Big integer multiplication

Svyatoslav Covanov

April 10, 2016

- Fast Fourier Transform
- Pürer
- Using generalized Fermat primes

- Fast Fourier Transform
- 2 Fürer
- Using generalized Fermat primes

Naive multiplication

How to multiply two N-bit integers a and b?

Naive multiplication

How to multiply two N-bit integers a and b?

Schoolbook multiplication: $O(N^2)$ bit complexity.

Karatsuba:

- $O(N^{\log_2 3})$ bit complexity.
- Transformation of integers into polynomials.

Multiplying integer using polynomials

Input: 2 numbers a and b of N bits.

Output: 2 polynomials $A = \sum_i a_i x^i$ and $B = \sum_i b_i x^i$ of degree n-1.

$$a = a_0 + 2^k \times a_1 + \dots + a_{n-1} \times 2^{(n-1)k} = A(2^k)$$

$$b = b_0 + 2^k \times b_1 + \dots + b_{n-1} \times 2^{(n-1)k} = B(2^k)$$

Multiplying integer using polynomials

Input: 2 numbers a and b of N bits.

Output: 2 polynomials $A = \sum_i a_i x^i$ and $B = \sum_i b_i x^i$ of degree n-1

$$a = a_0 + 2^k \times a_1 + \dots + a_{n-1} \times 2^{(n-1)k} = A(2^k)$$

$$b = b_0 + 2^k \times b_1 + \dots + b_{n-1} \times 2^{(n-1)k} = B(2^k)$$

- \bullet \mathcal{R} is a commutative ring.
- $\begin{array}{c}
 A \longrightarrow \tilde{A} \in \mathcal{R}[x] \\
 B \longrightarrow \tilde{B} \in \mathcal{R}[x]
 \end{array}$
- $C \longrightarrow \tilde{C} = \tilde{A} \cdot \tilde{B}$ is injective:

$$\forall j, |c_j| = |\sum_{i=0}^j a_i \cdot b_{j-i}| < (j+1) \cdot 2^{2k} \le n \cdot 2^{2k}.$$

- We choose 2n-1 distinct points w_i of \mathcal{R} .
- Computation of $A(w_i)$ and $B(w_i)$: equivalent to the product

$$\begin{pmatrix} 1 & w_0 & \dots & w_0^{2\,n-1} \\ 1 & w_1 & \dots & w_1^{2\,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & w_{2\,n-1} & \dots & w_{2\,n-1}^{2\,n-1} \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ \vdots \\ a_{n-1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} A(w_0) \\ \vdots \\ A(w_i) \\ \vdots \\ A(w_{2n-1}) \end{pmatrix}.$$

- Pointwise products $A(w_i) \cdot B(w_i) = C(w_i)$.
- Lagrange interpolation of C from the 2n points $A(w_i) \cdot B(w_i)$:

$$\begin{pmatrix} 1 & w_0 & \dots & w_0^{2n-1} \\ 1 & w_1 & \dots & w_1^{2n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & w_{2n-1} & \dots & w_{2n-1}^{2n-1} \end{pmatrix}^{-1} \cdot \begin{pmatrix} A(w_0)B(w_0) \\ \vdots \\ A(w_{2n-1})B(w_{2n-1}) \end{pmatrix}.$$

Evaluation-Interpolation scheme

Discrete Fourier Transform (DFT)

If $\mathcal R$ is a ring containing a 2n-th principal root of unity ω : let

$$M_{2n}(\omega)=egin{pmatrix}1&1&\ldots&1\1&\omega&\ldots&\omega^{2n-1}\ dots&dots&dots\1&\omega^{2n-1}&\ldots&(\omega^{2n-1})^{2n-1}\end{pmatrix}.$$

For $A \in \mathcal{R}[x]$,

$$\begin{pmatrix} A(1) \\ A(\omega) \\ \vdots \\ A(\omega^{2n-1}) \end{pmatrix}$$

is the discrete Fourier transform of A.

Definition

Let \mathcal{R} be a **ring** containing a 2n-th root of unity ω . The root ω is said to be a 2n-th principal root of unity if

$$\forall i \in [1, 2n-1], \sum_{j=0}^{2n-1} \omega^{ij} = 0.$$

Weaker notion: primitive root of unity if

$$\forall i \in [1, 2n-1], \omega^i \neq 1.$$

Primitive and principal is the same thing on a field.

If \mathcal{R} contains a 2n-th principal root of unity ω , then

$$M_{2n}(\omega)^{-1} = \frac{1}{2n} M_{2n}(\omega^{-1}).$$

 \Rightarrow An efficient algorithm for the evaluation gives an efficient algorithm for the interpolation...

Fast Fourier Transform (FFT)

Cooley-Tukey FFT in radix 2:

$$\begin{split} A(\omega^{j}) &= \sum_{i \in [0,2n-1]} a_{i} \omega^{ij} \\ &= \sum_{i \in [0,n-1]} a_{2i+1} \omega^{(2i+1)j} + \sum_{i \in [0,n-1]} a_{2i} \omega^{2ij} \\ &= \omega^{j} A_{odd}(\omega^{2j}) + A_{even}(\omega^{2j}) \end{split}$$

- We compute 2 DFT of n points (for A_{odd} and A_{even}).
- We multiply n points by ω^j (twiddle factors): n multiplications.
- We compute *n* DFT of 2 points:

$$\pm \omega^j A_{odd}(\omega^{2j}) + A_{even}(\omega^{2j}).$$

$FFT(A, \omega, 2n)$

$$\begin{array}{ll} \text{if } n=2 \text{ then} \\ & \text{return } A_0+A_1+X(A_0-A_1) \\ \text{end if} \\ A_{even} \leftarrow (A_{2i})_i \\ A_{odd} \leftarrow (A_{2i+1})_i \\ \hat{A}_{even} \leftarrow \text{FFT}(A_{even},\ \omega^2,\ n) \\ & \hat{A}_{even} = \sum_{i \in [0,n-1]} A_{even}(\omega^{2i}) X^i \\ \hat{A}_{odd} \leftarrow \text{FFT}(A_{odd},\ \omega^2,\ n) \\ & \hat{A} \leftarrow \hat{A}_{odd}(X) + \hat{A}_{even}(\omega X) + X^n \cdot (\hat{A}_{odd}(X) - \hat{A}_{even}(\omega X)) \\ & \text{return } \hat{A} \end{array}$$

 \Rightarrow 2n = 16 points, $\log(2n) = 4$ levels, $n(\log(2n) - 1) = 24$ multiplications.

Choice of the ring

- N: # bits of the integers that we multiply
- 2 n-1: degree of the polynomials A and B used to represent a and b
- **1 b** k: # bits used to encode the coefficients of A and B: $a = A(2^k)$, $b = B(2^k)$ and $n \cdot k = N$.

Choice of the ring

- N: # bits of the integers that we multiply
- 2 n-1: degree of the polynomials A and B used to represent a and b
- **1 k**: # bits used to encode the coefficients of A and B: $a = A(2^k)$, $b = B(2^k)$ and $n \cdot k = N$.

Examples: (Schönhage-Strassen algorithms)

- $\mathcal{R}=\mathbb{C}$: $\omega=\exp(i\pi/n)$, provided that we allow enough precision
- ullet $\mathcal{R}=\mathbb{Z}/(2^e+1)\mathbb{Z}$: $\omega=2^j$ is a 2e/j-th principal root of unity .

Complex Case

- O(n log n) expensive multiplications during the FFT
- 2n expensive multiplications during the pointwise product

We choose $n = O(\frac{N}{\log N})$ and $k = O(\log N)$.

Thus, writing the inductive equation for the complexity, we get

$$\mathcal{M}_{N} = \underbrace{O(N \log N)}_{\text{linear cost}} + \underbrace{(3n \log n + n)}_{3 \text{ DFT + pointwise product}} \mathcal{M}_{O(\log N)}$$

$$\leq 4n \log n \cdot \mathcal{M}_{O(\log N)} \leq 4N \cdot \mathcal{M}_{O(\log N)}$$

Expanding the equation, we get the following complexity

$$\mathcal{M}_N = N \log(N) \log \log(N) \log \log \log(N) \cdots 2^{O(\log^* N)}$$
.

 $\log^* N$: iterated logarithm of N,

$$\begin{cases} \log^* N = 1 & \text{if } N \leq 1, \\ \log^* N = 1 + \log^* (\log N) & \text{otherwise.} \end{cases}$$

Modular Case

- O(n log n) trivial multiplications during the FFT
- 2n expensive multiplications during the pointwise product

We choose $2n = \sqrt{N}$ and $e \approx 2\sqrt{N}$.

Thus, writing the inductive equation for the complexity, we get

$$\mathcal{M}_{\textit{N}} = \underbrace{\textit{O}(\sqrt{\textit{N}}\log\textit{N}\cdot\sqrt{\textit{N}})}_{\text{additions, subtractions, shifts in the FFT}} + \underbrace{\sqrt{\textit{N}}\mathcal{M}_{2\sqrt{\textit{N}}}}_{\text{pointwise products}}.$$

Expanding the equation, we have

$$\mathcal{M}_{N} = O(N \log N) + \sqrt{N}(O(2\sqrt{N} \log 2\sqrt{N}) + \cdots)$$

$$= O(N \log N) + O(N \log N) + \cdots$$

$$= O(\log \log N \cdot N \log N)$$

Some remarks

	Case	Degree	Mult. by a root	Recursion	Complexity
Γ	\mathbb{C}	$O(N/\log N)$	expensive	O(log N)	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
	$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	N log N log log N

In \mathbb{C} , computing an FFT in $\{1,-1,i,-i\}$ is quite easy. But less obvious for superior orders...

- Fast Fourier Transform
- 2 Fürer
- Using generalized Fermat primes

Cooley-Tukey

• 2*n*-point DFT computed with radix-2 FFT:

$$2 \cdot \mathsf{DFT}(n) + \mathsf{Twiddle} \ \mathsf{factors} + n \cdot \mathsf{DFT}(2).$$

• 2*n*-point DFT computed with radix-4 FFT:

$$4 \cdot \mathsf{DFT}(n/2) + \mathsf{Twiddle} \ \mathsf{factors} + n/2 \cdot \mathsf{DFT}(4).$$

• 2n-point DFT computed with radix-2m FFT (2m divides 2n):

$$2m \cdot \mathsf{DFT}(n/m) + \mathsf{Twiddle} \ \mathsf{factors} + n/m \cdot \mathsf{DFT}(2m).$$

$$\mathsf{DFT}(mn) = m \cdot \mathsf{DFT}(n) + \mathsf{Twiddle} \ \mathsf{factors} + n \cdot \mathsf{DFT}(m).$$

Radix-4 Cooley-Tukey

4 · DFT(4):

Radix-4 Cooley-Tukey

4 · DFT(4):

Radix-8 Cooley-Tukey

Cooley-Tukey FFT algorithm for 2n points:

- Radix-2 $\Rightarrow \log_2(2n)$ levels of recursion with $\frac{2n}{2}$ 2-point FFT on each level.
- Radix-4 $\Rightarrow \log_4(2n)$ levels of recursion with $\frac{2n}{4}$ 4-point FFT on each level.
- Radix- $2m \Rightarrow \log_{2m}(2n)$ levels of recursion with $\frac{n}{m}$ 2m-point FFT on each level.

An example in Complex Field: radix-2 FFT

An example in Complex Field: radix-4 FFT

Fürer's algorithm

- \mathcal{R} is the ring $\mathcal{R} = \mathbb{C}[x]/(x^P+1)$ (P divides 2n). \Rightarrow There exists a 2n-th root of unity ρ such that $\rho^{n/P} = x$.
- Computation of 2*n*-point DFT with radix-2*P* FFT.
- $\log_{2P} 2n$ levels of recursion:

$$\underbrace{\log_{2P}(2n)}_{\text{nb. of levels}} \cdot \underbrace{2n}_{\text{mult. per level}} \cdot \underbrace{\mathcal{M}_{\mathcal{R}}}_{\text{cost of a mult. in } \mathcal{R}}$$

expensive multiplications.

Remark:

We use Lagrange interpolation to find ρ in \mathcal{R} :

$$\forall j \in [0, 2P-1], \rho(e^{\frac{2ji\pi}{n}}) = e^{\frac{ji\pi}{P}}.$$

Size of coefficients

- We choose $P = O(\log N)$. For $R = \sum_{i=0}^{P-1} r_i x^i \in \mathcal{R}$, $\log |r_i| \le t = \Theta(\log N)$.
- An integer a is cut in pieces a_i of size k. \Rightarrow A polynomial $\hat{A} = \sum_{i \in [0, n-1]} a_i Y^i$.
- Each a_i is transformed in an element of \mathcal{R} (cut in P/2 pieces). \Rightarrow A polynomial $A = \sum_{i \in [0, n-1]} \left(\sum_{j \in [0, P/2-1]} a_{ij} X^j \right) Y^i$.

We must have $(C = A \cdot B \longrightarrow \tilde{C} = \tilde{A} \cdot \tilde{B}$ is injective)

$$\log n + \log P + 2 \cdot (2k/P) \le t.$$

Size of coefficients

- We choose $P = O(\log N)$. For $R = \sum_{i=0}^{P-1} r_i x^i \in \mathcal{R}$, $\log |r_i| \le t = \Theta(\log N)$.
- An integer a is cut in pieces a_i of size k. \Rightarrow A polynomial $\hat{A} = \sum_{i \in [0, n-1]} a_i Y^i$.
- Each a_i is transformed in an element of \mathcal{R} (cut in P/2 pieces). \Rightarrow A polynomial $A = \sum_{i \in [0, n-1]} \left(\sum_{j \in [0, P/2-1]} a_{ij} X^j \right) Y^i$.

We must have $(C = A \cdot B \longrightarrow \tilde{C} = \tilde{A} \cdot \tilde{B}$ is injective)

$$\log n + \log P + 2 \cdot (2k/P) \le t.$$

Case	Degree	Mult. by a root	Recursion	Complexity
\mathbb{C}	$O(N/\log N)$	expensive	$O(\log N)$	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	N log N log log N
$\mathbb{C}[x]/(x^P+1)$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	N log N 2 ^{O(log* N)}

In 2014, Harvey, Lecerf and Van Der Hœven proved that the exact complexity is

 $N \log N 16^{\log^* N}$.

With Bluestein's Chirp transform, they reach unconditionally $N \log N 8^{\log^* N}$.

By using a conjecture on Mersenne primes, they even have $N \log N \, 4^{\log^* N}$.

- Fast Fourier Transform
- 2 Fürer
- Using generalized Fermat primes

What can we improve?

• We cut an N-bit integer in pieces of size $k \Rightarrow n = \frac{N}{k}$ pieces. The elements of \mathcal{R} are encoded on Pt bits and t satisfies

$$\log n + \log P + 4k/P \le t.$$

 \Rightarrow The cost of $\mathcal{M}^{\mathit{KS}}_{\mathcal{R}}$ is at least

$$\mathcal{M}_{Pt} \geq \mathcal{M}_{4k}$$

(multiplication of 4k-bit integers).

ullet A multiplication in ${\cal R}$ requires padding (Kronecker substitution):

$$\mathcal{M}_{\mathcal{R}}^{\mathit{KS}}$$
 is at least $\mathcal{M}_{2tP} \geq \mathcal{M}_{8k}$.

Number-theoretic transform

- N: # bits of the integers that we multiply
- ② n-1: degree of the polynomials A and B used to represent a and b
- **3** k: # bits used to encode the coefficients of A and B: $a = A(2^k)$ and $b = B(2^k)$

Instead of computing FFT over \mathbb{C} , we can choose $\mathcal{R}=\mathbb{Z}/q\mathbb{Z}$. The prime q must satisy $2n\mid q-1$ (there exists a 2n-th principal root of unity).

A choice of q such that $\log q = O(\log N)$ is optimal.

Number-theoretic transform

- N: # bits of the integers that we multiply
- ② n-1: degree of the polynomials A and B used to represent a and b
- **3** k: # bits used to encode the coefficients of A and B: $a = A(2^k)$ and $b = B(2^k)$

Instead of computing FFT over \mathbb{C} , we can choose $\mathcal{R} = \mathbb{Z}/q\mathbb{Z}$. The prime q must satisy $2n \mid q-1$ (there exists a 2n-th principal root of unity).

A choice of q such that $\log q = O(\log N)$ is optimal.

We cut the *N*-bit integers in pieces of size $k \approx \frac{1}{2} \log q$:

$$\log n + 2k \le \log q.$$

A Fürer-like number theoretic transform

- q is chosen such that $q = r^P + 1$: this is a generalized Fermat prime.
 - Conjecturally, there exists r such that $r < P \cdot (\log P)^2 \Rightarrow \log_2 q \approx P \log P$.
- Let ρ be a 2n-th root of unity in $\mathbb{Z}/q\mathbb{Z}$ such that $\rho^{n/P}=r$.

A Fürer-like number theoretic transform

- q is chosen such that $q = r^P + 1$: this is a generalized Fermat prime.
 - Conjecturally, there exists r such that $r < P \cdot (\log P)^2 \Rightarrow \log_2 q \approx P \log P$.
- Let ρ be a 2n-th root of unity in $\mathbb{Z}/q\mathbb{Z}$ such that $\rho^{n/P}=r$.

Working in radix r is like working with "polynomials" of degree P whose coefficients are bounded by r:

$$\mathcal{M}_{\mathcal{R}} \leq \mathcal{M}_{\mathbb{Z}_{P}[X]}$$
.

How to multiply in ${\cal R}$

Instead of Kronecker substitution, we directly compute an FFT.

How to multiply in ${\cal R}$

Instead of Kronecker substitution, we directly compute an FFT.

• $x \in \mathbb{Z}/q\mathbb{Z}$ and $y \in \mathbb{Z}/q\mathbb{Z}$ are represented by polynomials over \mathbb{Z} :

$$X(r) = x_0 + x_1 \cdot r + x_2 \cdot r^2 \cdots x_{P-1} \cdot r^{P-1}$$

and

$$Y(r) = y_0 + y_1 \cdot r + y_2 \cdot r^2 \cdots y_{P-1} \cdot r^{P-1}.$$

- We choose $Q = O(\log \log P)$ and we represent x and y in radix r^Q .
 - \Rightarrow We get \tilde{X} and \tilde{Y} polynomials modulo $X^{P/Q}+1$ with coefficients $\leq r^Q$.
 - \Rightarrow We compute a P/Q-points FFT.
- We get $x \cdot y \in \mathbb{Z}/q\mathbb{Z}$ with reductions modulo r.

How to multiply in ${\cal R}$

Instead of Kronecker substitution, we directly compute an FFT.

• $x \in \mathbb{Z}/q\mathbb{Z}$ and $y \in \mathbb{Z}/q\mathbb{Z}$ are represented by polynomials over \mathbb{Z} :

$$X(r) = x_0 + x_1 \cdot r + x_2 \cdot r^2 \cdots x_{P-1} \cdot r^{P-1}$$

and

$$Y(r) = y_0 + y_1 \cdot r + y_2 \cdot r^2 \cdots y_{P-1} \cdot r^{P-1}.$$

- We choose $Q = O(\log \log P)$ and we represent x and y in radix r^Q .
 - \Rightarrow We get \tilde{X} and \tilde{Y} polynomials modulo $X^{P/Q}+1$ with coefficients $< r^Q$.
 - \Rightarrow We compute a P/Q-points FFT.
- We get $x \cdot y \in \mathbb{Z}/q\mathbb{Z}$ with reductions modulo r.

We do not have anymore the zero-padding due to Kronecker substitution.

Steps of the algorithm

- Find a prime $q = r^{\log N} + 1$ sufficiently large for multiplying integers of size N.
- Cut the integers a and b into pieces of size
 k = O(log N log log N), that are the coefficients of A and B.
- Represent the pieces as elements of $\mathbb{Z}/q\mathbb{Z}$ in radix r.
- Compute the FFT, the componentwise product, the inverse FFT.
- Switch from radix r to the regular representation of elements of $\mathbb{Z}/q\mathbb{Z}$.
- Transform the polynomial $C = A \cdot B$ into an integer c by evaluating it at 2^k .

Comparison of complexities

Using generalized Fermat primes we get the following data:

Case	Degree	Mult. by a root	Recursion	Complexity
C	$O(N/\log N)$	expensive	O(log N)	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	N log N loglog N
$\mathbb{C}[x]/(x^P+1)$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	N log N 16 ^{log* N}
$\mathbb{Z}/(r^P+1)\mathbb{Z}$	$O(N/(\log N \log \log N))$	it depends	O(log N log log N)	N log N 4 ^{log* N}

Some estimations

	Schönhage-Strassen algorithm			
bitsize	nb. mult.	mult bitsize	estimated time (s)	
2 ³⁰	2 ¹⁶	$\approx 2^{16}$	9.96	
2 ³⁶	2 ¹⁸	$\approx 2^{18}$	$2.60 \cdot 10^{2}$	
2 ⁴⁰	2 ²¹	$\approx 2^{21}$	2.36 · 10 ⁴	
2 ⁴⁶	2 ²⁴	$\approx 2^{24}$	$2.17 \cdot 10^{6}$	
2 ⁵⁰	2 ²⁶	$\approx 2^{26}$	4.10 · 10 ⁷	
2 ⁵⁶	2 ²⁹	$\approx 2^{29}$	2.94 · 10 ⁹	

	Generalized Fermat primes				
bitsize	nb. mult.	prime	KS. bitsize	estimated time (s)	
2 ³⁰	2 ²⁴ · 13	$562^{32} + 1$	800	3.57 - 10	
2 ³⁶	$2^{30} \cdot 16$	$562^{32} + 1$	800	3.35 · 10 ³	
2 ⁴⁰	2 ³⁴ · 19	$562^{32} + 1$	800	6.26 · 10 ⁴	
2 ⁴⁶	2 ⁴⁰ · 22	$884^{32} + 1$	800	4.64 · 10 ⁶	
2 ⁵⁰	2 ⁴⁴ · 25	$884^{32} + 1$	800	$7.91 \cdot 10^{7}$	
2 ⁵⁶	2 ⁵⁰ · 28	$884^{32} + 1$	800	5.67 · 10 ⁹	

• nb. mult.: $2n \cdot (3 \cdot \lceil \log_{2P} 2n \rceil + 1)$.

Conclusion

Avoiding the padding due to a modular ring and the Kronecker substitution improves on the complexity of the algorithm: we reach $N \log N \cdot 4^{\log^* N}$.

The complexity is conjectural: related to "Hypothesis H" and lower bounds on r such that P(r) is prime for a polynomial P.

In practice, we do not expect this algorithm to improve on Schönhage-Strassen for sizes $\leq 2^{40}$ bits.

It is possible to improve the arithmetic in $\mathbb{Z}/q\mathbb{Z}$ by choosing $q=b^P+1$ with a special b (sparse?): a lot of generalized Fermat primes.