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Polynomial matrix computations

Matrices over K[X]
matrix m x m

3X + 4 X34+4X+1 4X%2+3

5 5X?4+3X+1 5X+3
3X3 + X2 45X +3 6X +5 2X +1

Fundamental operations
@ multiplication
@ kernel basis

@ approximant basis

Transformation to normal forms
@ triangularization ~» Hermite
@ row reduction ~» Popov

@ diagonalization ~» Smith
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Polynomial matrix computations

Matrices over K[X]
matrix m x m

3X + 4 X3 4+4X+1 4X%2+3

5 5X?4+3X+1 5X+3
3X3 + X2 +5X+3 6X +5 2X +1

Fundamental operations
@ multiplication
@ kernel basis

@ approximant basis

Transformation to normal forms
@ triangularization ~» Hermite
@ row reduction ~» Popov

@ diagonalization ~» Smith
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Polynomial matrix computations

Matrices over K[X]

matrix mx m 3X + 4 X3 4+4X+1 4X2+3
degree d ~» O(m“d) 5 5X>+3X+1 5X+3
type of average degree D/m 3X3 + X*+5X +3 6X +5 2X +1

Fundamental operations

e multiplication O(m“D/m) in specific cases
o kernel basis 5(me/m)
@ approximant basis 6(me/m)

Transformation to normal forms

@ triangularization ~~» Hermite ?
@ row reduction ~~ Popov ?
o diagonalization ~» Smith O(m*D/m)
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Hermite and Popov forms

working over K = Z /77

3X +4 X34+4X+1 4X%+3
A= 5 5X24+3X+1 5X+3
3X3 4+ X2 45X +3 6X +5 2X +1

~> using elementary row operations, transform A into

Hermite form
X0 +6X4 4+ X3+ X +4 0 0
H= [5X>+5X*4+6X3+2X?+6X+3 X 0
3X4+5X34+4X24+6X +1 5 1

Popov form

X3 45X2+4X +1 2X + 4 3X +5
P= 1 X242X4+3 X+2
3X +2 4x X2
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Example: constrained bivariate interpolation
As in Guruswami-Sudan list-decoding of Reed-Solomon codes

M of degree D; L of degree < D

M
—L 1
A= | —L? 1
Problem: find p= [p1 -+ pm] € RowSpace(A) such that

(%) deg(p;) < N; for all j

Approach:

@ compute the Popov form P of A with degree weights on the columns

@ return row of P which satisfies (%)
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Shifted Popov form

Connects Popov and Hermite forms

4 138 1B B [i71 o [ [5]
s =(0,0,0,0) B8] 4 3 3] [0 [1] [0]
Popov 31 (B8] [4 [ [2]
B B B [ el [ [ [l
(7] [4] 2 o] [i8] [5] [ ]

s =(0,2,4,6) 6] 5] 2] [0] [71 6] [1]
s-Popov 6] [4 (8] [0] [2]
6] [4 [2 [ Lo] [ [0]]

[16] [4]

[15] [0] (3] [7]

[15] [0] (1] 5] [3]
[15] [0] (8] 6] [ [2

@ controlled average column degree

s =(0,D,2D,3D)
Hermite

@ normal form

@ and many useful properties
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Shifted Popov form

For A € K[X]™*™ nonsingular and s € Z™,
the s-Popov form of A is the matrix P = UA which is

s-reduced

normalized

sum of diagonal degrees:

(4 [2 [o]] [[e] [5] [4]
(5] [ [o1} |71 [6] [1]
(4] [3] [0] 2]
(4 [ [] L] [4]

di + -+ dm = deg(det(P)) = deg(det(A)) < D

[0]]
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Problem and previous work

Input: A € K[X]™*™ nonsingular; shift s € Z™
Output: the s-Popov form of A

Previous fast algorithms focus on Hermite and Popov forms

Popov form: O(m“d), deterministic
[Giorgi-Jeannerod-Villard '03] [Sarkar-Storjohann '11] [Gupta-Sarkar-Storjohann-Valeriote '12]

Hermite form: O(m“d), Las Vegas randomized
[Gupta-Storjohann '11] [Gupta '11]
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pifir + -+ pmfim = 0 mod M

pifor + -+ pmfam = 0 mod M,

Reconstruction from equations

High-order lifting § [Storjohann, 2003]

Reduction of basis matrix
deg(P) < d P triangular

hifted
[ Popov form }»[ Hermite form ]
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Outline

@ reduction to average degree d € O(D/m)
@ Hermite form in O(m*D/m), deterministic

o s-Popov form in O(m“D/m), probabilistic
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1. Reduce to average degree

Example of partial linearization on the columns [Gupta et al., 2012]

8 o T

7 7 avg.=16 7

(17] [6] (37) [0] [16] [6] (3) [16] [16]
(171 [6] [36] (2) [0] [16] [6] [2] [16] [16] (2)

Elementary rows are inserted:

r(1) [16] T
X =il
[0] [16] (7)
[0] [16] [6] (3) [16] [16]
X% =i
X7
L[o] [16] [6] [2] [16] [16] (2)d

~> preserves determinant, Smith form, inverse. ..
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1. Reduce to average degree

Problem: given A and s, find P

using no field operation, build
o L(A) € K[X]™xm
o L(s)€Zm
such that
e m < 3m and deg(L(A)) < [D/m],
e P = submatrix of L(s)-Popov form of L(A)

uses partial linearization techniques from [Gupta et al., 2012]

The bound D can be taken as the generic determinant degree:

ﬂEPemrQ?i(,...,m}) Zlglgm eg(al’ﬂ—')

~» D/m < average row and column degrees
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p1fir+ -+ pmfim = 0 mod M;

pifor + -+ pmfam = 0 mod M,

Reconstruction from equations

High-order lifting § [Storjohann, 2003]

Reduction of basis matrix

deg(P) < d P triangular

shifted
Popov form
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2. Fast deterministic Hermite form

Previous fastest: (5(m“’d), Las Vegas [Gupta-Storjohann, 2011]
Here: O(m*“D/m), deterministic

(joint work with G. Labahn and W. Zhou [http://arxiv.org/abs/1607.04176])

Approach:
Q Find diagonal degrees  [zhou, 2012]

© Reduce to Popov form computation
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http://arxiv.org/abs/1607.04176

2.a. Find diagonal degrees

Partial computation of a triangularization:

‘ ,?%li,,,,,:
A 1 A B: * 'Bip!
————————— e e T R S e I
; ; . B
Az i A2 * 1 B "% B
~ yields diagonal entries in O(m*d)
o . A12
@ B, = small degree row basis of A [Zhou-Labahn, 2013]
22
L . A :
@ N = minimal kernel basis of A [Zhou-Labahn-Sorjohann, 2012]
22
nr AL
e B;=N [Azl]
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2.b. Reduce to Popov form computation

H = —d-Popov form of A

A —d-reduction R
[48] [37] [67] [32] (18] [7]
[39] [28] [58] [23] (18] [7]
[26] [15] [45] [10] (18] [7]
e [ 37 [2 (18] [7]

—d-reduction: via 0-reduction  ~»

normalization: in O(m“d)

(d = diagonal degrees)

(2)]

normalization
H=UR

(constant U)

(37] [2] (18)

(371 [ (171 (7)
(37] [2] (17] [o]
(371 [2] (17]  [o]

(37)
(36]

worst case O(m“*1d)
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2.b. Reduce to Popov form computation

Partial linearization: (A, d) transformed into (L(A), £(d))

L(A) has degree < d N
L(A) has dimension <2m 3 = —L(d)-reduction of L(A) in O(m“d)
L(d) has entries < d

A —d-reduction R normalization H=UR

(constant U)

partial linearization partial linearization
£(A) —L(d)-reduction ﬁ normalization ﬁ(H) _ 0 ﬁ

(constant 0)

H directly obtained from L£(H)
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p1fir+ -+ pmfim = 0 mod M;

pifor + -+ pmfam = 0 mod M,

Reconstruction from equations

High-order lifting § [Storjohann, 2003]

Reduction of basis matrix

deg(P) < d P triangular

shifted
Popov form

via diagonal degrees
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3. Fast s-Popov form for arbitrary s

Previous fastest: @(m“’(d + amp(s))) C (5(mw+2d),
relying on non-shifted Popov form computation [Gupta et al., 2012]

Here: O(m*“D/m), Las Vegas randomized

Approach:
@ Build system of modular equations [Gupta-Storjohann, 2011]
© Find s-Popov basis of solutions [Neiger, 2016]

Note: yields fastest known algorithm for Popov form (s = 0)

18/25



pifir + -+ Ppmfim = 0 mod M

pifor + -+ pmfam = 0 mod M,

Reconstruction from equations

Smith form of A
and reduced right

transformation
High-order lifting | [Storjohann, 2003]

Reduction of basis matrix

shifted
Popov form

via diagonal degrees

deg(P) < d P triangular

””{ Hermite form ]

[ Popov form }————
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3.a. Build system of linear modular equations

Compute:
Smith form UAV = diag(1,... .y My)
reduced right transformation [0|F]=Vmod(1,...,1,Mq,...,M,)
in probabilistic @(m”d) [Storjohann, 2003] [Gupta-Storjohann, 2011] [Gupta, 2011]
Then RowSpace(A) = all solutions [p1, ..., pm] to

pifit+ -+ pmfim = 0 mod My

p1fp1 + - -:' <= Bl : 0 mc:)d M,

~ s-Popov form of A = s-Popov basis of solutions
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3.b. Solve system of linear modular equations

Input: nonzero moduli M4, ..., M,
system matrix F € K[X]7*"
shift s € Z™

Output: the s-Popov basis of {p | pF =0 mod (My,...,M,)}

Result: O(m*D/m) for arbitrary moduli, n € O(m)

where D = deg(My) + - - - + deg(M,)

Previous work: O(m®D/m) for
@ Approximant bases: moduli = powers of X
@ Interpolant bases: moduli given by roots and multiplicities

@ Single degree-constrained solution (via structured system solving)
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3.b. Solve system of linear modular equations

divide-and-conquer on the number of equations using ideas from
@ [Jeannerod et al., 2016] (manage arbitrary shifts)

@ [Gupta-Storjohann, 2011] (solution when diagonal degrees are known)

~~ remains the base case: one equation

p1fi+ -+ pmfm=0mod M

P the sought s-Popov solution basis:
q1

PF = q;m Mo e [P q [mzo
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3.b. Solve system of linear modular equations

Reduction to approximant basis:

P q F _ amp(s)+2D
L *] [M] = 0 mod X

where amp(s) = max(s) — min(s)

New divide-and-conquer approach:

F(1)

Recursion: s = (sV);s(?) F= [FQ)} with amp(s()) ~ amp(s)/2

Base case: amp(s) E O(D), cost (5(m“D/m) [Jeannerod et al., 2016]



3.b. Solve system of linear modular equations

@ recursive call to find splitting index and P(1):
[P(l) 0

. *] = s(M)_Popov sol. basis for (F), M) ~~ UpdateSplit(s, F)
@ residual computation thanks to known P(1):

PO 0 g E() 0 F()
A= | x PO % | = u-Popov app. basis for [F®| ~ |G| =A [F®
* 0 q M N M

© recursive call to find P(2)

P() = v-Popov sol. basis for (G, V), where amp(v) ~ amp(s),/2

[>1¢))
© compute P =

P(2)0P(°)] using known diagonal degrees
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Conclusion

Linear systems of modular equations
o O(m“D/m), deterministic (n € O(m))

@ return s-Popov solution basis for arbitrary moduli

Shifted row reduction of polynomial matrices
e O(m“D/m), Las Vegas randomized
@ computes s-Popov form for an arbitrary shift

@ Hermite form: deterministic

Questions:
@ removing the assumption n € O(m)?
o deterministic O(m*“D/m) Popov form?
o fast deterministic shifted Popov form?
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Previous algorithms

Here, + = probabilistic algorithm, d = deg(A)

Algorithm Problem Cost bound
[Hafner-McCurley, 1991] Hermite form O(m*d)
[Storjohann-Labahn, 1996] Hermite form O(m=+1d)
[Villard, 1996] Popov & Hermite forms ~ O(m“*d + (md)~)
[Alekhnovich, 2002] weak Popov form O(m“*1d)
[Mulders-Storjohann, 2003] Popov & Hermite forms O(m3d?)
[Giorgi et al., 2003] 0-reduction O(m*d)
[1] = [Sarkar-Storjohann, 2011]  Popov form of 0-reduced O(m¥d)
[Gupta-Storjohann, 2011] Hermite form O(m“d)
[2] = [Gupta et al., 2012] 0-reduction O(m¥d)
[Zhou-Labahn, 2012/2016] Hermite form O(m¥d)
1] + [2] s-Popov form for any s O(m*(d + amp(s)))
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Reduction to linear modular equations: example

M 1 M
-L 1 L 1 1
I =13 1 i3 1 _ 1
m =
—[m=1 1] |Lmt 1 1

In other words, for Q@ = Zj<m Qj(X)Yj,

Q(xi,yj)=0foralli < [Qo Qm_l] L2 | = 0 mod M
Lm.fl

& Q(X,L)=0mod M
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Degrees and target costs

measure D<- 1/O size target cost
degree of matrix d md O(m?d) O(m“d)
avg. row degree p/m ) O(m?p/m) O(m*p/m)
avg. column degree v/m ¥ O(m?y/m) O(m“~/m)
generic det. bound D D O(m?D/m) O(m“D/m)
Example:
M w
= e d=D (2(m D)
| =2 1 e p/m~D Q(me)
: o y/m=D/m O(m“D/m)
_m1 1 e D/m=D/m O(m“D/m)

Generic determinant bound:

= max Z deg(ai ;) < min(p,vy) < md

)
TEIm ) <i<m
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Example: constrained bivariate interpolation (1/2)

As in Guruswami-Sudan list-decoding of Reed-Solomon codes: given
e points (x1,y1), ..., (xp,yp) in K? with the x;'s distinct
@ and degree constraints m

find a nonzero Q € K[X, Y] such that
(I) Q(X,',y,') =0forl < i < D
(i) degy(Q) <m (> Q= Xogjcm Qi(X)Y’)

(1) + (ii) defines a K[X]-module M of rank m:
identifying @ «— [Qo, ..., Qm_1] € K[X]**™,

MK[x]le C M C K[x]lxm
for M = (X —x1)--- (X — xm)
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Example: constrained bivariate interpolation (1/2)

As in Guruswami-Sudan list-decoding of Reed-Solomon codes: given
e points (x1,y1), ..., (xp,yp) in K? with the x;'s distinct

@ and degree constraints m and Ng, ..., Np_1,

find a nonzero Q € K[X, Y] such that

(I) Q(X,',y,') =0forl < i < D

(i) degy(Q) <m (> Q= Xogjcm Qi(X)Y’)
(iii) deg(Qj) < Njfor0<j<m

(1) + (ii) defines a K[X]-module M of rank m:
identifying @ «— [Qo, ..., Qm_1] € K[X]**™,

MK[x]le C M C K[x]lxm
for M = (X —x1)--- (X — xm)
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Example: constrained bivariate interpolation (2/2)

Recall that M = (X — x1) - (X — xp)
Define L € K[X] s.t. L(x;) = y; and deg(L) < D

~> basis of M:
M M
Y—-L —L 1
2 2 2
M = SpanK[X] Yo-1 +— A= -L 1
mel mel 7Lm71 1

Problem: find Q € M
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Example: constrained bivariate interpolation (2/2)

Recall that M = (X — x1) - (X — xp)
Define L € K[X] s.t. L(x;) = y; and deg(L) < D

~> basis of M:
M M
Y—-L —L 1
2 2 2
M = SpanK[X] Yo-1 +— A= -L 1
mel mel 7Lm71 1

(iii): deg(Qj) < Njfor0<j<m

Problem: find @ € M satisfying the degree constraints (iir)
Approach:

@ compute the Popov form P of A with degree weights on the columns
@ return row of P which satisfies (iir)
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Hermite form example

Base field Z/77Z

3X +4 X34+4X+1 4X%+3
A= 5 5X24+3X +1 5X+3
3X3 4+ X24+5X+3 6X +5 2X +1

X0+ 6X*+ X3+ X+4 00
H= |5X>+5X*4+6X3+2X2+6X+3 X 0
3XY4+5X3+4X2 46X +1 5 1

6X2+4X +1 3X34+4X?24+3X+3 5X34+3X2 42X +2
U= 2X +1 X245 4X%2 +5X +3
4 2X +6 X+6

det(U) =2
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Popov form example

Base field Z/77Z

3X +4 X34+4X+1 4X2+43
A= 5 5X24+3X+1 5X+3
3X3 4+ X2 45X +3 6X +5 2X +1

X3 4+5X2+4X+1 2X + 4 3X +5

P= 1 X242X4+3 X+2
3X +2 4X X2

0 0 5

U= |0 3 0

5 6X+2 0

det(U) =2
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Hermite and Popov forms

A € K[X]™*™ nonsingular

~~ via elementary row operations,
transform A into

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

triangular row reduced
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Hermite and Popov forms

A € K[X]™*™ nonsingular
~~ via elementary row operations,
transform A into

Hermite form [Hermite, 1851]

Popov form [Popov, 1972]

triangular
column normalized

W= W s
S o1 N
= W

row reduced
column normalized

7 0 15

01 0
2

6 0 1 6
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Hermite and Popov forms

A € K[X]™*™ nonsingular
~> via elementary row operations,
transform A into

Hermite form [Hermite, 1851]

basis of M C K[X]'*™ of rank m
~» find the reduced Grobner basis
of M for either term order

Popov form [Popov, 1972]

triangular
& . POT
column normalized

W= W s
S o1 N
= W

row reduced . }TOP
column normalized
7 0 1 5
0 1 0
2
6 0 1 6
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Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

2

N

A=

w N B
w N O o
N = OO
NN OO
N = OO

0
2

w N B
N O

Column normalization:

Cost bound: O(m3d?)
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Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

2 0 0 320 0 320 0
4 0 0 4 0 0 4 0 0
A=1s 021 = |2 0 1l — |2 o 1| =R
3 2 3 2 3 22 2 2 2 2 92

Column normalization:

Cost bound: O(m3d?)
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Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

2 00 3200 3200
A:4 0 0 N 4 0 0 . 4500:R
2 0 21 2 0 1 2 0 21
3 2 3 2 32 2 2 2 2 2 2

Column normalization:

Cost bound: O(m3d?)
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Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

2
13

Column normalization:

3
4
= 2
_2
Cost bound:

0 2
2 3

2 0

N O Ol

0
2
2

O(m3d?)

1
2_

0

0
1
2

NN B W

N O O N

=N O O

NN B W
N O O N
NN OO
N = OO
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Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

2
13

Column normalization:

3
4
= 2
_2
Cost bound:

021
2 3 2]

2 00

N O Ol

0 0
2 1
2 2

O(m3d?)

NN B W

N O O N

=N O O

NN B W

NN DN W

N O O N

N O OC1 N

NN OO

= NN = O

N = O O

N = = O
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Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

2
13

Column normalization:

3
4
= 2
_2
Cost bound:

021
2 3 2]

2 00

5
0
2

0 0
2 1
2 2]

O(m3d?)

~~ incorporate

NN B W

N O O N

=N O O

e fast matrix multiplication O(m®) ?

e fast polynomial arithmetic O(d) ?

NN B W

NN DN W

N O O N

N O OC1 N

NN OO

= NN = O

N = O O

N = = O
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Fast Popov form algorithm

Step 1: fast row reduction Step 2: fast Popov normalization

O(m“d) O(m“d)
[Giorgi et al., 2003], probabilistic [Sarkar-Storjohann, 2011]
[Gupta et al., 2012], deterministic

[Giorgi et al., 2003]:
expansion of A~! is, ultimately, recurrent sequence of matrices

Afl:BO_’_le_’_”'_i_Byxu+__.+Bl/+2dXU+2d+XV+2d+l(”_

via high-order lifting
o 2d+1
Reconstruct R as B = — mod X

~ uses deg(R) < d, which does not hold for arbitrary shifts
(even deg(P) may be md)
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Obstacle: size of a shifted row reduced form
Shifted Popov form via

A Step 1: shifted row reduction R Step 2: column normalization

Obstacle: worst-case deg(R) = ©(d + amp(s))
with amp(s) = max(s) — min(s)

Example: A unimodular, shift s =(0,...,0,md,..., md)
~> s-row reduced form of A

0 -
0

md md md 0
md md md 0
lmd md md 0

size ©(m3d) beyond target cost
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Hermite form in O(m“d)

[Gupta-Storjohann, 2011], [Gupta, 2011]:

Step 1: Smith form computation: UAV = S (probabilistic)
~» modular equations describing RowSpace(A)

Step 2: find pivot degrees d = (di, ..., dn) by triangularization
from a matrix involving VV and S

Step 3: use d to find Hermite basis of solutions to the equations

[Zhou, 2012], [Zhou-Labahn, 2016]:

Step 1: find pivot degrees d by (partial) triangularization
(using kernel bases and column bases, deterministic)

Step 2: use d to find Hermite form of A

s-Popov form not triangular for arbitrary s
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