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The Gouyou-Beauchamps model



The story of a single lattice path model
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quadrant with steps:




The story of a single lattice path model

Let W be the set of walks in the first
quadrant with steps:

THEOREM
If w, is the number of walks in W of length n, then
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The story of a single lattice path model

Let W, be the set of weighted walks

in the first quadrant with steps: |
b/a ; i

a

1/a

a/b

wt(w) = a®bt

4

N EW TH EOREM Courtiel, Melczer, M., Raschel 16+
Let wy(a, b) be the number of walks in W, ;, of length n. Then

wp(a, b) ~ ...

Proof: Kernel method + Analytic Combinatorics on Several
Variables (ACSV)




GB Walks with 800 steps

Unweighted Weighted, biased out of the first quadrant




Probability version: Exit times

Unweighted model generating function

W(t) =1+ t+3t%+6t3 +20t* +50t° + 1755 + . ..

Probability of staying in the quadrant after 6 steps:

We 175
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Probability version: Exit times

Weighted model generating function
1+at+ (1+b+a%)t?+ (2ab+a® +3a)t> + ...
Probability of staying in the quadrant after 3 steps:

ws(a, b) 2ab+ a°® +3a

S(1,1)2  (a+al+abl+b1a)s

Inventory: S(x,y) = ax + = + >4 %

The weightings must be central: The probability of a given walk
depends only on its length and its endpoint. We give explicit conditions
for this in our work.



Natural Questions

wp(a, b) ~ Cp~"n%

@ How do the weights intervene?
@ What is the range of possible asymptotic behaviour?

© What affects the exponential growth p 7 the critical
exponent o?

© How do parameters like the choice of cone, starting point,
and drift affect the formula?

@ What is the best way to study this?

Our contribution

Use weighted models to understand the source and nature of
combinatorial factors.




Asymptotic enumeration formula

T H EO R E M Courtiel Melczer M. Raschel 16©

As n — oo, the number w,(a, b) of weighted GB walks of
length n, and ending anywhere while staying in

R2 , satisfies, as n — oo,

wp(a, b) =K -

o (14 o(1).

Condition 0 o
a=b=1 4 2
vb<a<b (1+ b)(a>+ b)(ab)™t 0
a<landb<1l 4 5
b>1and vVbh>a 2b+1)Vb 3/2
a>1landa>b (1+a)a! 3/2
b=a?>1 20b+1)Vb 1/2
a=b>1 (1+a)2at 1/2
a=1b<lorb=1a<1 4 3




Asymptotic enumeration formula deluxe

T H EO R E M Courtiel Melczer M. Raschel 16©

As n — oo, the number w,(a, b) of weighted GB walks of
length n, starting from (/, ) and ending anywhere while staying in
R2 , satisfies, as n — oo,

wa(a, b) = k- V(i j) - p7" 0™ (1 4 o(1)).

Condition o1 o
a=b=1 4 2
vb<a<b (1+ b)(a>+b)(ab)™t 0
a<land b<1l 4 5
b>1and vVbh>a 2b+1)Vb 3/2
a>1landa>b (1+a)a! 3/2
b=a?>1 20b+1)Vb 1/2
a=b>1 (1+a)2at 1/2

a=1b<lorb=1ax<l1 4 3



Values for k and the harmonic function VI"(;, j)

a=b=1k=2

(+1D0+1)0++2)( +2/+3)
6

Vb<a<hb k=1
4~ (4+2i42)) p—=(2+2)) ((a1+f _ 1) (a1+j + 1) (a2+/+j _ b2+’+f) (32+/+j + b2+’+f) pi-1
_ (a2+r’+j _ 1) (az+f+j i 1) (al+1 _ b“f) (a1+1 + b”f))

a<lb<l k= ;Ugégz

+ (-1

A+)A+)E+i+2)2+i+]) (a2b2+azb—4ab+b+1

a2b? 4 a?2b+4ab+ b+ 1
alb/ (a—1)* :

(a+1)*

b>1,Vb>a k= V2

/b2
BIHH(L 4 i) 4 (b1 — 2HH) (34 42) — i - 1 1 1
_ + (*1)I+/7 .
al bi/2+2) < (Vb —a)? (Vb + a)? )
. (at1)B3va
a>1la>b k = 2r(a=b)

Q+i+j)(a?’—d)bYat T+ (1+j)(1—a )b A



Visualize the asymptotic formula

We can plot the different regions of the formula.

-1

Condition 0 a
a=b=1 4 2
Vvb<a<b (1+ b)(a>+b)/(ab) ©
a<land b<1 4 5
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a=1b<1lor 4 3
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Visualize the asymptotic formula

We can plot the different regions of the formula.

Condition o1 o
a=b=1 4 2
Vvb<a<b (1+ b)(a>+b)/(ab) ©
a<land b<1 4 5
b>1land Vb>a 2(b+1)/vb 3/2
a>1landa>b (1+a)?/a 3/2
b=a%>>1 2(b+1)/vb 1/2
a=b>1 (1+a)2at 1/2
a=1b<1lor 4 3
b=1a<1

Remark that the exponential growth is continuous.




Visualize the asymptotic formula




Universality classes

A universality class is a family of objects with the same critical
exponent.

Condition a

a=b=1 2

vVb<a<h 0

a<land b<1 5

b b>1and Vb>a 3/2
a>landa>b 3/2

[ b=a>>1 1/2
a=b>1 1/2

a=1b<lorb=1lax<l1 3



Universality classes... as a function of the drift

The drift is the vector sum of the steps: (a—a '+ — 2,2 —

Condition a
a=b=1 2
Vb<a<hb 0
a<landb<1 5
b>1and vVb>a 3/2
a>landa>b 3/2
b=a*>>1 1/2
a=b>1 1/2
a=1b<lorb=1a<1 3
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The drift § is the vector sum of the steps:
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The drift § is the vector sum of the steps:
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a

21
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Universality classes... as a function of the drift

The drift § is the vector sum of the steps:
a a b aa b

21
ega<lb=1 = 6:(2a—5,5—a):(2X,—X),X<O

@ Is there a diagram like this for any
model?

@ Are the regions always cones?

@ What can be proved at a general
level?




TECHNIQUE:
ANALYTIC COMBINATORICS
IN SEVERAL VARIABLES
(ACSV)



Strategy

GOAL: wp(a, b) ~ Cp~™"n™ ¢
@ W, (t) as a diagonal of a rational function

P(x,y)

R = N [ (a1}

© Express [t"|W, 5(t) as a generalized Cauchy integral.
@ !dentify contributing critical points

@ Rescale the integral to put critical points at origin ( = p)
@ Apply powerful theorems to get asymptotic estimates
(= o)



Strategy

GOAL: wp(a, b) ~ Cp~™"n™ ¢
@ W, ,(t) as a diagonal of a rational function

P(x,y)
(1—2yS(x Ly 1) (x=1)(y—1)

[t"]Wa(t) = [x"y"2"]

© Express [t"|W, 5(t) as a generalized Cauchy integral.
@ !dentify contributing critical points

@ Rescale the integral to put critical points at origin ( = p)
@ Apply powerful theorems to get asymptotic estimates
(= o)

Spoiler alert: The inventory S(x, y) tells almost the whole story
—> generality in the approach.



Diagonal Expressions

A: The (complete) diagonal operator
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Diagonal Expressions

A: The (complete) diagonal operator

AN <Z fi(n)zy - --Zéfd> th= o (0"

n>0 \iezd

Bousquet-Mélou, Mishna 10; Kauers Yatchak 15, Melczer, Wilson 16

(o) — 2y LR AR A =5) (L=%29) (L= x9) (L+x9)

1—t(x +X+ Xy +Xy)

R(X, y) _ y22(y_b)(a(_f,)&j/zz};z)?f’);f{)_)bX)(ay+bX)

1 R(x.y)
Wab(t) = 24 p3 72 A((l—X)(l—Y)>




Diagonal Expressions

A: The (complete) diagonal operator

AN <Z fi(n)zy - --Zéfd> th= o (0"

n>0 \iezd

Bousquet-Mélou, Mishna 10; Kauers Yatchak 15, Melczer, Wilson 16

(o) — 2y LR AR A =5) (L=%29) (L= x9) (L+x9)

1—t(x +X+ Xy +Xy)

R(X, y) _ yz2(y_b)(a(—fzg(fz);szf’)}gf{)—)bx)(ay+bx)

1 R(x.y)
W, p(t) = <A
as(t) a4 bh3z2 ((1 —x)(1—y)
For free: Excursion generating function

1
(t)= a*bh3z2

“AR(x,y)



A diagonal extraction is a contour integral computation

THEOREM: Multivariate Cauchy Integral Formula
Suppose that F(x, y, t) € Q(x, y, t) is analytic at (0,0, 0) with a
power series expansion F(x,y, t) =3, .o ai.nisX"y? t5 at

the origin. Then for all n > 0,
A 1 / F(x,y, t) dxdydt
T 2w)d Jr o (xyt)” xyt

where T is a poly-disk defined by {|x| = €1, |y| = €2, |z] = €3},
for the ¢; sufficiently small.




The exponential growth
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The exponential growth

F(x,y,z) =Y aij«x'y/ 2" € N[x, X, y,¥][[z]]
T

Valid £or points in the disk of converaence D

Aegsolute converaence =— $or (x,y,z) € D, the sum
convereaes.. so does susseries > annn(|xyz|)"

That is, AF =) amnt” converaes £or t = |xyz| when
(x,y,z) € D.

AF converaes £or sup, , 5 [Xyz| = & Bound for
the radius of converaence of AF.
Here, the Bound is provarly tiaght.

Punchline

P = SUD(xy 2)eD |XyZ|
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The Critical Points
How to find this sup? D?

Definition

The critical points of ngyzg satisfy

H(x,y,z) =0 Hx(x,y.z) = Hy(x,y.2) Hx(x,y,2) = H:(x,y,2)

Here,
H(x,y, z) = (1 = xyzS(x~ 1y ))(x = 1)y — 1).
The equations imply critical points look like

(e CoSOty ™)

where (x, y) = (xs, ys) satisfies

(xs, ¥s) = argmin S(x, y).
x>1,y>1

Punchline (matches carit & Raschel)

B o 1
p = Sup(le’Z)G@ ’X)/Z| o W




Critical points as a function of a and b

Inventory:

1
S = _— _— _
(x,y)=ax+ ~to,

Global minimum of S(x, y):

(53)

Critical point:

(Xs, ¥s) = argmin S(x, y).
x>1,y>1

Exponential growth:

1
Ixvz| = c——

= sup
P S(XSvyS)

(X,y,z)eﬁ



Critical points as a function

Inventory:

1 ax by
) = —+t—+—=
(x,y)= ax+ v by + x

Global minimum of S(x, y):

(53)

a> 17

Q@a=b=1= pl=511)=4
1

Q@ a<landb<l =
Q@a>landa>b —

of aand b
Critical point:

(Xs, ¥s) = argmin S(x, y).
x>1,y>1

Exponential growth:

1

p= sup |XyZ\:W
S1JS

(X,y,z)eﬁ

Il
N

~— ~—
|

LT o=

2(a+1)



Critical points as a function

of aand b

Inventory: Critical point:
ax by X = argmin S(x, y).
S(Xv)/)_ax‘kf‘f'w-f—afx (X5, ys) XZgl.yZI (x,¥)
Global minimum of S(x, y): Exponential growth:
1
11 p— szl = o
a' b (x,y,z)e@ (XS'yS)
a>17
Q@a=b=1= plt=511)=4
Q@ a<landb<l = p*1:5(%,%):4
@ a>landa>b = pt=5(12)=2a+1

COROLLARY

The exponential growth changes smoothly, as the evaluation of a

Laurent polynomial.




The constant and the critical exponent

T H EO R E M Hormander; Pemantle, Wilson

Suppose that the functions A(8) and ¢(0) in d variables are smooth in a
neighbourhood N of the origin and that ¢ has a critical point at 8 =0
plus some technical conditions. Then for any integer M > 0 there exist
effective constants Gy, ..., Cuy such that

o\ 92 M
/ A(8) e @) qg = <n> det(#) 2> " GenF 40 (M1
X k=0

Co = ¢(0); If A(B) vanishes to order L at the origin then (at least) the
constants C, ..., CL%J are all zero.




The constant and the critical exponent

THEOREM Hormander; Pemantle, Wilson

Suppose that the functions A(8) and ¢(0) in d variables are smooth in a
neighbourhood N of the origin and that ¢ has a critical point at 8 =0
plus some technical conditions. Then for any integer M > 0 there exist
effective constants Gy, ..., Cuy such that

o\ 92 M
/ A(8) e @) qg = <n> det(#) 2> " GenF 40 (M1
X k=0

Co = ¢(0); If A(B) vanishes to order L at the origin then (at least) the
constants C, ..., CL%J are all zero.

Rix.y) = U=l oeerse)




A WORD OR TWO ON CENTRAL
WEIGHTS



Central weights are ideal for generating functions

© 00 ©

Central weights: the weight depends only on the endpoint:
equiprobable

THM: wt((/,))) = aoaiaé

PROP: The complete generating function of a weighted
model is an algebraic substitution of the unweighted model.

The finiteness of the group of a model is unchanged by
central weights.



Generating function connections

a(x,yit Z t" Y (H af’s(w)> k2

w walk ending se8
at (k,£) with n steps

PROPOSITION

Let Qa(x,y;z) be the generating function of walks with a central

weighting as = B[]%_, a”(s and Q(x, y; z) the generating
function of unweighted walks with the same set of steps. Then

Qa(x,¥:2) = Q(arx, a2y; a0z). (1) |

COR: This generates an infinite colletion of non-D-finite models.




A Wider Picture



Context: Small step 2D lattice models

Bostan, Kauers 09

OIS Tag | Steps |  Equation sizes y OEIS Tag | Steps |  Equation sizes Asympt
A000012 o | L | 1 4000079 | T | o | 11| 1 on
. 3 oo .
aocotaos | T 21 | 2.3 | 22 f, A000244 S| Lt |1 3n
&N
A001006 | +° | 2,1 | 2.3 |22 '3‘/15 3 A005773 | 00 | 201 | 2.3 | 2.2 ‘/|§ 3"
(L) 2 RO
oo 12v/2 237/ 24v/2 237/2
Al26087 | ° 30|25 |22 22| Ansioss e 68 416 - .
(1) n/? T n?
atsizes | o) | 64 | a0 e8| 223 Als1266 | ¢ | 7,10 | 5,16 | - VB
T(p) nd/t ar(l) va
Ats1278 | %o | 7.4 412 | 6.8 Atsizst | T8 3 | 25 |22 %3“
. 44
A005558 23 | 35 | - A0S566 | *ue | 2.2 | 3.4 | - s
Tn
A018224 23 | 35 | - A060899 21 | 23 |22
A060900 | 2% | 2,3 | 35 |89 ﬂ'{— A128386 | 20 | 31 | 25 |22
30(3) n?73
A129637 | TT0 | 30 | 25 |22 %w Al51261 5.8 | 405 | -
A2B3/2 pn
A151282 s | 2s |22 S S | Asion | +% 60|55 | -
23/41(3) n/?
12v/30 (V2"
Als127s 9.18 | 5.24 | - OL2D" prsiosr 701|509 | -
T
Y3023/ pn .
Al51292 s | 2s |2 | BEDE DY s | 200 | os | s | -
SO wi
5osn
AlS1307 815 520 | - | — 2 | As1318 21 | 23 |22
3Var(3) Vi () Vo
v 30712 (20)n
A129400 | ° 21 | 23 |22 Al51297 | sas | - | B eO"
o n?
. 558/4 gn
Als312 | 88| 45 | 38 | - Al51323 21 | 23 | 44 ‘f, o)
r(d) 3/
BFT/2 2F)"
AI51326 714 | 518 | - AlI51314 918 | 5.24 | — @n"
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Foire Aux Questions

What is the next (easiest) way to generalize small step walks?
length of step? dimension? ANSWER: weights. kauers, vatchak 15

Are some weights better than others?
ANSWER: Central weights are the easiest to handle.

What are the generating functions for the non-D-finite models?
ANSWER: 7?77 Something similar in structure to a diagonal of a
D-finite function..?

What is the interaction between asymptotics and the drift of a
model? |s the connection clear? ANSWER: Rather




Conjecture for sub-exponential growth cuse, vustafs, reschel 16+
Suppose that 8 is a non-singular step set. Let

(Xs, ¥s) = argmin S(x, y).
x>1,y>1

Then the asymptotic growth of the number of walks in the first
quadrant is given by the following table.

o Sx(xs,ys) =0 or Sx(xs,ys) > 0 and
VS(xs.y5) =0 Sy(xs,ys) =0 Sy(xs,ys) >0
(%, y5) = (1,1) S(1,1)" n=P1/2 S(1,1)"n~1/2 S(1,1)"n0
balanced axial free

xt=lory*=1 S(xs,ys)" n—P1/2-1 min{S(xs, 1), S(1,ys)}" n=3/2  (not possible)
transitional directed

xs >1and ys > 1 S(xs, ys)"n~P171 (not possible) (not possible)
reluctant

o Sybex)
\/Sxx (%s,¥5)Syy (Xs.¥5)

PROVABLE: Prove in case of a finite orbit sum.

p1 = m/arccos(—c)



Drift diagrams for other models

Kreweras Gessel Tandem

OPEN: The regions are not always cones! What's the story?



Conclusion

Main result

Asymptotic enumeration formula for weighted
Gouyou-Beauchamps model

Implications
@ Simplified context for ACSV: good entry point?
@ Understanding of the mechanism of how drift drives asymptotics
@ New discrete harmonic functions

@ Discovery of universality classes

Could it be true?

The location of the critical point of the INVENTORY defines the
universality classes of the weighted walks.

The Non-D-finite generating functions of lattice walks are
diagonals of something of similar structure.




Questions for you

@ Find explicit generating functions for weighted small step
walks.

@ Can we team up creative telescoping and ACSV for mutual
simplification?

@ How can we uncover the link between the properties of the
harmonic function constant and holonomy?




Merci Beaucoup!



