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@ Fast Fourier Transform
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Naive multiplication

How to multiply two N-bit integers a and b 7
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Naive multiplication

How to multiply two N-bit integers a and b 7
Schoolbook multiplication: O(N?) bit complexity.

Karatsuba:
o O(N'"e23) bit complexity.
@ Transformation of integers into polynomials.
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Multiplying integer using polynomials

Input: 2 numbers a and b of N bits.
Output: 2 polynomials A =", a;x" and B = Y, bix’ of degree
n—1.

a=ag+ 2K x a; +--- 4 a,_1 x 2017 Dk= A(2k)
b =by 4 2K x by + -+ 4 by_q x 2(n~Vk= B(2k)
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Multiplying integer using polynomials

Input: 2 numbers a and b of N bits.
Output: 2 polynomials A =", a;x" and B = Y, bix’ of degree
n—1.

a=ag+ 2K x a; +--- 4 a,_1 x 2017 Dk= A(2k)

b =by 4 2K x by + -+ 4 by_q x 2(n~Vk= B(2k)
@ R is a commutative ring.
o A— Ae R[x]

B — B e R[x]
e C—C=A-Bis injective:
J
Vil =Y a- bl < (j+1)-2°% <n-2%

i=0
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@ We choose 2n — 1 distinct points w; of R.
e Computation of A(w;) and B(w;): equivalent to the product

do

A(w
1w ... owdt : ( 0
1 w Coow ! :
- | A
1 Wop—1 ... W2,7:1 :
2t 0 A(W2n71)

e Pointwise products A(w;) - B(w;) = C(w;).
@ Lagrange interpolation of C from the 2n points A(w;) - B(w;):

~1
1w ... owg!
1 Wy o W12n—1 A(WO)IB(WO)

: . E, Alwo,_ .B Wop_
L (Won-1) B(Wn1)
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Evaluation-Interpolation scheme

Y y2n-1]

Pointwise
product

[xoy0: - - -, x2n—1¥2n—1]

'

Interpolation
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Discrete Fourier Transform (DFT)

If R is a ring containing a 2n-th principal root of unity w:
let

1 1 1
1 w w2n—1
M2n(w) - . .
1 w2;171 L (w2nf.1)2n71
For A € R[x],
A(1)
A(w)
A((JJ2"_1)

is the discrete Fourier transform of A.
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Definition
Let R be a ring containing a 2n-th root of unity w. The root w is

said to be a 2n-th principal root of unity if

2n—1
Vie[l,2n-1],) wi=0.

j=0

Weaker notion: primitive root of unity if
Vie[l,2n—1],w #1.

Primitive and principal is the same thing on a field.
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If R contains a 2n-th principal root of unity w, then

1
Mzn(W)_l = ZMQ,,(W_I).
= An efficient algorithm for the evaluation gives an efficient

algorithm for the interpolation...
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Fast Fourier Transform (FFT)

Cooley-Tukey FFT in radix 2:

AW)= Y aw’

i€[0,2n—1]
_ 2i+1)j 2ij
= E 32i+1w( V4 E asiw’
i€[0,n—1] i€[0,n—1]

= ijodd(wzj) + Aeven(wzj)

@ We compute 2 DFT of n points (for Asgg and Aeven).
e We multiply n points by «’ (twiddle factors): n multiplications.
@ We compute n DFT of 2 points:

:i:ijodd(wzj) + Aeven(wzj).
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FFT(A, w, 2n)
if n =2 then
return Ay + A1 + X(AO — A1)
end if
Aeven — (A2i)i
Aodd < (Azi+1)i

Aeven + FFT(Acven, &, ) > Aeven = 2 icfo.n1] Aeven(w?) X’
Aodd < FFT(Acgg, w?, n) > Aodd = 2 jcjo,n—1] Aodd (W)X’
A Aogd(X) + Aeven(wx) + X" (Aodd(X) - Aeven(WX))

return A
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Qo
Q1
Q2
Q3
Qs
Qs
Qs
Q7
Qs
Qo
Q10
Qu1
Q12
Q13
Q14
Q15

= 2n = 16 points, log(2n) = 4 levels, n(log(2n) — 1) = 24
multiplications.
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Choice of the ring

©Q N: # bits of the integers that we multiply

© n — 1: degree of the polynomials A and B used to represent a
and b

© k: # bits used to encode the coefficients of A and B:
a=A(2%), b=B(2X)and n-k = N.
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Choice of the ring

©Q N: # bits of the integers that we multiply

© n — 1: degree of the polynomials A and B used to represent a
and b

© k: # bits used to encode the coefficients of A and B:
a=A(2%), b=B(2X)and n-k = N.

Examples: (Schonhage-Strassen algorithms)
@ R =C: w=exp(in/n), provided that we allow enough precision

e R=27/(2¢+1)Z: w=2is a2e/j-th principal root of unity .
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Complex Case

[20, - - iazndl

[xo0, ...V x2p-1]

[bo, - -

-y ban_1]

vo, - - -

y2n—1]

[xox0, - - -

y

s X2n—1Y2n—1]

@ O(nlog n) expensive multiplications
during the FFT

@ 2n expensive multiplications during the
pointwise product
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We choose n = O(-2) and k = O(log N).

log N

Thus, writing the inductive equation for the complexity, we get

My = O(Nlog N)+ (3n|ogn+n) Mo(|og/\/)
N——— N————
linear cost 3 DFT + pointwise product

<4nlogn - Mogogn) < 4N - Moo n)
Expanding the equation, we get the following complexity
My = Nlog(N)log log(N) log log log(N) - - - 200g™ V)
log" N : iterated logarithm of N,

log" N = 1 if N <1,
log®™ N =1+ log"(log N) otherwise.
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Modular Case

[aoy--»iahfﬂ [bo, ..., b2n_1]
DFT DFT
@ O(nlog n) trivial multiplications during
the FFT
[x0, - -Jx2n—1] o, --Ty2n—1]

@ 2n expensive multiplications during the
pointwise product

[xoy0, - .-, x2n—1¥2n-1]
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We choose 2n = V/N and e ~ 2v/N.

Thus, writing the inductive equation for the complexity, we get

My = O(WNlogN-vVN)  + VNM, 5
\ J )

additions, subtractions, shifts in the FFT  pointwise products

Expanding the equation, we have
My = O(Nlog N) + VN(O(2VNlog 2v/N) + - - -)

= O(NlogN)+ O(Nlog N) + - - -
= O(loglog N - N'log N)
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Some remarks

Case Degree Mult. by a root | Recursion Complexity
C O(N/log N) expensive O(log N) | N log N loglog N - --200og™ V)
Z/(2¢+1)Z O(VN) cheap O(VN) N log N loglog N

In C, computing an FFT in {1,—1,i, —i} is quite easy. But less
obvious for superior orders...
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© Fiirer
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Cooley-Tukey

@ 2n-point DFT computed with radix-2 FFT:
2 - DFT(n) + Twiddle factors + n- DFT(2).
@ 2n-point DFT computed with radix-4 FFT:
4 -DFT(n/2) + Twiddle factors + n/2 - DFT(4).
@ 2n-point DFT computed with radix-2m FFT (2m divides 2n):
2m - DFT(n/m) + Twiddle factors + n/m - DFT(2m).

DFT(mn) = m - DFT(n) + Twiddle factors + n - DFT(m).
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Cooley-Tukey FFT algorithm for 2n points:
o Radix-2 = log,(2n) levels of recursion with 2 2-point FFT on
each level.
o Radix-4 = log,(2n) levels of recursion with 2 4-point FFT on
each level.
e Radix-2m = log,,,(2n) levels of recursion with 2 2m-point FFT
on each level.
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An example in Complex Field: radix-2 FFT
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An example in Complex Field: radix-4 FFT
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Fiirer's algorithm

e R is the ring R = C[x]/(x" + 1) (P divides 2n).
= There exists a 2n-th root of unity p such that p"/" = x.
@ Computation of 2n-point DFT with radix-2P FFT.

@ log,p 2n levels of recursion:

log,p(2n) - 2n . M
gop(2n) <n R

nb. of levels Mult. per level cost of a mult. in R
expensive multiplications.

Remark:
We use Lagrange interpolation to find p in R:

2jim Jim

Vje[0,2P —1],p(e ™ )=eP.

Svyatoslav Covanov Big integer multiplication April 10, 2016



Size of coefficients

o We choose P = O(log N).
For R=Y1'rix' € R, log|ri| < t = ©(log N).
o An integer a is cut in pieces a; of size k.
= A polynomial A= 3", . | aY'
@ Each a; is transformed in an element of R (cut in P/2 pieces).
We must have (C=A-B— C=A-Bis injective)

logn+logP+2-(2k/P) < t.
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Size of coefficients

@ We choose P O(log N).
For R=Y1'rix' € R, log|ri| < t = ©(log N).
© An integer ais cut in pieces a of size k.
= A polynomial A= 3", . | aY'
@ Each a; is transformed in an element of R (cut in P/2 pieces).
We must have (C =A-B — C = A- B is injective)

logn+logP+2-(2k/P) < t.

Case Degree Mult. by a root | Recursion Complexity
C O(N/log N) expensive O(log N) | N log N loglog N - .. 200%™ V)
Z/(2¢+1)Z O(VN) cheap O(V'N) N log N loglog N
C[x]/(xP +1) | O(N/log” N) it depends O(log? N) N log N 200" N)
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In 2014, Harvey, Lecerf and Van Der Heeven proved that the exact
complexity is
N log N 16'8 V.

With Bluestein’s Chirp transform, they reach unconditionally
N log N glog" NV,

By using a conjecture on Mersenne primes, they even have
N log N 4'°g" IV,
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© Using generalized Fermat primes
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What can we improve?

@ We cut an N-bit integer in pieces of size k = n = % pieces.
The elements of R are encoded on Pt bits and t satisfies

logn+log P+ 4k/P < t.
= The cost of MX® is at least
MPt > M4k

(multiplication of 4k-bit integers).

e A multiplication in R requires padding (Kronecker substitution):

./\/lgS is at least My;p > Mgy
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Number-theoretic transform

Q N: # bits of the integers that we multiply
© n — 1: degree of the polynomials A and B used to represent a

and b
© k: # bits used to encode the coefficients of A and B: a = A(2%)
and b = B(2%)

Instead of computing FFT over C, we can choose R = 7Z/qZ.
The prime g must satisy 2n | g — 1 (there exists a 2n-th principal

root of unity).
A choice of g such that log g = O(log N) is optimal.
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Svyatoslav Covanov Big integer multiplication



Number-theoretic transform

Q N: # bits of the integers that we multiply
© n — 1: degree of the polynomials A and B used to represent a

and b
© k: # bits used to encode the coefficients of A and B: a = A(2%)
and b = B(2%)

Instead of computing FFT over C, we can choose R = 7Z/qZ.
The prime g must satisy 2n | g — 1 (there exists a 2n-th principal
root of unity).

A choice of g such that log g = O(log N) is optimal.

We cut the N-bit integers in pieces of size k ~ 1 log g:
log n + 2k <loggq.
= Mgs > Mzk.
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A Fiirer-like number theoretic transform

@ g is chosen such that g = r” 4+ 1 : this is a generalized Fermat
prime.
Conjecturally, there exists r such that r < P - (log P)? =
log, g =~ P log P.

@ Let p be a 2n-th root of unity in Z/qZ such that p"/? =r.
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A Fiirer-like number theoretic transform

@ g is chosen such that g = r” 4+ 1 : this is a generalized Fermat
prime.
Conjecturally, there exists r such that r < P - (log P)? =
log, g =~ P log P.

@ Let p be a 2n-th root of unity in Z/qZ such that p"/? =r.

Working in radix r is like working with "polynomials" of degree P
whose coefficients are bounded by r:

Mr < Mz, x-
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How to multiply in R

Instead of Kronecker substitution, we directly compute an FFT.
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How to multiply in R

Instead of Kronecker substitution, we directly compute an FFT.
@ x €7/qZ and y € 7Z/qZ are represented by polynomials over Z:

X(r)=xg4+xi-r+x-r*-xp_y-rf™

and
Y(r)=yo+y-r+y-r’ypg-r"h
@ We choose Q = O(loglog P) and we represent x and y in radix
Q
re.
= We get X and Y polynomials modulo X?/€ + 1 with
coefficients < r@.
= We compute a P/Q-points FFT.

o We get x - y € Z/qZ with reductions modulo r.
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How to multiply in R

Instead of Kronecker substitution, we directly compute an FFT.
@ x €7/qZ and y € 7Z/qZ are represented by polynomials over Z:

X(r)=xg4+xi-r+x-r*-xp_y-rf™

and
Y()=yo+n-r+y-r’yp-r"h
@ We choose Q = O(loglog P) and we represent x and y in radix
Q
re.
= We get X and Y polynomials modulo X?/€ + 1 with
coefficients < r@.
= We compute a P/Q-points FFT.

o We get x - y € Z/qZ with reductions modulo r.

We do not have anymore the zero-padding due to Kronecker
substitution.
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Steps of the algorithm

e Find a prime g = r'°8" 4 1 sufficiently large for multiplying
integers of size N.

Cut the integers a and b into pieces of size
k = O(log N loglog N), that are the coefficients of A and B.

@ Represent the pieces as elements of Z/gZ in radix r.

@ Compute the FFT, the componentwise product, the inverse FFT.
@ Switch from radix r to the regular representation of elements of
7/qZ.

Transform the polynomial C = A - B into an integer ¢ by
evaluating it at 2.
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Comparison of complexities

Using generalized Fermat primes we get the following data:

Case Degree Mult. by a root Recursion Complexity
C O(N/log N) expensive O(log N) N log N loglog N - - -200g™N)
Z/(2°+1)Z O(VN) cheap O(VN) N log N loglog N
Clx]/(x" +1) O(N/log® N) it depends O(log” N) N log N 16" N
Z/(r’ +1)Z | O(N/(log N loglog N)) it depends O(log N log log N) N log N 498 N
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Some estimations

Schénhage-Strassen algorithm
bitsize | nb. mult. | mult. bitsize | estimated time (s)
230 216 ~ 216 9.96
236 218 ~ 218 2.60 - 102
240 221 ~ 22t 2.36 - 10*
2% 224 ~ 2%* 2.17-10°
250 226 ~ 2% 4.10- 107
256 22 ~ 2% 2.94.10°
Generalized Fermat primes
bitsize | nb. mult. | prime | KS. bitsize | estimated time (s)
230 224,13 [ 5622 +1 800 3.57-10
238 230.16 | 5622 +1 800 3.35-10°
2% 234,19 [ 5622 +1 800 6.26 - 107
2% 2%.22 8847 +1 800 4.64 - 10°
250 2%.25 [ 8847 +1 800 7.91-107
258 2%0.28 [884%%+1 800 5.67 - 10°

@ nb. mult.: 2n- (3 [logyp 2n] +1).
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Avoiding the padding due to a modular ring and the Kronecker

substitution improves on the complexity of the algorithm: we reach
Nlog N - 48" NV,

The complexity is conjectural: related to “Hypothesis H" and lower
bounds on r such that P(r) is prime for a polynomial P.

In practice, we do not expect this algorithm to improve on
Schdnhage-Strassen for sizes < 249 bits.

It is possible to improve the arithmetic in Z/qZ by choosing
g = bP + 1 with a special b (sparse?): a lot of generalized Fermat
primes.
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