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Context and goal



In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

o A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f(t)) = 0, where P(x,y) € Z[x,y] \ {0}.

o A power series that is not algebraic is called franscendental.

> Task: Given a power series, either in explicit or in implicit form, determine
whether it is algebraic or transcendental.
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Given a linear differential equation with polynomial coefficients,
together with suitable initial conditions, satisfied by a power series y,
give an algorithm suitable for computer implementations for deciding

whether y is algebraic.

[Stanley, 1980]



o Number theory: first step towards proving the transcendence of a
complex number is to prove that a power series is transcendental

o Combinatorics: nature of generating series may reveal strong underlying
structures

o Computer science: are algebraic power series (intrinsically) easier to
manipulate?
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Quiz:
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Classical transcendence criteria



Two

Establishing transcendence of values at an algebraic point constitutes
in principle the most straightforward transcendence criterion for
functions, although it is almost invariably the most difficult to apply.

[Flajolet, 1987]

For f =Y, ant" € Q[[t]], if one of the following holds

o There exists a z € Q such that f(z) Z Q

o There exists a prime number p such that f, = f mod p is well-defined
in Fp[[t]] and f, is not algebraic over IFj(t)

then the power series f is transcendental

10/ 53
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o Algebraic properties

o Algebraic series are D-finite [Abel, 1827]
o They are diagonals of bivariate rational functions [Furstenberg, 1967]
o Their resolvents admit a basis of algebraic solutions [Singer, 1979]

o Arithmetic properties
o Algebraic series are globally bounded [Eisenstein, 1852]
o Their resolvents have zero p-curvature for p > 0 [Katz, 1972]

o The coefficient sequence of an algebraic series of degree > 2 is not p-Lucas
[Allouche, Gouyou-Beauchamps, Skordev, 1998]
o Analytic properties
o The coefficient sequence of an algebraic series has bounded gaps

o It has “nice” asymptotics [Puiseux, 1850; Flajolet, 1987]

o Resolvents of algebraic series are Fuchsian [Fuchs, 1865]
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Tnsendencectierin

For f =Y, ant" € Q[[t]], if one of the following holds

. 1 n
o f is not globally bounded ; Ht
o (ay)n has “ugly” asymptotics Y put" (pn = n-th prime)

n
o f is not D-finite 11 ﬁ
n
. n 3

s _fini min _ _ n
o f is D-finite, but L 7 has non-zero p-curvatures ;; ( k) t

. - in . 1 .,
o f is D-finite, but L}mn is not Fuchsian Xn: Wt

is D-finite, but L™ has a log singularit m\* (n+k t"
o f is D-finite, but L™ has a log singularity Zn:Zk: r P

1
. _ 2 .
o (ay)n is p-Lucas and f= ¢ Q(t) Dlag(1 ST Qe p———
o (an)n has too large gaps y "
n

then the power series f is transcendental
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If f =Y, a,t" € Q[[t]] is D-finite, and if one of the following holds

1
o fis not globally bounded ) Zt”
n
7 11
o (ay)n has “ugly” asymptotics a9 =0,a1 =1, a,4p = %anﬂ —ay
. n 3
° L;“m has non-zero p-curvatures ZZ ( k) "
nok
o L™ jg not Fuchsian Z Lt”
f — 112
) n\2/n+k
o L™ has a log singularity » ( ) ( >t”
T \k k
. . 1
o (an)yis p-Lucas and f2 ¢ Q(t) Diag sy —z—1 —xyzl

then the power series f is transcendental
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_

If f =Y, ant" € Q][] is D-finite and globally bounded*
and if one of the following holds

|

o (ay)n has “ugly” asymptotics Z (ing,) t"
n

) erni“ has non-zero p-curvatures ZZ (:) t"
n k

) n\2/n+k
o L}“m has a log singularity 22 ( ) ( )tn
T k k
. 3 1
o (an)nis p-Lucas and f2 ¢ Q(t) Diag 0—x—y)1—z—1) —xyzt

then the power series f is transcendental

1 Conjecturally, f is then the diagonal of a rational function [Christol, 1990]
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Christol’s exa

Christol’s conj. (1990): Is any D-finite glob. & bounded series a diagonal?

14 5
Concrete open problem: Is f(t) = 3F2(9 9 9
3

729 t) a diagonal?

F(t) = 1+60t+20475 > + 9373650 £> + 4881796920 t* + 2734407111744 1> + - - -

o Asymptotics
2 Sln(4:7T/9) 729ﬂ n711/9
V3T(1/9)1(2/3)

an ~

o fisnot p-Lucas for p > 3

o L™ =3(729t — 1)1707 + (8991t — 7)07 + (5400¢ — 1)0; + 60 has a
nilpotent, but non-zero, p-curvature, for p > 3

° L;f“i“ is irreducible and has a log singularity at t = 0
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Rodriguez-Villegas” example

Chebychev in his work on the distribution of primes numbers used the following
fact

. (30n)!n!
Y= (15m)1(10n)!(6n)!
This is not immediately obvious (for example, this ratio of factorials is not a product
of multinomial coefficients) but it is not hard to prove. The only proof I know
proceeds by checking that the valuations v,(u,) are non-negative for every prime
p; an interpretation of u,, as counting natural objects or being dimensions of natural
vector spaces is far from clear.

€Z, n=012...

Theorem [Rodriguez-Villegas, 2005]

7l
f(t) = Z %t" is algebraic of degree 483,840 (!)

n

o Asymptotics

1 14,29 5\" —1/2
Uy~ —— (27 x3 x5 n
" 2\/1571( )

o fisnot p-Lucas for p > 5
o The p-curvatures of Lfmi“ are zero for all p > 29.

[ L;,“i“ is irreducible and only has algebraic singularities
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Properties of algebraic series
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Algebraic series are D-

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite

Sizes (order, degree) of differential equations [B.-Chyzak-Lecerf-Salvy-Schost'07]

degree
0(D"3)
Nice differential equation
Differential equation
corresponding to recurrence of
small order
o(D"2)
o(D~2)
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Theorem [Flajolet, 1987]

If f(t) =Y, ant" € Q[[t]] is algebraic, then a,, has an asymptotic equivalent

ap = (‘(:xj-l) ZCw +0(p"nP),

wherea € Q\ {-1,-2,-3,...}; B<a; p€Qsp C,w;€Qand|w;| =1

> Consequence of Newton-Puiseux, transfer based on Cauchy’s formula
(from local behaviour at singularities to asymptotics of coefficients), and

_ -1
ma-nt= (")~

Corollary

If a, ~ yp"n® and either - -
DaeZe (Ma¢Q ()p¢Q ((v)y-Ta+1)¢Q

then f is transcendental.
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Transcndence g asympiotes

@ ~ 33n£

n!3 27mn

1
" = Di [
> Lan 1ag(1_x_ -

y > is transcendental: a,, =

> f =), pat" is transcendental by the prime number theorem p;, ~ nlogn.

2
> The Apéry series Y a,t" with a, = Y (2)2("#) is transcendental, since

(1 + \/5)471-&-2 and r(_l/z)

ay ~ ST TE a7 = — = is transcendental

>Ifag=0,a1=1,2n+ Va2 — (7n+11)a, 1 + (2n +1)a, =0, then
f =Y., ant" is transcendental, since a,, ~ C (7+‘ﬁ) nV75/4 with C = 0.56.

MM  1qoritmic proof for the transcendence of Dfite power seris



Algebraic series

Theorem [Eisenstein, 1852], [Heine, 1853]

Any algebraic power series f = Y,,~( a,t" in Q[[]] is globally bounded:
there exists an integer C > 0 such that a,C" is an integer for all n > 1.

> The smallest possible constant C is called Eisenstein constant of f.
> Best current bound [Dwork, van der Poorten 1992]
D
C<48 (8 o3 D4+247410gD61422D) Cg2D-1 _ ,0(D*)  pg2D-1
where D is the algebraicity degree of f, and H is its height.

> Research problems:
o Is this bound (asymptotically) tight?
o Find a (fast) algorithm for computing C.
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Algebraic series wi

A sequence (a;)y of rational numbers is called p-Lucas (p prime number) if

o all the denominators of the a,’s are prime to p;
© apiyj=a;ajmod p foralli>0and 0 <j <p.

Theorem [Allouche, Gouyou-Beauchamps, Skordev, 1998]

For f =Y, a,t" in Q[[t]] \ {0}, the following conditions are equivalent:
@ fis algebraic and (a,) has the p-Lucas property for all large primes p;
Q f= m for some P € Q[t] of degree at most 2, with P(0) = 1.

> Corollary: if rq, ...,y are positive integers, then

B EY ) ()

is algebraic if and only if m = 1 and r; = 1.
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Theorem [Rowland, Yassawi, 2015]

If P(xq,...,x3) € Q[xq,...,%4] has degree at most 1 in each x;, and if
P(0,...,0) =1, then the diagonal sequence

1
f— n ... n —_—
an = [xl xd] P
is p-Lucas for any prime p.
2 nte 2, . 1
> Y, () (") is the diagonal sequence of 0—x—y)—z— —xyzt
5 Y, (1) is the diag. seq. of !
"o T (=) =x) - (T—xg) =X xg

1
1—(xyz+xy+xz+yz+z)(uv+u+0)

> Yn (Z)z("}("k)3 is the diag. seq. of
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The Grothendieck—Katz p-cur

Conjecture [Grothendieck, 1960’s, unpublished; Katz, 1972]
Let A € Q(+)""and (S) : y’ = Ay. The following assertions are equivalent:

o (S) has a basis of algebraic solutions

o (Sp): ¥ = (Amod p)y has a basis of algebraic solutions over IFy (t)
for all primes p > 0,

o Ap = 0mod p for all primes p > 0, where A, = p-curvature of (S):

Ap=1, and Ay =A,+AA for (>0

> Proved by [Katz, 1982] for Picard-Fuchs systems, but still open in general
> For each p, the last condition can be checked algorithmically

> [B., Caruso, Schost, 2015] Fast algorithms for the p-curvature
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Combinatorial examples

/



> Small step walks in the quarter plane: walks in IN? starting at (0,0) and
using steps in a fixed subset & of

{\// <_l \I T/ /‘/ _>/ \U ‘J/}

> Example with n = 45,i = 14, j = 2 for:
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Lattice wal

& Small step walks in the quarter plane: walks in IN? starting at (0,0) and
using steps in a fixed subset & of

{\// <_r \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

-

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).
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Lattice walks wi

& Small step walks in the quarter plane: walks in IN? starting at (0,0) and
using steps in a fixed subset & of

{\// <_/ \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

e e e e e

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).

> Specializations:
o fu.0,0 = number of walks of length 7 returning to origin (“excursions”);
© fn = Lij>0 fu;ij = number of walks with prescribed length n.
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> Complete generating function:

F(tix,y) = i(z fm;xy’>t” € Qlx (1],

1,j=0
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> Complete generating function:

F(tix,y) = f(z fm;xy’>t” € Qlx (1],

1,j=0
> Specializations:
o Walks returning to the origin (“excursions”): F(t;0,0);
o Walks with prescribed length: F(t1,1) Z fut";
n>0
o Walks ending on the horizontal axis: F(t;1,0);
o Walks ending on the diagonal: “F(t;0,00)" := [xo] F(t;x,1/x).
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> Complete generating function:

F(t:x,) f:(z: fnz]xy’>f” € Qlx (1],

1,j=0
> Specializations:
o Walks returning to the origin (“excursions”): F(t;0,0);
o Walks with prescribed length: F(t1,1) Z fut";
n>0
o Walks ending on the horizontal axis: F(t;1,0);
o Walks ending on the diagonal: “F(t;0,00)" := [xo] F(t;x,1/x).

Question:

Given &, what can be said about F(¢; x,y) and its specializations?

Are they algebraic or transcendental?
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

trivial,
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

trivial, simple,
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, simple, half plane,
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

One is left with 79 interesting distinct models.
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The 79 models

Non-singular

. D4 BH B B¥ - 1.
Singular
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Pélya: >¢<
Kreweras: %
Gessel: %
Gouyou-Beauchamps: %

King:
Tandem: %
Trident: >¢<
Scarecrow: %

30/53




A difficult model: Ges

e Gessel walks: walks in IN? using only steps in & = { /, /, +, —}
® g4;i,j = number of walks from (0,0) to (i,j) with 1 steps in &

Question: Find the nature of the generating function

G(t;x,y) = Z Qi XY € Q[[x,y,1]]
i,j,n=0

e Qe

Theorem [B. & Kauers 2010] G(x,y, ) is an algebraic power series'.

— Effective, computer-driven discovery and proof
— Key step in discovery: p-curvature computation of two 11th order
(guessed) differential operators for G(t; x,0), and G(£;0,y)

1t Minimal polynomial P(x,y,t,G(t;x,y)) = 0 has > 10! terms; ~ 30Gb (!)

31/53
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Algebrai

o N n
Generating function: G(t;x,y) = Z Z Zgnl]t”x’y’ € Qx, y][[t]]
n=0i=0j=0

“Kernel equation”:

1 1
G(tx,y) =1+t (xy+x+ @ + ;)G(t,x,y)

1 11 1
—t (; + 5?) G(50.y) =t (G(t%,0) = G(t0,0))

/|
© ©

32/53
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Algebraic ref

0 n n
Generating function: G(t;x,y) = 2 Z Egm]t”x’yf € Q[x, y|[[]]
n=0i=0j=0

“Kernel equation”:

1 1
G(tx,y) =1+t <xy+x+ W + ;)G(t,x,y)
1 11 1
i (_ + ;y) G(:09) =t (G(6%,0) = G(5:0,0)

X

/|
© ©

Task: Solve this functional equation!

MM  1qoritmic proof for the transcendence of Dfite power seris
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Algebraic refor

0 n n
Generating function: G(t;x,y) = 2 Z Egm]t"x’y] € Q[x, y|[[]]
n=0i=0j=0

“Kernel equation”:

G (tx,y) 1+t<xy+x+iy+ >G(tx, )
1 11 1
—t (_ + ;y) G(:09) =t (G(6%,0) = G(5:0,0)

X

/|
© ©

Task: For the other models: solve 78 similar equations!

MM  1qoritmic proof for the transcendence of Dfite power seris
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Transcen

dence of 79 — 23 = 56 models

ACHRR AR ACK AR K
KKK A A
AR ORI K
AR RO XA AK
KR AR HOK
RORKKK

For non-singular models: Fg (t;0,0) transcendental [B., Raschel, Salvy, 2013]

> Proof uses asymptotics



Transcendence of 79 — 23 = 56 models

ACHRR AR ACK AR K
KKK A A
AR ORI K
AR RO XA AK
KR AR HOK
RORKKK

For singular models: Fg(t;1,1) transcendental [Melczer & Mishna, 2013]
Proof uses: infinite number of singularities
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Transcendence of 79 — 23 = 56 models

ACHKH AR A AR
AR IR K 34 K
AR AK
A RO XA AK
KRR A A AR ACK
ROKKKK

For all 56 cases: Fg (#; x,y) is even non-D-finite!



Bample thescarecrows
[B., Raschel & Salvy 2013]: Fg(t;0,0) is transcendental for the models

For the 1st and the 3rd, the excursions sequence [t""| Fs(t;0,0)
1,0,0,2,4,8,28,108,372, ...
is~ K-5"-n% witha =1+ 7t/ arccos(1/4) = 3.38339%...

Irrationality of a prevents Fg (t;0,0) from being algebraic (even D-finite).

> Open: show that Fg(t;1,1) is also transcendental!

34 /53
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Models with D-Finite F(t;1,1)

OEIS S nature OEIS S nature
1]A005566 b T [13(Aa151275 & T
2|A018224 P& T [|14]A151314 & T
31a151312 3K T ||15]a151255 A T
4]A151331 38 T [16/Aa151287 R T
5|A151266 Y T [17/A001006 <X, A
6|A151307 & T |18]a129400 B A
7|a151291 ¥' T |[19|A005558 B T
8|A151326 B T
9]a151302 K T [20/A151265 < A
10|A151329 & T |[21]A151278 . > A
11]a151261 & T [22/Aa151323 B A
12|A151297 #& T |[23|A060900 ¥5 A

A=14V2, B=1+V3, C=1+6, A =7+3v6, j =/ 21

> Transcendence (1-19) proved in [B., Chyzak, van Hoeij, Kauers & Pech "16]
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Models with D-Finite F(¢;1,1) [B. & Kauers ‘09, ‘10], [Bousquet-Mélou & Mishna ‘10]

OEIS & nature asympt OEIS & nature asympt
1|a005566 > T 4% [liglarsiozs L T 12930 V0
20A018224 X T 2% Jligfa1s1314 BE T YOS EO"
3la151312 3K T e li5|A151055 A T 242 @V2!
4|a151331 B T B8 |16|A151287 gR T R2AELA)N
5\a151266 ' T §y/2.3; [17]acon00s & A 3/23;
6|a151307 3 T 1\ /2 5 lislanoaoo B A 3/28,
71a151291 YT s |[19]A005558 R T 84
8|A151326 F T A5
9(a151302 K T 1/ -3, [20/a151265 1 A rfl\/i) 3
10/A151329 & T 1\ /Z 7, |21)a151278 1 A f3r<¢1§/4> 2
1[a151261 3 T 12820 |nia151303 A .
12a151207 g T BEECHoslace0000 B A RO

A=1+V2 B=1+V3, C=14v6 A=7+3V6, y =/ 2L
> Transcendence (1-19) proved in [B., Chyzak, van Hoeij, Kauers & Pech "16]
> Asymptotics guessed in [B., Kauers '09], proved in [Melczer, Wilson "15]

Alin Bostan Algorithmic proof for the transcendence of D-finite power series



Transcendence,

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let & be one of the models 1-19. Then
o Fg is expressible using iterated integrals of »F; expressions.
o Among the 19 x 4 specializations of Fg (t; x,y) at (x,y) € {0,1}2, only 4
are algebraic: for & = ‘%, at (1,1), and & = 5& at (1,0),(0,1),(1,1)

36 /53
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Transcendence, and explicit expressions, for models 1-19

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let G be one of the models 1-19. Then
o Fg is expressible using iterated integrals of »F; expressions.
o Among the 19 x 4 specializations of Fg(;x,y) at (x,y) € {0,1}2, only 4
are algebraic: for & = “A\ at (1,1), and & = 5%; t (1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A151331)

r}g(”l t/ 1+4x)3 Zpl(ézg 16X(1+X)>d

(1+4x)2
=1+ 3t + 1812 + 105> + 684+* + 4550¢° + 31340£° + 219555¢7 +

is transcendental.
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Transcendence, and explicit expressions, for models 1-19

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let G be one of the models 1-19. Then
o Fg is expressible using iterated integrals of »F; expressions.
o Among the 19 x 4 specializations of Fg(;x,y) at (x,y) € {0,1}2, only 4
are algebraic: for & = “A\ at (1,1), and & = 5%; t (1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A151331)

r}g(”l t/ 1+4x)3 Zpl(ézg 16X(1+X)>d

(1+4x)?
=1+ 3t + 1812 + 105> + 684+* + 4550¢° + 31340£° + 219555¢7 +

is transcendental.

> Computer-driven discovery and proof; no human proof yet
> Proof uses creative telescoping, ODE factorization & solving, Kovacic algo
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Two very interes

Case A Case B

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

o Fa(tx,y) is D-finite and transcendental.
o Fg(t;x,y) is algebraic.

> Computer-driven discovery and proof; no human proof yet.
> Proof uses Guess'n’Prove and new algorithm for transcendence.
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Existing Algorithms



Recurrences of order 1
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Algebraic and Gauss hypergeometric series

Theorem [Schwarz, 1873]

Leta,b,c € Q,s.t. a,b,c—a,c—b¢&Z.Set (A,u,v)=(1—c,c—a—Dbb—a).
Up to permutations and sign changes of A, y, v, and addition to (A, p,v) of

(L, m,n) € Z3 with ¢ + m + n even, a table gives all algebraic o F; (”Cb ‘ t) ’s.

Tabelle
Factor 7, die Bugenzahlen der Winkel und
Fliicheninhalt der reducirten sphri Dreiecke, welche auf einer Kugelober-
ﬂache vom Radius 1 dureh .die Sy i ciner
p oder eines i igen Polyeders bestimmt werden.
No. g } w i | Lnbalt ‘ Polyeder
L T Regelmiissige Doppelpyramide
IR
. H \‘ H i ) Tetraeder
T s [ 2 § o T
v H bl Wirfel und Oktaeder
RN A S S _— S -
VL 3 ¥ +
VIL 3 ¥ 3 C
viL |3 | 4 + c
X |y | + C
x| 3 T =ac
xt| 3 : i : —ac Dodekaeder und Tkosaeder
XIL ¥ ol 3 =6C
XIII. $ | % =6C |
XIV. FO T =17C
XV. 3 FO =10C

> Proof based on geometric arguments (sphere tilings by spherlcal triangles)
> Basic case: 2 F (r 117 g t) _ cos(d= 2'>1' artcsm(\ﬁ))
! -

, r € Q + sporadic cases
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Algebraic and Gau

Whatever the beauty of Schwarz's result, one must recognize that it
is achieved through a long detour. [Kampé de Fériet, 1937]

Theorem [Landau, 1904], [Stridsberg, 1911], [Landau, 1911], [Errera, 1913]

b t) is

algebraic if and only if for every r coprime with the denominators of a, b
and ¢, either {ra} < {rc} < {rb} or {rb} < {rc} < {ra}. ({x defy [x])

Assume a,b,c € Q such thata,b,c —a,c —b ¢ Z. Then ,F; (ac

> Proof based on Eisenstein’s theorem.

11
2F1( 2,706 16t>—1
> 3 5 =142t +11£2+85t> +782* + - - - is algebraic

1 5
>oF (TZ . 12 ‘ 1728 t> =1+60¢4 39780 £> + 38454000 £ + - - - not algebraic
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Algebraic and

Theorem [Beukers, Heckman, 1989]

Let {aq,...,a¢} and {by,..., b 1,br = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFr_1 (agl a_z_ _' .b.kjk t) is algebraic iff {27, j < k} and {e%™"Y,j < k}

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.

G EFEL T E P
> -t =3P7( 214395 t) is algebraic
— (15n)1(10n)! (6n)! 1121374 g
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Differential equations of order 2



Differential equations of order 2

Problem: Decide if all solutions of a given equation L of order 2 are algebraic

e invariant theory: [Liouville, 1839], [Pépin, 1863, 1881], [Fuchs 1876, 1878],
[Brioschi, 1877], [Singer & Ulmer 1993]

> Starting point: there exists a “Primform” of degree < 12 whose evaluation
at some solution basis of L(y) = 0 is some root of a rational function

e Klein pullback method: [Klein, 1876, 1877, 1913], [Baldassarri & Dwork
1979], [Baldassarri, 1980], [Berkenbosch 2004], [van Hoeij & Weil 2005]

> Starting point: L has only algebraic solutions iff it is a weak pullback by a
rational map of an element in the Schwarz list

> [Marotte, 1887], [Kovacic, 1986], [Singer 1981], [Singer & Ulmer 1998],
[Ulmer & Weil, 1996]: generalization to Liouvillian solutions

4/53
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Singer’s algorithm

Problem: Decide if all solutions of a given equation L of order n are algebraic

e Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y'/y
has alg. degree at most (4911)”2 and satisfies a Ricatti equation of order n — 1

Algorithm [Singer, 1979]
@ Decide if the Ricatti equation has an algebraic solution of degree at
most (491" degree bounds + algebraic elimination

@ (Abel’s problem) Given algebraic u, decide if y’/y = u has an algebraic
solution y [Risch 1970], [Baldassarri & Dwork 1979]

> [Painlevé, 1887], [Boulanger, 1898]: Same for n = 3 and L irreducible
> Impractical bound: 92236816 for n = 2; approx. 103 for n = 11

> [Singer, 2014]: generalization to computing L8, whose solution space is
spanned by the algebraic solutions of L
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The new method



Input: f(¥) € Q[[t]], given as the generating function of an explicit binomial
sum, or as the diagonal of an explicit rational function
Output: T if f(#) is transcendental, A if it is algebraic

@ Compute an ODE L for f(t) Creative telescoping
@ Compute L™ Bounds + diff. Hermite-Padé

@ Decide if L;“i“ has only algebraic solutions; if so return A, else return T.
[Singer, 1979]

> Steps 2 and 3 can (in principle) be replaced by:
@ Compute L8 and decide if it annihilates f [Singer, 2014]

> L;“jn and L?8 can (in principle) be found using ODE factorization
[Schlesinger, 1897], [Singer, 1981], [Grigoriev, 1990]

> Astronomic degree bound [Grigoriev, 1990]: exp ((bitsize(L)Z")zn)

MM  1qoritmic proof for the transcendence of Diite power seris



An efficient version

Input: f(¢) € Q[[t]], given as the generating function of an explicit binomial
sum, or as the diagonal of an explicit rational function
Output: T if f(#) is transcendental, A if it is algebraic

@ Compute an ODE L for f(¥) Creative telescoping
@ Compute L}“i“ Bounds + diff. Hermite-Padé

@ If L}“i“ has a logarithmic singularity, return T

@ Compute a bound B [Dwork, van der Poorten 1992]
Set p := nextprime(B). Repeat:
@ p := nextprime(2p)
@ if p-curvature of L}mn is # 0, return T [B., Caruso, Schost, 2015]
@ guess Py(x,y) € Z[x,y| such that P,(t, f(t)) = 0mod t” alg. Hermite-Padé
until either p-curvature is # 0, or non-trivial candidate Pp(x,y) found.

@ Certify the candidate and return A, or goto 4 algeqtodiffeq

> Termination ensured by Grothendieck-Katz for diagonals
> Conjecture: Steps 4-5 are not necessary
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> Strategy (inspired by the approach in [van Hoeij, 1997], itself based on
ideas from [Chudnovsky, 1980], [Bertrand & Beukers, 1982], [Ohtsuki, 1982])

@ LM js Fuchsian

f

(%) Lfmin can be written

}nm _ an a”iq(lt()t) an 1 4 ZO(E‘;)"' n < ord(L)

with A(t) squarefree and deg(a,_;) < deg(A’) —i.
@ deg(A) can be bounded in terms of n and of local information of L
(via apparent singularities and Fuchs’ relation)

@ Guess and Prove: Forn =1,2,...,

@ Guess differential equation of order n for f (use bounds and differential
Hermite-Padé)
@ Once found a nontrivial candidate, certify it, or go to previous step.

49 /53

MM  1qoritmic proof for the transcendence of Dfite power seris



Bounds for LJ‘Pjn

min _ an , @n—1(t) 1 o a(t)
Lf = at —+ A(t) at —+ —+ W’ n S ord(L)

Task: get a bound on deg(A) in terms of n and of local information of L

o A(t) = Asing(t)Aapp(f), where the roots of Asing, resp. of Aypp, are the
finite true singular points, resp. the finite apparent singular points, of L}“i“.

o Trivial: deg(Asing) < #{finite true singularities of L}
e Fuchs’ relation

Lo Sp(Lpm = Y S = —n(n-1),

peCU{oo} p singularity of L}"j“
with Sp(L}“i“) = (sum of local exponents of L}“i“ at p) — (0+1+---+(n—1))

e Main point: If p is an apparent singularity of L¥™ then S, (L") > 1, thus:

deg(Aapp) < —n(n—1) — Y min(O,Sé")(L)),

p true singularity of L

where S;") (L) := (sum of the smallest 1 exponents of L at p) —(3)
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~ Famples a difficul guadrant model wit repeted steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
Fu(t;1,0) = 1+t + 4% + 83 4 39¢* + 98> + 520t + - - - is transcendental.
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Example: a difficult quadrant

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
Fa(t1,0) = 1+t +4t% + 8t + 39¢* + 98t° 4 520¢° + - - - is transcendental.

@ Fa(tx,y) is D-finite in its three variables High-tech Guess'n'Prove
(+ kernel method, non-commutative Grobner bases, desingularisation.)

> Discovers and proves a differential equation L for f(t) = Fa(t;1,0) of
order 11 and degree 73

@ L is Fuchsian, 6 finite sing, 55 apparent sing., has a log sing. at t =0
Q If ord(L;mn) < 10, then L}nin has coefficients of degrees at most 580

@ Differential Hermite-Padé approximants rule out this possibility.

® Thus, L}nin =L, and so f is transcendental

> All other criteria fail
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e Simple, efficient and robust algorithm for transcendence / algebraicity
e Basic theoretical tool: Fuchs relation

e Basic algorithmic tool: Guess'n’Prove via Hermite-Padé approximants +
efficient computer algebra

o Brute-force / naive algorithms = hopeless on combinatorial examples

generalization to algebraic independence of D-finite series?
bounds for p-curvatures (effective Grothendieck conjecture)?

transcendental diagonals with algebraic singularities?

v Vv Vv V

many open questions on transcendence of 2D and 3D lattice walks
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Thanks for your attention!



