guarantees positive radius of convergence
- Problem: unlabeled structures! Idea: derive symbolic method for compacted trees

Let $T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$ be an EGF of the class \mathcal{T} .

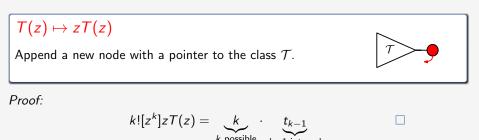
$T(z) \mapsto zT(z)$

Append a new node with a pointer to the class \mathcal{T} .

Proof:

$$k![z^k]zT(z) = k \cdot t_{k-1}$$

- Asymptotic growth: $n!\rho^n \Rightarrow$ exponential generating functions (EGF)
- Upper bound guarantees positive radius of convergence
- Problem: unlabeled structures! Idea: derive symbolic method for compacted trees
- Let $T(z) = \sum_{n \ge 0} t_n \frac{z^n}{n!}$ be an EGF of the class \mathcal{T} .



Let $R_0(z) = \sum_{n \ge 0} r_{0,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded left-height ≤ 0 .

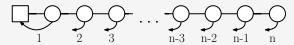
Let $R_0(z) = \sum_{n \ge 0} r_{0,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded left-height ≤ 0 .

and new pointer

Let $R_0(z) = \sum_{n \ge 0} r_{0,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded left-height ≤ 0 .

$$\mathcal{R}_{0} = \underbrace{\{\Box\}}_{\text{Tree of size } 0} \cup \underbrace{\{\circ\} \times \mathcal{R}_{0}}_{\text{append new root}}$$
$$\underset{nd new pointer}{\text{and new pointer}}$$
$$\mathcal{R}_{0}(z) = \frac{1}{1-z} = \sum_{n \ge 0} n! \frac{z^{n}}{n!}$$

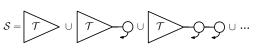
Let $R_0(z) = \sum_{n \ge 0} r_{0,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded left-height ≤ 0 .





 $S: T(z) \mapsto \frac{1}{1-z}T(z)$ Append a (possibly empty) $S = T \cup T \cup T$

 $S: T(z) \mapsto \frac{1}{1-z}T(z)$ Append a (possibly empty)
sequence at the root. S = T



 $D: T(z) \mapsto \frac{d}{dz}T(z)$

Delete top node but preserve its pointers.

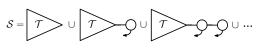
 $S: T(z) \mapsto \frac{1}{1-z}T(z)$ Append a (possibly empty) $S = T \cup T \cup T$

 $D: T(z) \mapsto \frac{d}{dz}T(z)$ Delete top node but preserve its pointers.

 $I: T(z) \mapsto \int T(z)$

Add top node without pointers.

 $S: T(z) \mapsto \frac{1}{1-z}T(z)$ Append a (possibly empty) sequence at the root.



 $D: T(z) \mapsto \frac{d}{dz}T(z)$

Delete top node but preserve its pointers.

 $I: T(z) \mapsto \int T(z)$

Add top node without pointers.

 $P: T(z) \mapsto z \frac{d}{dz} T(z)$

Add a new pointer to the top node.

Relaxed binary trees

Let $R_1(z) = \sum_{\ell \ge 0} r_{1,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded left-height ≤ 1 .

Let $R_1(z) = \sum_{\ell \ge 0} r_{1,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded left-height ≤ 1 .

Decomposition of $R_1(z)$

$$R_1(z) = \sum_{n\geq 0} R_{1,\ell}(z)$$

where $R_{1,\ell}(z)$ is the EGF for relaxed binary trees with exactly ℓ left-subtrees, i.e. ℓ left-edges from level 0 to level 1.

Let $R_1(z) = \sum_{\ell \ge 0} r_{1,n} \frac{z^n}{n!}$ be the EGF of relaxed binary trees with bounded left-height ≤ 1 .

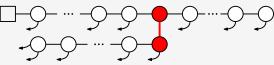
Decomposition of $R_1(z)$

$$R_1(z) = \sum_{n\geq 0} R_{1,\ell}(z)$$

where $R_{1,\ell}(z)$ is the EGF for relaxed binary trees with exactly ℓ left-subtrees, i.e. ℓ left-edges from level 0 to level 1.

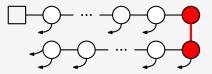
$$R_{1,0}(z) = R_0(z) = rac{1}{1-z}$$

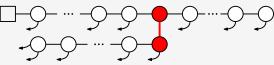
 $R_{1,1}(z) = ?$



Symbolic specification

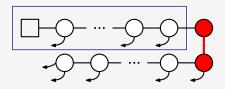
1 delete initial sequence

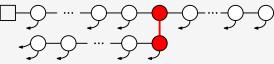




Symbolic specification

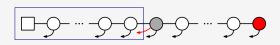
- 1 delete initial sequence
- 2 decompose

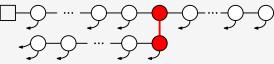




Symbolic specification

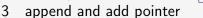
- 1 delete initial sequence
- 2 decompose
- 3 append and add pointer



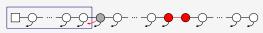


Symbolic specification

- 1 delete initial sequence
- 2 decompose

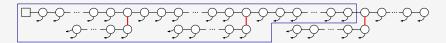


4 add initial sequence



$R_{1,1}(z)$

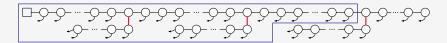
$$\begin{aligned} R_{1,1}(z) &= \underbrace{S}_{\text{init.}} \circ \underbrace{I}_{\text{lvl 0}} \circ \underbrace{S \circ P}_{\text{red pointer}} \left(\underbrace{zR_{1,0}(z)}_{\text{non empty}} \right) \\ R_{1,1}(z) &= \frac{1}{1-z} \int \frac{1}{1-z} z \left(zR_{1,0}(z) \right)' \, dz \end{aligned}$$



Observation

Same structure as for $R_{1,1}(z)$

$$\begin{split} R_{1,\ell}(z) &= \frac{1}{1-z} \int \frac{1}{1-z} z \left(z R_{1,\ell-1}(z) \right)' \, dz, \qquad \ell \geq 1, \\ R_{1,0}(z) &= R_0(z) = \frac{1}{1-z}. \end{split}$$



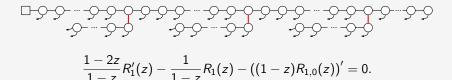
Observation

Same structure as for $R_{1,1}(z)$

$$egin{aligned} &R_{1,\ell}(z) = rac{1}{1-z} \int rac{1}{1-z} z \left(z R_{1,\ell-1}(z)
ight)' \, dz, &\ell \geq 1, \ &R_{1,0}(z) = R_0(z) = rac{1}{1-z}. \end{aligned}$$

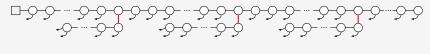
Recall that $R_1(z) = \sum_{\ell \ge 0} R_{1,\ell}(z)$. Summing the previous equation (formally) for $\ell \ge 1$ gives

$$\frac{1-2z}{1-z}R_1'(z)-\frac{1}{1-z}R_1(z)-((1-z)R_{1,0}(z))'=0.$$



We know that $R_{1,0}(z) = \frac{1}{1-z}$ and get

$$(1-2z) R'_1(z) - R_1(z) = 0,$$
 with $R_1(0) = 1.$



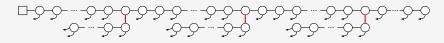
$$\frac{1-2z}{1-z}R_1'(z) - \frac{1}{1-z}R_1(z) - ((1-z)R_{1,0}(z))' = 0$$

We know that $R_{1,0}(z) = \frac{1}{1-z}$ and get

$$(1-2z) R'_1(z) - R_1(z) = 0,$$
 with $R_1(0) = 1.$

This directly yields

$$R_1(z)=\frac{1}{\sqrt{1-2z}}.$$



$$\frac{1-2z}{1-z}R_1'(z) - \frac{1}{1-z}R_1(z) - ((1-z)R_{1,0}(z))' = 0$$

We know that $R_{1,0}(z) = \frac{1}{1-z}$ and get

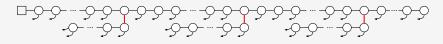
$$(1-2z) R'_1(z) - R_1(z) = 0,$$
 with $R_1(0) = 1.$

This directly yields

$$R_1(z)=\frac{1}{\sqrt{1-2z}}.$$

Therefore we get

$$r_{1,n} = n![z^n]R_1(z) = \frac{n!}{2^n} {\binom{2n}{n}} = (2n-1)!!.$$



$$\frac{1-2z}{1-z}R_1'(z) - \frac{1}{1-z}R_1(z) - ((1-z)R_{1,0}(z))' = 0.$$

We know that $R_{1,0}(z) = \frac{1}{1-z}$ and get

$$(1-2z) R'_1(z) - R_1(z) = 0,$$
 with $R_1(0) = 1.$

This directly yields

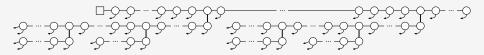
$$R_1(z)=\frac{1}{\sqrt{1-2z}}.$$

Therefore we get

$$r_{1,n} = n![z^n]R_1(z) = \frac{n!}{2^n} {\binom{2n}{n}} = (2n-1)!!.$$

Preprint (ArXiv:1706.07163): [W, 2017, "A bijection of plane increasing trees with relaxed binary trees of right height at most one"].

Bounded left-height ≤ 2 : $R_2(z)$



Symbolic construction

$$\begin{pmatrix} (1-3z+z^2) R_2''(z) + (2z-3) R_2'(z) = 0, \\ R_2(0) = 1, R_2'(0) = 1, \end{cases}$$

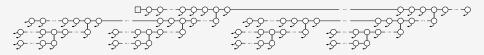
then we get the closed form

$$R_2'(z) = rac{1}{1-3z+z^2},$$

and the coefficients

$$r_{2,n} = n! [z^n] R_2(z) = \frac{(n-1)!}{\sqrt{5}} \left(\left(\frac{3+\sqrt{5}}{2} \right)^n - \left(\frac{3-\sqrt{5}}{2} \right)^n \right).$$

Bounded left-height ≤ 3 : $R_3(z)$



Symbolic construction

$$egin{aligned} \left(1-4z+3z^2
ight) R_3^{\prime\prime\prime}(z) + \left(9z-6
ight) R_3^{\prime\prime}(z) + 2R_3^{\prime}(z) = 0, \ R_3(0) = 1, \ R_3^{\prime\prime}(0) = 1, \ R_3^{\prime\prime}(0) = rac{3}{2}, \end{aligned}$$

then we get the closed form

$$R_3(z) = \left(\frac{3z - 2 + \sqrt{3}\sqrt{1 - 4z + 3z^2}}{\sqrt{3} - 2}\right)^{\frac{1}{\sqrt{3}}},$$

and the asymptotics of the coefficients

$$r_{3,n} = n! [z^n] R_3(z) = \frac{n!}{\sqrt{6} (2 - \sqrt{3})^{1/\sqrt{3}}} \frac{3^n}{n^{3/2} \sqrt{\pi}} \left(1 + \mathcal{O}\left(\frac{1}{n}\right) \right).$$

Theorem

Let $(L_k)_{k>0}$ be a family of differential operators given by

$$\begin{split} & L_0 = (1-z), \\ & L_1 = (1-2z)D-1, \\ & L_k = L_{k-1} \cdot D - L_{k-2} \cdot D^2 \cdot z, \end{split} \quad k \geq 2. \end{split}$$

$$L_k\cdot R_k=0.$$

Theorem

Let $(L_k)_{k>0}$ be a family of differential operators given by

$$L_{0} = (1 - z),$$

$$L_{1} = (1 - 2z)D - 1,$$

$$L_{k} = L_{k-1} \cdot D - L_{k-2} \cdot D^{2} \cdot z, \qquad k \ge 2.$$

$$L_k\cdot R_k=0.$$

$$(1-2z)\frac{d}{dz}R_1(z)-R_1(z)=0$$

Theorem

Let $(L_k)_{k>0}$ be a family of differential operators given by

$$L_{0} = (1 - z),$$

$$L_{1} = (1 - 2z)D - 1,$$

$$L_{k} = L_{k-1} \cdot D - L_{k-2} \cdot D^{2} \cdot z, \qquad k \ge 2.$$

$$L_k\cdot R_k=0.$$

$$(1-2z)\frac{d}{dz}R_1(z) - R_1(z) = 0$$
$$(z^2 - 3z + 1)\frac{d^2}{dz^2}R_2(z) + (2z - 3)\frac{d}{dz}R_2(z) = 0$$

Theorem

Let $(L_k)_{k>0}$ be a family of differential operators given by

$$L_{0} = (1 - z),$$

$$L_{1} = (1 - 2z)D - 1,$$

$$L_{k} = L_{k-1} \cdot D - L_{k-2} \cdot D^{2} \cdot z, \qquad k \ge 2.$$

$$L_k\cdot R_k=0.$$

$$(1-2z)\frac{d}{dz}R_1(z) - R_1(z) = 0$$
$$(z^2 - 3z + 1)\frac{d^2}{dz^2}R_2(z) + (2z - 3)\frac{d}{dz}R_2(z) = 0$$
$$(3z^2 - 4z + 1)\frac{d^3}{dz^3}R_3(z) + (9z - 6)\frac{d^2}{dz^2}R_3(z) + 2\frac{d}{dz}R_3(z) = 0$$

Theorem

Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that

$$L_k = \ell_{k,k}(z)D^k + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z)$$

Theorem Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that $L_{k} = \ell_{k,k}(z)D^{k} + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$ Then we have $\ell_{k,0}(z) = 0,$ $\ell_{k,1}(z) = \ell_{k-1,0}(z) - 2\ell_{k-2,0}(z),$ $\ell_{k,i}(z) = \ell_{k-1,i-1}(z) - (i+1)\ell_{k-2,i-1}(z) - z\ell_{k-2,i-2}(z),$ 2 < i < k - 1 $\ell_{k,k}(z) = \ell_{k-1,k-1}(z) - z\ell_{k-2,k-2}(z).$ The initial polynomials are $\ell_{0,0}(z) = 1 - z$, $\ell_{1,0}(z) = -1$, and $\ell_{1,1}(z) = 1 - 2z$.

Theorem Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that $L_{k} = \ell_{k,k}(z)D^{k} + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$ Then we have $\ell_{k,0}(z) = 0,$ $\ell_{k,1}(z) = \ell_{k-1,0}(z) - 2\ell_{k-2,0}(z),$ $2\leq i\leq k-1.$ $\ell_{k,i}(z) = \ell_{k-1,i-1}(z) - (i+1)\ell_{k-2,i-1}(z) - z\ell_{k-2,i-2}(z),$ $\ell_{k,k}(z) = \ell_{k-1,k-1}(z) - z\ell_{k-2,k-2}(z).$ The initial polynomials are $\ell_{0,0}(z) = 1 - z$, $\ell_{1,0}(z) = -1$, and $\ell_{1,1}(z) = 1 - 2z$. Furthermore, we have $\ell_{k,k}(z) = \sum_{j=1}^{\lfloor \frac{k+2}{2} \rfloor} (-1)^n \binom{k+2-n}{n} z^n.$

Theorem Let $\ell_{k,i} \in \mathbb{C}[z]$ be such that $L_{k} = \ell_{k,k}(z)D^{k} + \ell_{k,k-1}(z)D^{k-1} + \ldots + \ell_{k,0}(z).$ Then we have $\ell_{k,0}(z) = 0,$ $\ell_{k,1}(z) = \ell_{k-1,0}(z) - 2\ell_{k-2,0}(z),$ $2 \le i \le k-1.$ $\ell_{k,i}(z) = \ell_{k-1,i-1}(z) - (i+1)\ell_{k-2,i-1}(z) - z\ell_{k-2,i-2}(z),$ $\ell_{k,k}(z) = \ell_{k-1,k-1}(z) - z\ell_{k-2,k-2}(z).$ The initial polynomials are $\ell_{0,0}(z) = 1 - z$, $\ell_{1,0}(z) = -1$, and $\ell_{1,1}(z) = 1 - 2z$. Furthermore, we have $\ell_{k,k}(z) = \sum_{j=1}^{\lfloor \frac{k+2}{2} \rfloor} (-1)^n \binom{k+2-n}{n} z^n.$

Proof. Guess and Prove!

Consider an ordinary generating function of the kind

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \dots + a_r(z)Y(z) = 0, \qquad (1)$$

where the $a_i \equiv a_i(z)$ are meromorphic in a simply connected domain Ω . Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ .

Consider an ordinary generating function of the kind

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \dots + a_r(z)Y(z) = 0, \qquad (1)$$

where the $a_i \equiv a_i(z)$ are meromorphic in a simply connected domain Ω . Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ .

Definition (Regular singularity)

The differential equation (1) is said to have a singularity at ζ if at least one of the $\omega_{\zeta}(f)$ is positive. The point ζ is said to be a *regular singularity* if

 $\omega_{\zeta}(a_1) \leq 1, \qquad \omega_{\zeta}(a_2) \leq 2, \qquad \dots, \qquad \omega_{\zeta}(a_r) \leq r,$

and an *irregular singularity* otherwise.

Consider an ordinary generating function of the kind

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \dots + a_r(z)Y(z) = 0, \qquad (1)$$

where the $a_i \equiv a_i(z)$ are meromorphic in a simply connected domain Ω . Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ .

Definition (Regular singularity)

The differential equation (1) is said to have a singularity at ζ if at least one of the $\omega_{\zeta}(f)$ is positive. The point ζ is said to be a *regular singularity* if

 $\omega_{\zeta}(a_1) \leq 1, \qquad \omega_{\zeta}(a_2) \leq 2, \qquad \dots, \qquad \omega_{\zeta}(a_r) \leq r,$

and an *irregular singularity* otherwise.

Relaxed trees

$$\ell_{k,k}(z)\partial^k R_k(z) + \ell_{k,k-1}(z)\partial^{k-1}R_k(z) + \ldots + \ell_{k,0}(z)R_k(z) = 0$$

Consider an ordinary generating function of the kind

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \dots + a_r(z)Y(z) = 0, \qquad (1)$$

where the $a_i \equiv a_i(z)$ are meromorphic in a simply connected domain Ω . Let $\omega_{\zeta}(f)$ be the order of the pole of f at ζ .

Definition (Regular singularity)

The differential equation (1) is said to have a singularity at ζ if at least one of the $\omega_{\zeta}(f)$ is positive. The point ζ is said to be a *regular singularity* if

$$\omega_{\zeta}(a_1) \leq 1, \qquad \omega_{\zeta}(a_2) \leq 2, \qquad \dots, \qquad \omega_{\zeta}(a_r) \leq r$$

and an *irregular singularity* otherwise.

Relaxed trees

$$\partial^k R_k(z) + \frac{\ell_{k,k-1}(z)}{\ell_{k,k}(z)} \partial^{k-1} R_k(z) + \ldots + \frac{\ell_{k,0}(z)}{\ell_{k,k}(z)} R_k(z) = 0$$

The indicial polynomial

Structure of the ODE:

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \cdots + a_r(z)Y(z) = 0.$$

The indicial polynomial

Structure of the ODE:

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \cdots + a_r(z)Y(z) = 0.$$

Definition (Indicial polynomial)

Given an equation of the form (1) and a regular singular point ζ , the *indicial* polynomial $I(\alpha)$ at ζ is defined as

$$I(\alpha) = \alpha^{\underline{r}} + \delta_1 \alpha^{\underline{r-1}} + \cdots + \delta_r, \qquad \alpha^{\underline{\ell}} := \alpha(\alpha - 1) \cdots (\alpha - \ell + 1),$$

where $\delta_i := \lim_{z \to \zeta} (z - \zeta)^i a_i(z)$. The *indicial equation at* ζ is the algebraic equation $I(\alpha) = 0$.

The indicial polynomial

Structure of the ODE:

$$\partial^r Y(z) + a_1(z)\partial^{r-1}Y(z) + \cdots + a_r(z)Y(z) = 0.$$

Definition (Indicial polynomial)

Given an equation of the form (1) and a regular singular point ζ , the *indicial* polynomial $I(\alpha)$ at ζ is defined as

$$I(\alpha) = \alpha^{\underline{r}} + \delta_1 \alpha^{\underline{r-1}} + \cdots + \delta_r, \qquad \alpha^{\underline{\ell}} := \alpha(\alpha - 1) \cdots (\alpha - \ell + 1),$$

where $\delta_i := \lim_{z \to \zeta} (z - \zeta)^i a_i(z)$. The *indicial equation at* ζ is the algebraic equation $I(\alpha) = 0$.

All the solutions of the differential equations behave for $z
ightarrow \zeta$ like

$$(z-\zeta)^lpha \log(z-\zeta)^eta$$

for some $\alpha \in \mathbb{C}, \beta \in \mathbb{N}$.

- $\blacksquare \alpha$ is a root of the indicial polynomial
- \blacksquare β is related to multiple roots of the indicial polynomial and roots at integer distances

Theorem

Consider a differential equation (1) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$.

Theorem

Consider a differential equation (1) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta),$$

$$m=0,1,\ldots,r-2,$$

where H_m is analytic at 0 ($H_m(0) \neq 0$).

Theorem

Consider a differential equation (1) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta), \qquad m=0,1,\ldots,r-2,$$

where H_m is analytic at 0 ($H_m(0) \neq 0$). The r-th basis function depends on δ_1 :

Theorem

Consider a differential equation (1) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta), \qquad m=0,1,\ldots,r-2,$$

where H_m is analytic at 0 ($H_m(0) \neq 0$). The r-th basis function depends on δ_1 : **1** For $\delta_1 \in \{0, 1, ..., r-1\}$ it is of the form $(z - \zeta)^{r-1-\delta_1}H(z - \zeta)\log(z - \zeta)$;

where H is analytic at 0 with $H(0) \neq 0$.

Theorem

Consider a differential equation (1) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta), \qquad m=0,1,\ldots,r-2,$$

where H_m is analytic at 0 ($H_m(0) \neq 0$). The r-th basis function depends on δ_1 : **1** For $\delta_1 \in \{0, 1, ..., r - 1\}$ it is of the form

$$(z-\zeta)^{r-1-\delta_1}H(z-\zeta)\log(z-\zeta);$$

2 For
$$\delta_1 \in \{r, r+1, \ldots\}$$
 it is of the form
 $(z-\zeta)^{r-1-\delta_1}H(z-\zeta) + H_0(z-\zeta)\left(\log(z-\zeta)\right)^k$, with $k \in \{0,1\}$;

where H is analytic at 0 with $H(0) \neq 0$.

Theorem

Consider a differential equation (1) and a regular singular point ζ such that $\omega_{\zeta}(a_i) \leq 1$ for all i = 1, ..., r, and $\delta_1 \geq 0$. Then, the vector space of analytic solutions defined in a slit neighborhood of ζ admits a basis of r - 1 analytic solutions

$$(z-\zeta)^m H_m(z-\zeta), \qquad m=0,1,\ldots,r-2,$$

where H_m is analytic at 0 ($H_m(0) \neq 0$). The r-th basis function depends on δ_1 : **1** For $\delta_1 \in \{0, 1, ..., r-1\}$ it is of the form

$$(z-\zeta)^{r-1-\delta_1}H(z-\zeta)\log(z-\zeta);$$

$$(z-\zeta)^{r-1-\delta_1}H(z-\zeta);$$

where H is analytic at 0 with $H(0) \neq 0$.

Chebyshev polynomials

The **Chebyshev polynomials of the first kind** $T_n(z)$ are defined by the recurrence relation

$$T_0(z) = 1,$$

 $T_1(z) = z,$
 $T_{n+2}(z) = 2zT_{n+1}(z) - T_n(z).$

The **Chebyshev polynomials of the second kind** $U_n(z)$ are defined by the recurrence relation

$$egin{aligned} &U_0(z)=1,\ &U_1(z)=2z,\ &U_{n+2}(z)=2zU_{n+1}(z)-U_n(z). \end{aligned}$$

Properties of $\ell_{k,k}(z)$

Lemma (Transformed leading coefficient)

For the leading coefficient we get

$$\ell_{k,k}(z) = z^{\frac{k+2}{2}} U_{k+2}\left(\frac{1}{2\sqrt{z}}\right) = \sum_{n=0}^{\lfloor \frac{k+2}{2} \rfloor} (-1)^n \binom{k+2-n}{n} z^n,$$

where $U_k(z)$ are the Chebyshev polynomials of the second kind.

Properties of $\ell_{k,k}(z)$

Lemma (Transformed leading coefficient)

For the leading coefficient we get

$$\ell_{k,k}(z) = z^{\frac{k+2}{2}} U_{k+2}\left(\frac{1}{2\sqrt{z}}\right) = \sum_{n=0}^{\lfloor \frac{k+2}{2} \rfloor} (-1)^n \binom{k+2-n}{n} z^n,$$

where $U_k(z)$ are the Chebyshev polynomials of the second kind.

Lemma

The roots of $\ell_{k,k}(z)$ are real, positive, and distinct. Let ρ_k be the smallest real root of $\ell_{k,k}(z)$. Then, we have

$$\rho_k = \frac{1}{4\cos^2\left(\frac{\pi}{k+3}\right)}.$$

Furthermore, ρ_k is not a root of $\ell_{k,k-1}(z)$.

- Using the recurrence we get $\ell_{k,k-1}(z) = \frac{k}{2}\ell'_{k,k}(z)$;
- For $k \ge 2$ and $0 \le i \le \lfloor \frac{k-2}{2} \rfloor$ it holds that $\ell_{k,i}(z) \equiv 0$;
- The polynomials $\ell_{k,i}(z)$ for $\lfloor \frac{k}{2} \rfloor \leq i \leq k-1$ have no root in the interval $[0, \rho_k]$.

- Using the recurrence we get $\ell_{k,k-1}(z) = \frac{k}{2}\ell'_{k,k}(z)$;
- For $k \ge 2$ and $0 \le i \le \lfloor \frac{k-2}{2} \rfloor$ it holds that $\ell_{k,i}(z) \equiv 0$;
- The polynomials $\ell_{k,i}(z)$ for $\lfloor \frac{k}{2} \rfloor \leq i \leq k-1$ have no root in the interval $[0, \rho_k]$.

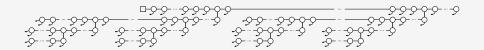
- Using the recurrence we get $\ell_{k,k-1}(z) = \frac{k}{2}\ell'_{k,k}(z)$;
- For $k \ge 2$ and $0 \le i \le \lfloor \frac{k-2}{2} \rfloor$ it holds that $\ell_{k,i}(z) \equiv 0$;
- The polynomials $\ell_{k,i}(z)$ for $\lfloor \frac{k}{2} \rfloor \le i \le k-1$ have no root in the interval $[0, \rho_k]$.

- Using the recurrence we get $\ell_{k,k-1}(z) = \frac{k}{2}\ell'_{k,k}(z)$;
- For $k \ge 2$ and $0 \le i \le \lfloor \frac{k-2}{2} \rfloor$ it holds that $\ell_{k,i}(z) \equiv 0$;
- The polynomials $\ell_{k,i}(z)$ for $\lfloor \frac{k}{2} \rfloor \leq i \leq k-1$ have no root in the interval $[0, \rho_k]$.

Proposition

The indicial polynomial $I_k(\alpha)$ of the k-th differential equation is given by $I_k(\alpha) = \alpha \frac{k-1}{2} (\alpha - (\frac{k}{2} - 1)).$

Asymptotics of relaxed trees with bounded right height



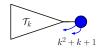
Theorem

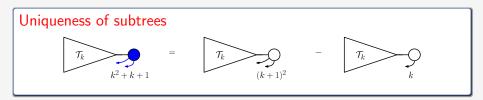
The number $r_{k,n}$ of relaxed trees with right height at most k is for $n \to \infty$ asymptotically equivalent to

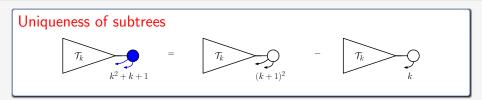
$$\gamma_{k,n} \sim \gamma_k n! \left(4\cos\left(\frac{\pi}{k+3}\right)\right)^n n^{-k/2},$$

where $\gamma_k \in \mathbb{R}$ is independent of *n*.

Uniqueness of subtrees

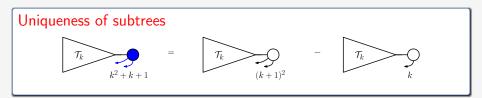






Let $(M_k)_{k\geq 0}$ be a family of differential operators such that the EGF $C_k(z)$ for compacted binary trees with right height $\leq k$ satisfies

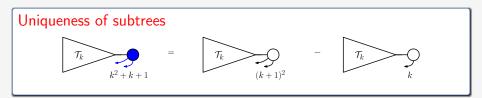
$$M_k\cdot C_k=0.$$



Let $(M_k)_{k\geq 0}$ be a family of differential operators such that the EGF $C_k(z)$ for compacted binary trees with right height $\leq k$ satisfies

$$M_k \cdot C_k = 0.$$

 $(1-2z) \frac{d^2}{dz^2} C_1(z) + (z-3) \frac{d}{dz} C_1(z) = 0,$

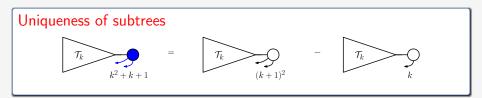


Let $(M_k)_{k\geq 0}$ be a family of differential operators such that the EGF $C_k(z)$ for compacted binary trees with right height $\leq k$ satisfies

$$M_k \cdot C_k = 0.$$

$$(1 - 2z)\frac{d^2}{dz^2}C_1(z) + (z - 3)\frac{d}{dz}C_1(z) = 0,$$

$$(z^2 - 3z + 1)\frac{d^3}{dz^3}C_2(z) - (z^2 - 6z + 6)\frac{d^2}{dz^2}C_2(z) - (2z - 3)\frac{d}{dz}C_2(z) = 0,$$



Let $(M_k)_{k\geq 0}$ be a family of differential operators such that the EGF $C_k(z)$ for compacted binary trees with right height $\leq k$ satisfies

$$M_k \cdot C_k = 0.$$

$$(1 - 2z) \frac{d^2}{dz^2} C_1(z) + (z - 3) \frac{d}{dz} C_1(z) = 0,$$

$$(z^2 - 3z + 1) \frac{d^3}{dz^3} C_2(z) - (z^2 - 6z + 6) \frac{d^2}{dz^2} C_2(z) - (2z - 3) \frac{d}{dz} C_2(z) = 0,$$

$$(3z^2 - 4z + 1) \frac{d^4}{dz^4} C_3(z) - (4z^2 - 18z + 10) \frac{d^3}{dz^3} C_3(z) + \cdots$$

$$\cdots + (z^2 - 12z + 14) \frac{d^2}{dz^2} C_3(z) + (z - 3) \frac{d}{dz} C_3(z) = 0.$$

Michael Wallner LIPN 11.12.2017

Theorem

The operator $M_k(\cdot)$ decomposes into $M_k = m_{k,k}(z)D^{k+1} + m_{k,k-1}(z)D^k + \ldots + m_{k,0}(z)D + m_{k,-1}(z),$ where the $m_{k,i}(z)$ are polynomials.

Theorem

The operator $M_k(\cdot)$ decomposes into $M_{k} = m_{k,k}(z)D^{k+1} + m_{k,k-1}(z)D^{k} + \ldots + m_{k,0}(z)D + m_{k,-1}(z),$ where the $m_{k,i}(z)$ are polynomials. For $k \ge 2$ they are given by $m_{k-1}(z) = 0$ $m_{k,0}(z) = \begin{cases} -2z+3, & \text{for } k \text{ even,} \\ z-3, & \text{for } k \text{ odd,} \end{cases}$ $m_{k,i}(z) = m_{k-1,i-1}(z) + (i+1)m_{k-2,i}(z) + (z-i-2)m_{k-2,i-1}(z)$ $-zm_{k-2} = (z), \qquad 1 \le i \le k-1,$ $m_{k,k}(z) = m_{k-1,k-1}(z) - zm_{k-2,k-2}(z),$ $m_{k,i}(z) = 0, \quad i > k.$ The initial polynomials are $m_{0,-1}(z) = -1$, $m_{0,0} = 1 - z$, $m_{1,-1} = 0$, $m_{1,0} = z - 3$, and $m_{1,1}(z) = 1 - 2z$.

Theorem

The operator $M_k(\cdot)$ decomposes into $M_{k} = m_{k,k}(z)D^{k+1} + m_{k,k-1}(z)D^{k} + \ldots + m_{k,0}(z)D + m_{k,-1}(z),$ where the $m_{k,i}(z)$ are polynomials. For $k \ge 2$ they are given by $m_{k-1}(z) = 0$ $m_{k,0}(z) = \begin{cases} -2z+3, & \text{for } k \text{ even,} \\ z-3, & \text{for } k \text{ odd,} \end{cases}$ $m_{k,i}(z) = m_{k-1,i-1}(z) + (i+1)m_{k-2,i}(z) + (z-i-2)m_{k-2,i-1}(z)$ $-zm_{k-2} = (z), \qquad 1 \le i \le k-1,$ $m_{k,k}(z) = m_{k-1,k-1}(z) - zm_{k-2,k-2}(z),$ $m_{k,i}(z) = 0, \quad i > k.$ The initial polynomials are $m_{0,-1}(z) = -1$, $m_{0,0} = 1 - z$, $m_{1,-1} = 0$, $m_{1,0} = z - 3$, and $m_{1,1}(z) = 1 - 2z$. Furthermore, $m_{k,k}(z) = \ell_{k,k}(z)$

Analysis of the polynomials $m_{k,i}(z)$

• As $m_{k,k}(z) = \ell_{k,k}(z)$ we have the same dominant singularity ρ_k ;

Using the recurrence relation we can express $m_{k,k-1}(z)$ by the Chebyshev polynomials of first and second kind.

- As $m_{k,k}(z) = \ell_{k,k}(z)$ we have the same dominant singularity ρ_k ;
- Using the recurrence relation we can express $m_{k,k-1}(z)$ by the Chebyshev polynomials of first and second kind.

- As $m_{k,k}(z) = \ell_{k,k}(z)$ we have the same dominant singularity ρ_k ;
- Using the recurrence relation we can express $m_{k,k-1}(z)$ by the Chebyshev polynomials of first and second kind.

Proposition

Then, we have
$$\delta_i = 0$$
 for $i > 1$, and $\delta_1 = \frac{m_{k,k-1}(\rho_k)}{m'_{k,k}(\rho_k)}$.

- As $m_{k,k}(z) = \ell_{k,k}(z)$ we have the same dominant singularity ρ_k ;
- Using the recurrence relation we can express $m_{k,k-1}(z)$ by the Chebyshev polynomials of first and second kind.

Proposition

Then, we have
$$\delta_i = 0$$
 for $i > 1$, and $\delta_1 = \frac{m_{k,k-1}(\rho_k)}{m'_{k,k}(\rho_k)}$.

Furthermore, we have

$$\delta_1 = \frac{k}{2} + 1 - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \frac{1}{\cos^2\left(\frac{\pi}{k+3}\right)}.$$

- As $m_{k,k}(z) = \ell_{k,k}(z)$ we have the same dominant singularity ρ_k ;
- Using the recurrence relation we can express $m_{k,k-1}(z)$ by the Chebyshev polynomials of first and second kind.

Proposition

Then, we have
$$\delta_i = 0$$
 for $i > 1$, and $\delta_1 = \frac{m_{k,k-1}(\rho_k)}{m'_{k,k}(\rho_k)}$.

Furthermore, we have

$$\delta_1 = rac{k}{2} + 1 - rac{1}{k+3} - \left(rac{1}{4} - rac{1}{k+3}
ight) rac{1}{\cos^2\left(rac{\pi}{k+3}
ight)}.$$

The indicial polynomial is given by

$$I_k(\alpha) = \alpha^{\underline{k}}(\alpha - (k - \delta_1)).$$

Theorem (Main result)

The number $c_{k,n}$ of compacted trees with right height at most k is asymptotically equal to

$$c_{k,n} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2}},$$

where $\kappa_k \in \mathbb{R}$ is independent of *n*.

Theorem (Main result)

The number $c_{k,n}$ of compacted trees with right height at most k is asymptotically equal to

$$c_{k,n} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2}}$$

where $\kappa_k \in \mathbb{R}$ is independent of *n*.

Proof:

- We derived a symbolic method on exponential generating functions,
- leading to ordinary differential equations, and
- analyzed them by singularity analysis (recurrence relations on polynomial coefficients, indicial polynomial, transfer theorems).

Theorem (Main result)

The number $c_{k,n}$ of compacted trees with right height at most k is asymptotically equal to

$$c_{k,n} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2}}$$

where $\kappa_k \in \mathbb{R}$ is independent of *n*.

Proof:

• We derived a symbolic method on exponential generating functions,

- leading to ordinary differential equations, and
- analyzed them by singularity analysis (recurrence relations on polynomial coefficients, indicial polynomial, transfer theorems).

Theorem (Main result)

The number $c_{k,n}$ of compacted trees with right height at most k is asymptotically equal to

$$c_{k,n} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2}}$$

where $\kappa_k \in \mathbb{R}$ is independent of *n*.

Proof:

- We derived a symbolic method on exponential generating functions,
- leading to ordinary differential equations, and
- analyzed them by singularity analysis (recurrence relations on polynomial coefficients, indicial polynomial, transfer theorems).

Theorem (Main result)

The number $c_{k,n}$ of compacted trees with right height at most k is asymptotically equal to

$$c_{k,n} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2}}$$

where $\kappa_k \in \mathbb{R}$ is independent of *n*.

Proof:

- We derived a symbolic method on exponential generating functions,
- leading to ordinary differential equations, and
- analyzed them by singularity analysis (recurrence relations on polynomial coefficients, indicial polynomial, transfer theorems).

Asymptotics of compacted and relaxed trees

$$c_{k,n} \sim \kappa_k n! \rho_k^{-n} n^{lpha}$$
 and $r_{k,n} \sim \gamma_k n! \rho_k^{-n} n^{eta}$

Asymptotics of compacted and relaxed trees $c_{k,n} \sim \kappa_k n! \rho_k^{-n} n^{\alpha}$ and $r_{k,n} \sim \gamma_k n! \rho_k^{-n} n^{\beta}$.

k	ρ_k	$\rho_k \approx$	α	$\alpha \approx$	β	$\beta \approx$
1	$\frac{1}{2}$	0.500	$-\frac{3}{4}$	-0.750	$-\frac{1}{2}$	-0.5
2	$\frac{3}{2} - \frac{\sqrt{5}}{2}$	0.382	$-\frac{3}{2}+\frac{\sqrt{5}}{10}$	-1.276	-1	-1.0
3	$\frac{1}{3}$	0.333	$-\frac{1}{2} + \frac{1}{10}$ $-\frac{16}{9}$	-1.778	$-\frac{3}{2}$	-1.5
4	$(2\cos(\frac{\pi}{7}))^{-2}$	0.308	$-\frac{15}{7}-\frac{3}{28\cos(\pi/7)^2}$	-2.275		-2.0
5	$1 - \frac{\sqrt{2}}{2}$	0.293	$-\frac{25}{8}+\frac{\sqrt{2}}{4}$	-2.772	$-\frac{5}{2}$	-2.5
6	$(2\cos(\frac{\pi}{9}))^{-2}$	0.283	$-\frac{28}{9} - \frac{5}{36\cos(\pi/9)^2}$	-3.268	-3	-3.0
7	$\frac{1}{2} - \frac{\sqrt{5}}{10}$	0.276	$-\frac{39}{10}+\frac{3\sqrt{5}}{50}$	-3.766	$-\frac{7}{2}$	-3.5

Asymptotics of compacted and relaxed trees $c_{k,n} \sim \kappa_k n! \rho_k^{-n} n^{\alpha}$ and $r_{k,n} \sim \gamma_k n! \rho_k^{-n} n^{\beta}$.

k	ρ_k	$\rho_k \approx$	α	$\alpha \approx$	β	$\beta \approx$
1	$\frac{1}{2}$	0.500	$-\frac{3}{4}$	-0.750	$-\frac{1}{2}$	-0.5
2	$\frac{3}{2} - \frac{\sqrt{5}}{2}$	0.382	$-\frac{3}{2}+\frac{\sqrt{5}}{10}$	-1.276	-1	-1.0
3	$\frac{1}{3}$	0.333	$-\frac{16}{9}$	-1.778	$-\frac{3}{2}$	-1.5
4	$(2\cos(\frac{\pi}{7}))^{-2}$	0.308	$-\frac{15}{7} - \frac{3}{28\cos(\pi/7)^2}$	-2.275		-2.0
5	$1 - \frac{\sqrt{2}}{2}$	0.293	$-\frac{25}{8}+\frac{\sqrt{2}}{4}$	-2.772	$-\frac{5}{2}$	-2.5
6	$(2\cos(\frac{\pi}{9}))^{-2}$	0.283	$-\frac{28}{9} - \frac{5}{36\cos(\pi/9)^2}$	-3.268	-3	-3.0
7	$\frac{1}{2} - \frac{\sqrt{5}}{10}$	0.276	$-\frac{39}{10}+\frac{3\sqrt{5}}{50}$	-3.766	$-\frac{7}{2}$	-3.5

Corollary (Proportion of compacted among relaxed trees)

$$\frac{c_{k,n}}{r_{k,n}} \sim \kappa n^{\delta_1 - \frac{k}{2} - 1}$$

Asymptotics of compacted and relaxed trees $c_{k,n} \sim \kappa_k n! \rho_k^{-n} n^{\alpha}$ and $r_{k,n} \sim \gamma_k n! \rho_k^{-n} n^{\beta}$.

k	ρ_k	$\rho_k \approx$	α	$\alpha \approx$	β	$\beta \approx$
1	$\frac{1}{2}$	0.500	$-\frac{3}{4}$	-0.750	$-\frac{1}{2}$	-0.5
2	$\frac{3}{2} - \frac{\sqrt{5}}{2}$	0.382	$-\frac{3}{2}+\frac{\sqrt{5}}{10}$	-1.276	-1	-1.0
3	$\frac{1}{3}$	0.333	$-\frac{16}{9}$	-1.778	$-\frac{3}{2}$	-1.5
4	$(2\cos(\frac{\pi}{7}))^{-2}$	0.308	$-\frac{15}{7} - \frac{3}{28\cos(\pi/7)^2}$	-2.275		-2.0
5	$1 - \frac{\sqrt{2}}{2}$	0.293	$-\frac{25}{8}+\frac{\sqrt{2}}{4}$	-2.772	$-\frac{5}{2}$	-2.5
6	$(2\cos(\frac{\pi}{9}))^{-2}$	0.283	$-\frac{28}{9} - \frac{3}{36} \frac{5}{\cos(\pi/9)^2}$	-3.268	- 3	-3.0
7	$\frac{1}{2} - \frac{\sqrt{5}}{10}$	0.276	$-\frac{39}{10}+\frac{3\sqrt{5}}{50}$	-3.766	$-\frac{7}{2}$	-3.5

Corollary (Proportion of compacted among relaxed trees)

$$\frac{c_{k,n}}{r_{k,n}} \sim \kappa n^{\delta_1 - \frac{k}{2} - 1} = \kappa n^{-\frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \frac{1}{\cos^2\left(\frac{\pi}{k+3}\right)}}$$

Asymptotics of compacted and relaxed trees $c_{k,n} \sim \kappa_k n! \rho_k^{-n} n^{\alpha}$ and $r_{k,n} \sim \gamma_k n! \rho_k^{-n} n^{\beta}$.

k	ρ_k	$\rho_k \approx$	α	$\alpha \approx$	β	$\beta \approx$
1	$\frac{1}{2}$	0.500	$-\frac{3}{4}$	-0.750	$-\frac{1}{2}$	-0.5
2	$\frac{3}{2} - \frac{\sqrt{5}}{2}$	0.382	$-\frac{3}{2}+\frac{\sqrt{5}}{10}$	-1.276	-1	-1.0
3	$\frac{1}{3}$	0.333	$-\frac{16}{9}$	-1.778	$-\frac{3}{2}$	-1.5
4	$(2\cos(\frac{\pi}{7}))^{-2}$	0.308	$-\frac{15}{7} - \frac{3}{28\cos(\pi/7)^2}$	-2.275	- <u>2</u>	-2.0
5	$1 - \frac{\sqrt{2}}{2}$	0.293	$-\frac{25}{8}+\frac{\sqrt{2}}{4}$	-2.772	$-\frac{5}{2}$	-2.5
6	$(2\cos(\frac{\pi}{9}))^{-2}$	0.283	$-\frac{28}{9} - \frac{3}{36} \frac{5}{\cos(\pi/9)^2}$	-3.268	-3	-3.0
7	$\frac{1}{2} - \frac{\sqrt{5}}{10}$	0.276	$-\frac{39}{10}+\frac{3\sqrt{5}}{50}$	-3.766	$-\frac{7}{2}$	-3.5

Corollary (Proportion of compacted among relaxed trees)

$$\frac{c_{k,n}}{r_{k,n}} \sim \kappa n^{\delta_1 - \frac{k}{2} - 1} = \kappa n^{-\frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \frac{1}{\cos^2\left(\frac{\pi}{k+3}\right)}} = o\left(n^{-1/4}\right).$$

Thanks

