
Analysis of the Brun Gcd Algorithm

V. Berthé, L. Lhote, B. Vallée

SpecFun- Novembre 2016

Brun gcd algorithm

A multiple gcd algorithm that is a natural extension of the
usual Euclid algorithm for (d + 1) integers.

It coincides with it for two entries.

It performs Euclidean divisions, between the largest entry
and the second largest entry.

This is the discrete version of a multidimensional continued
fraction algorithm due to Brun (’57).

Also called Podsypanin modified Jacobi–Perron algorithm,
d-dimensional Gauss transformation, ordered Jacobi–Perron

algorithm, etc.
and also an algorithm for efficient exponentiation with

precomputation [de Rooij]

Outline

We perform the worst-case and the average-case analysis of
this algorithm for the number of steps.

We prove that the worst-case and the mean number of steps
are linear with respect to the size of the entry.

The method relies on dynamical analysis, and is based on the
study of the underlying Brun dynamical system.

The dominant constant of the average-case analysis is related
to the entropy of the system.

We provide asymptotic estimates for the Brun entropy.

We also compare this algorithm to Knuth’s extension of the
Euclid algorithm.

Euclid algorithm and continued fractions

We start with two (coprime) integers

One divides the largest by the smallest

Euclid’s algorithm yields the digits of the continued fraction
expansion of their quotient

Euclid’s algorithm becomes in its continuous version the
Gauss transformation

T : [0, 1]→ [0, 1], x 7→ {1/x}

Rational trajectories behave like generic trajectories for the
Gauss transformation (methods from Dynamical Analysis
[Baladi-Vallée])

Our strategy: consider the generalizations of Euclid’s
algorithm issued from multidimensional continued fraction
algorithms endowed with a “good” dynamical system (Brun,
Jacobi-Perron, Selmer etc.)

Brun algorithm
We divide the largest entry by the second largest entry and reorder.

(74, 37, 13, 5, 3) 7→ (37, 13, 5, 3) 7→ (13, 11, 5, 3) 7→ (11, 5, 3, 2) 7→

(5, 3, 2, 1) 7→ (3, 2, 1) 7→ (2, 1) 7→ (1)

Start with (u0, u1, . . . , ud) with u0 > u1 > u2 > . . . > ud > 0

In each step, the first component u0 is divided by the second
component u1, and creates a remainder v0

v0 := u0 −mu1 Remainder m :=

[
u0
u1

]
Partial quotient

The second component u1 becomes the largest one.

There are different cases for the insertion (or not) of v0.

Brun algorithm
We divide the largest entry by the second largest entry and reorder.

(74, 37, 13, 5, 3) 7→ (37, 13, 5, 3) 7→ (13, 11, 5, 3) 7→ (11, 5, 3, 2) 7→

(5, 3, 2, 1) 7→ (3, 2, 1) 7→ (2, 1) 7→ (1)

Start with (u0, u1, . . . , ud) with u0 > u1 > u2 > . . . > ud > 0

In each step, the first component u0 is divided by the second
component u1, and creates a remainder v0

v0 := u0 −mu1 Remainder m :=

[
u0
u1

]
Partial quotient

The second component u1 becomes the largest one.

There are different cases for the insertion (or not) of v0.

The algorithm BrunGcd(d)

u0 > u1 > u2 > . . . > ud > 0

We divide the largest entry u0 by the second largest entry u1
and we reorder.

v0 := u0 −
[
u0
u1

]
u1

(G) (Generic case) if v0 is not present in (u1, · · · , ud), we perform
a usual insertion;

(Z) (Zero case) if v0 = 0, we do not insert v0;

(E) (Equality case) if v0 6= 0 is already present (at position i , say),
we do not insert v0.

Phases of the algorithm

Ω(k) = {u = (u0, u1, . . . , uk) | u0 > u1 > u2 > . . . > uk > 0} .

v0 := u0 −mu1, m :=

[
u0
u1

]
.

The algorithm BrunGcd(d) decomposes into d phases,
labelled from ` = 0 to ` = d − 1. During each phase, a
component is “lost”, and the `-th phase transforms an
element of Ω(d−`) into an element of Ω(d−`−1).

The phase ends as soon as it looses a component:

if v0 = 0;
or else, if v0 6= 0 is already present in (u1, · · · , uk).

The algorithm stops at the end of the (d − 1)-th phase with
an element of Ω(0) which equals the gcd.

The algorithm BrunGcd(d)

We divide the largest entry by the second largest entry and reorder.

The algorithm BrunGcd(d) computes the gcd of (d + 1) positive
integers. It deals with the input set

Ω(d) := {u = (u0, u1, . . . , ud) | u0 > u1 > u2 > . . . > ud > 0} .

During the execution of the algorithm, some components
“disappear” and the algorithm deals with the disjoint union

d−1⊕
`=0

Ω(d−`) .

Results

Maximum number of steps
The worst-case of the BrunGcd algorithm arises when

the quotients are the smallest possible (all equal to 1, except
the last one, equal to 2),

and the insertion positions the largest possible.

Theorem [Lam-Shallit-Vanstone] The maximum number Q(d ,N) of
steps of the BrunGcd Algorithm on the set

Ω(d ,N) := {u = (u0, u1, . . . , ud) | N ≥ u0 > u1 > u2 > . . . > ud > 0}

satisfies

Q(d ,N) ∼
1

| log τd |
logN (N →∞)

Let τd ∈]0, 1[be the smallest real root of X d+1 + X − 1

1/| log τd | ∼
(d + 1)

log d
(d →∞)

Maximum number of steps
The worst-case of the BrunGcd algorithm arises when

the quotients are the smallest possible (all equal to 1, except
the last one, equal to 2),

and the insertion positions the largest possible.

Theorem [Lam-Shallit-Vanstone] The maximum number Q(d ,N) of
steps of the BrunGcd Algorithm on the set

Ω(d ,N) := {u = (u0, u1, . . . , ud) | N ≥ u0 > u1 > u2 > . . . > ud > 0}

satisfies

Q(d ,N) ∼
1

| log τd |
logN (N →∞)

Let τd ∈]0, 1[be the smallest real root of X d+1 + X − 1

1/| log τd | ∼
(d + 1)

log d
(d →∞)

Mean number of steps

The algorithm BrunGcd acts on the set

Ω(d ,N) = {(u0, u1, . . . , ud) | N ≥ u0 > u1 > u2 > . . . > ud > 0}

endowed with the uniform distribution

The total number of steps Ld is on average linear in the size
logN of the entries

Mean number of steps

The algorithm BrunGcd acts on the set

Ω(d ,N) = {(u0, u1, . . . , ud) | N ≥ u0 > u1 > u2 > . . . > ud > 0}

endowed with the uniform distribution

The total number of steps Ld is on average linear in the size
logN of the entries

Theorem Here d is fixed, N tends to ∞. One has

EN [Ld] ∼ d + 1

Ed
· logN (N →∞)

Ed : entropy of the Brun dynamical system

Mean number of steps

The algorithm BrunGcd acts on the set

Ω(d ,N) = {(u0, u1, . . . , ud) | N ≥ u0 > u1 > u2 > . . . > ud > 0}

endowed with the uniform distribution

The total number of steps Ld is on average linear in the size
logN of the entries

Number of steps performed during the first phase: Md

Theorem EN [Ld] ∼ EN [Md] ∼ d+1
Ed · logN (N →∞)

Number of steps performed after the first phase: Rd

Theorem EN [Rd] ∼ rd (N →∞)

One has a strong difference between the first phase, where
most of the work is done, and the remainder of the execution,
where Rd is on average asymptotically constant

Comparison between the worst and the average case

Both dominant constants behave as d/ log d for d →∞

EN [Ld] ∼ d + 1

Ed
· logN Q(d ,N) ∼

1

| log τd |
· logN (N →∞)

1/| log τd | ∼
(d + 1)

log d
Ed ∼ log d (d →∞)

This indicates the same behavior for the algorithm in the
average-case and in the worst-case.

As the worst-case is reached when the quotients are all equal
to 1, this seems to indicate that the BrunGcd Algorithm deals
with quotients which are very often equal to 1.

On the quotients equal to 1

Number of steps performed during the first phase: Md

Number of quotients equal to 1 during the first phase: Od

Theorem
EN [Od]

EN [Md]
∼ ρd (N →∞)

ρd = 1 + O(2−d/ log d) (d →∞)

Number of steps of the subtractive version of BrunGcd during
the first phase: Σd

Theorem
EN [Σd]

EN [Md]
∼ σd (d →∞)

1 ≤ σd ≤ 2 + (log d)−1/2

On the proportion of quotients equal to 1
The following figure exhibits the proportion of quotients equal to 1
during the first phase as a function of the dimension d . This
proportion tends quickly to 1:

when d = 16, more than 99% of the Euclidean divisions are in
fact subtractions
for d = 50, the proportion is 99.99%.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

ra
ti

o

dimension (d+1)

ratio Number of subtractions/Number of euclidean divisions during the first phase

ratio

On the constants
The constants Ed , ρd , σd , rd are dynamical constants
They are defined via the dynamical system underlying the BrunGcd

algorithm.
It is defined on the simplex

J(d) = {x = (x1, . . . , xd | 1 ≥ x1 ≥ . . . ≥ xd ≥ 0}

and admits an invariant density defined on J(d)

Ψd(x) =
∑
σ∈Sd

d∏
i=1

1

1 + xσ(1) + xσ(2) + . . .+ xσ(i)

Consider the measure νd associated with Ψd , and the function

µd : [0, 1]→ [0, 1], y 7→ νd(yJ(d))

Ed = (d+1)

∫ 1

0
µd(y)

dy

y
, ρd = 1−µd

(
1

2

)
, σd =

∑
m≥1

µd

(
1

m

)

On the number of steps

Gauss map and continued fractions
TG : [0, 1]→ [0, 1], x 7→ {1/x}, if x 6= 0, and TG (0) = 0

x =
1

a1 +
1

a2 + · · ·

an =

[
1

T n−1(x)

]
, n ≥ 1

[
x
1

]
= x

[
0 1
1
[
1
x

]] [T (x)
1

]
= θ(x)

[
0 1
1 a1(x)

] [
T (x)

1

]
An(x) = A(x)A(T (x)) . . .A(T n−1(x)) θn(x) = θ(x) . . . θ(T n−1(x))

An(x) =

[
pn−1 pn
qn−1 qn

]
θn(x) = |qnx − pn|

[
x
1

]
= θn(x)An(x)

[
T n(x)

1

]

Thm For a.e. x , lim 1
n log qn = π2

12 log 2 = 1.18 · · · = λ1 first Lyapunov
exponent

first Lyapunov exponent = “log largest eigenvalue” ; size of the
matrices/convergents

An(x) ∼ qn(x) ∼ eλ1n ; Number of steps = size/ log eigenvalue= logN/λ1

Gauss map and continued fractions
TG : [0, 1]→ [0, 1], x 7→ {1/x}, if x 6= 0, and TG (0) = 0

x =
1

a1 +
1

a2 + · · ·

an =

[
1

T n−1(x)

]
, n ≥ 1

[
x
1

]
= x

[
0 1
1
[
1
x

]] [T (x)
1

]
= θ(x)

[
0 1
1 a1(x)

] [
T (x)

1

]
An(x) = A(x)A(T (x)) . . .A(T n−1(x)) θn(x) = θ(x) . . . θ(T n−1(x))

An(x) =

[
pn−1 pn
qn−1 qn

]
θn(x) = |qnx − pn|

[
x
1

]
= θn(x)An(x)

[
T n(x)

1

]
Thm For a.e. x , lim 1

n log qn = π2

12 log 2 = 1.18 · · · = λ1 first Lyapunov
exponent

first Lyapunov exponent = “log largest eigenvalue” ; size of the
matrices/convergents

An(x) ∼ qn(x) ∼ eλ1n ; Number of steps = size/ log eigenvalue= logN/λ1

Lyapunov exponents and continued fractions
Let X ⊂ [0, 1]d−1

A d-dimensional continued fraction map over X is given by
measurable maps

T : X → X , A : X → GL(d ,Z), θ : X → R+

that satisfy the following: for a.e. x ∈ X , one has[
x
1

]
= θ(x)A(x)

[
T (x)

1

]
Let

An(x) = A(x)A(T (x)) . . .A(T n−1(x)), θn(x) = θ(x) . . . θ(T n−1(x))

[
x
1

]
= θn(x)An(x)

[
T n(x)

1

]
First Lyapunov exponent λ1 = log eigenvalue ; size of the
matrices An(x) = eλ1n ; Number of steps = logN/λ1

Number of steps `(u, v)

`(u, v): number of steps in Euclid algorithm 0 < v < u

Worst case

`(u, v) = O(log v) (≤ 5 log10 v , Lamé 1844)

Reynaud 1821 [`(u, v) < v/2], see Shallit’s survey

Number of steps `(u, v)

`(u, v): number of steps in Euclid algorithm 0 < v < u

Worst case

`(u, v) = O(log v) (≤ 5 log10 v , Lamé 1844)

Mean case 0 < v < u ≤ N gcd(u, v) = 1

EN(`) ∼ 12 log 2

π2
· logN

[see Knuth, Vol. 2]

Number of steps `(u, v)

`(u, v): number of steps in Euclid algorithm 0 < v < u

Worst case

`(u, v) = O(log v) (≤ 5 log10 v , Lamé 1844)

Mean case 0 < v < u ≤ N gcd(u, v) = 1

12 log 2

π2
· logN + η + O(N−γ)

η Porter’s constant

asymptotically normal distribution

[Heilbronn’69,Dixon’70,Porter’75,Hensley’94,Baladi-Vallée’05...]

Distributional dynamical analysis

gcd(u0, u1) = 1 N ≥ u0 > u1 > · · · uk−1 = akuk + uk+1

Cost of moderate growth c(a) = O(log a)

• Number of steps in Euclid algorithm c ≡ 1

• Number of occurrences of a quotient c = 1a

• Binary length of a quotient c(a) = log2(a)

Theorem [Baladi-Vallée’05]

EN [Cost] =
12 log 2

π2
· µ̂(Cost) · logN + O(1)

The distribution is asymptotically Gaussian (CLT)

Discrete framework-Euclid algorithm

Distributional dynamical analysis

gcd(u0, u1) = 1 N ≥ u0 > u1 > · · · uk−1 = akuk + uk+1

Cost of moderate growth c(a) = O(log a)

• Number of steps in Euclid algorithm c ≡ 1

• Number of occurrences of a quotient c = 1a

• Binary length of a quotient c(a) = log2(a)

Theorem [Baladi-Vallée’05]

EN [Cost] =
12 log 2

π2
· µ̂(Cost) · logN + O(1)

The distribution is asymptotically Gaussian (CLT)

Discrete framework-Euclid algorithm

Ergodic theorem
We are given a dynamical system (X ,T ,B, µ)

T : X → X

Average time values: one particle over the long term
Ergodic theory

Average space values: all particles at a particular instant,
average over all possible sets Dynamical analysis of algorithms

µ(B) = µ(T−1B) T -invariance

T−1B = B =⇒ µ(B) = 0 or 1 ergodicity

Ergodic theorem space mean= average mean

1

N

∑
0≤n≤N

f (T n)x =

∫
fdµ a.e. x

Ergodic theorem

Theorem [Baladi-Vallée’05]

EN [Cost] =
12 log 2

π2
· µ̂(Cost) · logN + O(1)

EN [c] =
dimension

entropy
· µ̂(c) · logN + O(1)

µ̂(c) =

∫ 1

0
c([1/x]) · 1

log 2

1

1 + x
dx

Continuous framework-truncated trajectories

Ergodic theorem

Theorem [Baladi-Vallée’05]

EN [Cost] =
12 log 2

π2
· µ̂(Cost) · logN + O(1)

EN [c] =
dimension

entropy
· µ̂(c) · logN + O(1)

µ̂(c) =

∫ 1

0
c([1/x]) · 1

log 2

1

1 + x
dx

Continuous framework-truncated trajectories

Cost of truncated trajectories

Cost of moderate growth

c(ai) = O(log ai) for ai partial quotient

x =
1

a1 +
1

a2 +
1

a3 + · · ·

Cost of truncated trajectories
Cost of moderate growth

c(ai) = O(log ai) for ai partial quotient

Cost of a truncated trajectory

Cn(x) =
n∑

i=1

c(ai (x)) ai =

[
1

T i−1(x)

]
According to the ergodic theorem, for a.e. x ∈ [0, 1]

Cn(x)/n→ µ̂(x)

µ̂(C) =

∫ 1

0
c ([1/x]) · 1

log 2

1

1 + x
· dx

EN [C] =
2

π2/(6 log 2)
· µ̂(C) · logN

Multidimensional Euclid’s algorithms and continued
fractions

Jacobi-Perron We subtract the first one to the two other ones with
u0 ≥ u1, u2 ≥ 0

(u0, u1, u2) 7→ (u2, u0 −
[
u0
u2

]
u2, u1 −

[
u1
u2

]
u2)

Brun We subtract the second largest entry and we reorder. If
u0 ≥ u1 ≥ u2 ≥ 0

(u0, u1, u2) 7→ (u0 − u1, u1, u2)

Poincaré We subtract the previous entry and we reorder

(u0, u1, u2) 7→ (u0 − u1, u1 − u2, u2)

Selmer We subtract the smallest to the largest and we reorder

(u0, u1, u2) 7→ (u0 − u2, u1, u2)

Fully subtractive We subtract the smallest one to the other ones and we
reorder

(u0, u1, u2) 7→ (u0 − u2, u1 − u2, u2)

Number of steps for the Euclid algorithm

Consider

Ωm := {(u1, u2) ∈ N2, 0 ≤ u1, u2 ≤ m}

endowed with the uniform distribution

• Theorem The mean value Em[L] of the number of steps satisfies

Em[L] ∼ 2

π2/(6 log 2)
logm =

1

λ1
logm

λ1 is the first Lyapunov exponent of the Gauss map

π2/(6 log 2) is the entropy

[Heilbronn’69,Dixon’70,Hensley’94,Baladi-Vallée’03...]

Number of steps for a generalized Euclid algorithm

Consider parameters (u1, · · · , ud) with 0 ≤ u1, · · · , ud ≤ m

To be expected

Em[L] ∼ dimension

Entropy
× logm =

1

first Lyapounov exponent
× logm

The first Lyapounov exponent governs the growth of the
denominators of the convergents qn

Comparison of gcd algorithms
We consider three Euclid algorithms for polynomials in Fq[X]

Ω := {R = (R1,R2,R3) | degR3 > max(degR1, degR2), R3 monic}

One chooses one specific component. This is

the first component for the Jacobi-Perron algorithm
the second largest component for the Brun algorithm
and the smallest component for the Fully Subtractive algorithm

Each algorithm divides the other two components by this
specific component, and replaces these components by their
remainders in the division by the specific component.

After having performed these divisions, this specific
component becomes the largest one, and it is thus placed at
the third position.

The algorithm stops when there remains only one non-zero
component. This is the gcd.

Costs
Theorem [B.-Nakada-Natsui-Vallée]

Ωm := {R = (R1,R2,R3) | m = degR3 > max(degR1, degR2)}

Number of steps
3

Entropy
·m

Bit-complexity

Quadratic m2 Brun < Jacobi-Perron< Fully Subtractive

Fine bit-complexity (non-zero terms)
We find the same value for the three algorithms!

3(q − 1)

2q
·m2

On Knuth gcd algorithm

Knuth gcd algorithm

Consider the input (u0, u1, ..., ud)

v0 := u0

For k ∈ [1..d], one successively computes

vk := gcd(uk , vk−1) = gcd(u0, u1, . . . , uk)

The total gcd vd := gcd(u0, u1, . . . , ud) is obtained after d phases

One performs a sequence of d gcd computations
on two entries

Knuth gcd algorithm

Consider the input (u0, u1, ..., ud)

v0 := u0

For k ∈ [1..d], one successively computes

vk := gcd(uk , vk−1) = gcd(u0, u1, . . . , uk)

The total gcd vd := gcd(u0, u1, . . . , ud) is obtained after d phases

One performs a sequence of d gcd computations
on two entries

The same formal scheme can be applied to

positive integers

polynomials with coefficients in Fq

The following figure compares the number of steps of the BrunGcd

and the PlainGcd algorithms, as a function of dimension d , when
the binary size is fixed to log2N = 5000.

The complexity of BrunGcd algorithm appears to be sublinear
with respect to d .

The complexity of the PlainGcd algorithm appears to be
independent of d .

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 50 100 150 200 250

N
u
m

b
e
r

o
f

st
e
p
s

dimension (d+1)

Comparison PlainGcd/BrunGcd in function of the dimension (N is fixed)

BrunGcd
PlainGcd

Number of steps for Knuth gcd algorithm
A different notion of size

Ω′(d ,N) := {(u0, · · · , ud) | u0u1 . . . ud ≤ N}

The expectation of the number of steps Ld during the first phase is
linear with respect to the size N and satisfies

EN [Ld] ∼ 6 log 2

π2
· logN

(d + 1)

First phase linear on average
For the other phases k ≥ 2 constant in average
Almost all the calculation is done during the first phase
Analogous results for formal power series with coefficients in a
finite field
Average-case and distributional analysis

[B.-Creusefond-Lhote-Vallée], ISSAC 13

Comparison of gcd algorithms

Brun algorithm for d + 1 integers

Number of steps EN [L] ∼ d + 1

EBd
· logN

Entropy EBd ∼ log d

Knuth algorithm

Number of steps EN [L] ∼ 1

EK2
· logN

(d + 1)

Entropy EK2 = π2/(6 log 2)

/ For Brun algorithm, logN is the size of the maximal input,
whereas for Knuth algorithm, logN is the cumulative size

Method

Method

A bijection between the set of entries and the sets of
quotients together with possible insertion places and gcd’s.

Inputs ∼ quotients × possible insertion places× gcd

Expression of associated Dirichlet series in terms of transfer
operators of the dynamical system which highlight the
singularities

This proves in particular that the first phase dominates
(dominant singularity)

We use a Delange type theorem

Brun dynamical system
A continuous extension of the algorithm that provides an exact
characterization of the trajectories that are related to the execution
of the algorithm. It acts on the simplex J(d) ⊂ Rd

J(d) := {x = (x1, . . . , xd) | 1 ≥ x1 ≥ . . . ≥ xd ≥ 0}

T(d)(0
d) = 0d, T(d)(x) = Ins

({
1

x1

}
,

1

x1
End x

)
for x 6= 0d

The algorithm BrunSD(d) The map Ins(y0, y) is the insertion “in
front of”, with two cases:

(G) if y0 is not present in the list y, this is an usual insertion;

(P) if y0 is already present in the list y, we insert y0 in front of the
block of components equal to y0.

We use here the existence of an ergodic absolutely continuous
invariant measure, and contraction properties of Brun Dynamical
system [Broise]

Transfer operators and Gauss map T : x 7→ {1/x}
Perron-Frobenius operator Think of f as a density function

P[f](x) =
∑

y :T (y)=x

1

|T ′(y)|
f (y) =

∑
k≥1

(
1

k + x

)2

f

(
1

k + x

)
Let H stand for the set of inverse branches of the Gauss map

P[f](x) =
∑
h∈H

h′(x) · f ◦ h(x)

Ruelle operator

Ps [f](x) =
∑
h∈H

h′(x)s · f ◦ h(x) s ∈ C

Dirichlet series

Take x = 0, f = 1 ;H∗ (Id− Ps)−1 ;
∑

`≥1 1/`2s ,
Involving additive costs

Ps,w [f](x) =
∑
h∈H

h′(x)s · w c(h) · f ◦ h(x)

Here c ≡ 1 for the number of steps

Transfer operators and Gauss map T : x 7→ {1/x}
Perron-Frobenius operator Think of f as a density function

P[f](x) =
∑

y :T (y)=x

1

|T ′(y)|
f (y) =

∑
k≥1

(
1

k + x

)2

f

(
1

k + x

)
Let H stand for the set of inverse branches of the Gauss map

P[f](x) =
∑
h∈H

h′(x) · f ◦ h(x)

Ruelle operator

Ps [f](x) =
∑
h∈H

h′(x)s · f ◦ h(x) s ∈ C

Dirichlet series

Take x = 0, f = 1 ;H∗ (Id− Ps)−1 ;
∑

`≥1 1/`2s ,

Involving additive costs

Ps,w [f](x) =
∑
h∈H

h′(x)s · w c(h) · f ◦ h(x)

Here c ≡ 1 for the number of steps

Transfer operators and Gauss map T : x 7→ {1/x}
Perron-Frobenius operator Think of f as a density function

P[f](x) =
∑

y :T (y)=x

1

|T ′(y)|
f (y) =

∑
k≥1

(
1

k + x

)2

f

(
1

k + x

)
Let H stand for the set of inverse branches of the Gauss map

P[f](x) =
∑
h∈H

h′(x) · f ◦ h(x)

Ruelle operator

Ps [f](x) =
∑
h∈H

h′(x)s · f ◦ h(x) s ∈ C

Dirichlet series

Take x = 0, f = 1 ;H∗ (Id− Ps)−1 ;
∑

`≥1 1/`2s ,
Involving additive costs

Ps,w [f](x) =
∑
h∈H

h′(x)s · w c(h) · f ◦ h(x)

Here c ≡ 1 for the number of steps

Transfer operators and Brun algorithm

Each step of the algorithm is a linear fractional transformation

Let h be an inverse branch and J[h] its Jacobian

Ps [f](x) =
∑
h∈H

J[h](x)s · f ◦ h(x)

T (x) = Ins

({
1

x1

}
,

(
x1
x2
, . . . ,

xd
x1

))

m(x) =

[
1

x1

]
, j(x) = Pos

({
1

x1

}
,

(
x2
x1
, . . . ,

xd
x1

))

Inverse branch
h(m,j)(y1, y2, . . . , yd) =

(
1

m+yj
, y1
m+yj

, . . . ,
yj−1

m+yj
,

yj+1

m+yj
, . . . , yd

m+yj

)
Jacobian J[h(m,j)](y) = 1

(m+yj)d+1 ;H∗ J[h](0) = 1
ud+1
0

,

Generating functions and transfer operators

u = (u0, u1, · · · , ud), u0 > u1 > · · · > ud > 0, ||u|| := u0

Dirichlet series ∑
u

C (u)

||u||s
=
∑
n≥1

n−s
∑
||u||=n

C (u)

We then introduce a further indeterminate w∑
u

wC(u)

||u||s

The derivative w.r.t. w at w = 1 yields cumulative generating
functions

Generating functions and transfer operators

Generating function
∑
u

wC(u)

||u||s

Operator Ps,w [f](x) =
∑
h∈H

J[h](x)s · w c(h) · f ◦ h(x)

Jacobian J[h](0) =
1

||u||d+1

For the number of steps C , take x = 0, f = 1, c = 1, and ∂
∂w |w=1

∑
u

C (u)

||u||s
;h∈H∗ (Id− Ps,w)−1[1](0) ;Perron-Frobenius

1

1− λs

Singularity for s such that λs = 1 with λs dominant eigenvalue of
the operator Ps (cf. invariant measure)

Branches and inverse branches

For any x ∈ J(d), the map T(d) uses a digit

(m, j) ∈ A(d) := N∗ × [1..d]

with a quotient m(x) ≥ 1 and an insertion index j(x) ∈ [1..d].
Let K(d ,m,j) := {x ∈ J(d) | m(x) = m, j(x) = j}
When (m, j) varies in A(d)

– the subsets K(d ,m,j) form a topological partition of J(d)
– the restriction T(d ,m,j) of T(d) to K(d ,m,j) is a bijection from
K(d ,m,j) ontoJ(d)

T(d ,m,j)(x1, x2, . . . , xd) =

(
x2
x1
, . . . ,

xj−1
x1

,
1

x1
−m,

xj+1

x1
, . . . ,

xd
x1

)
Its inverse is a bijection from J(d) onto K(d ,m,j)

h(d ,m,j)(y1, . . . , yd) =
(

1
m+yj

, y1
m+yj

, . . . ,
yj−1

m+yj
,

yj+1

m+yj
, . . . , yd

m+yj

)

The Brun Perron–Frobenius operator

H(d)[f](x) =
∑

h∈H(d)

|J[h](x)| f ◦ h(x)

A convenient functional space is C 1(J(d)), || · ||1)

||f ||1 = sup
x∈J(d)

|f (x)|+ sup
x∈J(d)

||Df (x)||

Df (x)= the differential of f at x and || · ||= a norm on Rd

H(d) acts on
(
C 1(J(d)), ‖ · ‖1

)
and is quasi-compact: the “upper”

part of its spectrum is formed with isolated eigenvalues of finite
multiplicity. The quasi-compacity is due to:

A contraction ratio

τd := lim sup
n→∞

sup
h∈Hn

(d)

sup
x∈J(d)

||Dh(x)||1/n< 1

τd is the smallest real root of zd+1 + z − 1 = 0
A distortion constant

∃L > 0, ||DJ[h](x)|| ≤ L |J[h](x)|, ∀h ∈ H?(d), ∀x ∈ J(d)

Spectral properties of H(d) acting on C 1(J(d))

λ = 1 is the unique simple dominant eigenvalue of maximum
modulus, isolated from the remainder of the spectrum by a
spectral gap

The dominant eigenfunction is explicit

ψd(x) =
∑
σ∈Sd

k∏
i=1

1

1 + xσ(1) + xσ(2) + . . .+ xσ(i)

Except for small d , there is no explicit expression known for
the integral

κd :=

∫
J(d)

ψd(x) dx

The invariant density Ψd and the invariant measure νd are not
explicit.

Conclusion and future work

We have used the Brun underlying dynamical system to
describe the probabilistic behaviour of the BrunGcd algorithm.

We have studied the asymptotics (for d →∞) of the main
constants that intervene in the analysis.

We conclude that the BrunGcd algorithm is less efficient than
the Knuth gcd algorithm.

This is probably the case for all the gcd algorithms which are
based on multidimensional continued fraction algorithms.

We plan to study other costs such as the bit-complexity or to
perform a distributional analysis ; More needs for the
properties of dynamical systems.

We plan to study finite and periodic trajectories.

We want to conduct a systematic comparison of continued
fraction algorithms with respect to Lyapunov exponents.

We plan to analyze the extended gcd algorithm based on the
LLL algorithm, even if its underlying system is quite complex
to deal with.

	Brun
	Results
	Number of steps
	Method

