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Complexity of matrix product = complexity of linear algebra;

w = inf {0 | it takes n’ operations to multiply in M,(K)} € [2,3];
Strassen '69 : w < 2.81 (used in practice);

Le Gall '14 : w < 2.3728639 (theoretical).

“Malgré leurs performances asymptotiques, aucun des algorithmes
de cette section ne semble devoir étre implémenté sur machine dans
un proche avenir” Abdeljaoued & Lombardi, 2003
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Complexity of matrix product = complexity of linear algebra;

w = inf {0 | it takes n’ operations to multiply in M,(K)} € [2,3];
Strassen '69 : w < 2.81 (used in practice);

Le Gall '14 : w < 2.3728639 (theoretical).

“Malgré leurs performances asymptotiques, aucun des algorithmes
de cette section ne semble devoir étre implémenté sur machine dans
un proche avenir” Abdeljaoued & Lombardi, 2003

Can we bridge the gap a little?
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Problem Statement

Let (m, n, p) denote the bilinear map:

Mo n(K) X My p(K) — My p(K)
(A,B) — A-B.

Goal: determine the arithmetic complexity of (m, n, p).
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Problem Statement

Let (m, n, p) denote the bilinear map:

Mo n(K) X My p(K) — My p(K)
(A,B) — A-B.

Goal: determine the arithmetic complexity of (m, n, p).

Known: naive algorithm in mnp operations:

Vi€ [1,m],¥) € [1,p], [ABlij = ajxbu,.
k=1
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Problem Statement

Let (m, n, p) denote the bilinear map:

Mo n(K) X My p(K) — My p(K)
(A,B) — A-B.

Goal: determine the arithmetic complexity of (m, n, p).

Known: naive algorithm in mnp operations:

Vi€ [1,m],¥) € [1,p], [ABlij = ajxbu,.
k=1

Can we do better?
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Strassen's Algorithm

Strassen’s algorithm: (2,2,2) in 7 multiplications (instead of 2-2-2 = 8):

ar = (a12 — a22), Bi1=(b21+ b22), p1=a1f1
ar = (a1 —a11), Po=(bi2+b11), p2=a2p2

az = a1, B3 =(b12— b22), p3=asfs
g = az o, Ba = (b21—b11), ps=ufa
as = (a21+a22), Ps=bi, ps = asfs
ag = (a12+a1,1), Bo= b, Pe = 66

a7 = (a1 + ap), Pr=(b11+ b22), pr=oazfr
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Strassen's Algorithm

Strassen’s algorithm: (2,2,2) in 7 multiplications (instead of 2-2-2 = 8):

ar = (a0 — a22),
az = (a21 — a1,1),
o3 =aii,

Qg = a2,

as = (a2,1 + a22),
Qe = (31,2 + 31,1)7
a7 = (a11 + a22),

B1=(b21+bap), p1=a1fr
B2 = (bi2+ b11), p2=2fh
B3 =(b12— b22), p3=asfs
Ba = (b21—b11), ps=cufs
Bs = b1, ps = asfs
B6 = ba2, Ps = 636
Br = (bii+ b22), pr=arfy

C1,1 = P1+ Ps — Ps

C12 = Pa+ps
C1=pP3+Pe

G2 = P2+ pP3— Ps+ pr

_[G1 G2
Q1 G2
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Strassen’s Algorithm

Qi
Q2
[e%)
Qg
Qs
(€79

az

Strassen’s algorithm: (2,2,2) in 7 multiplications (instead of 2-2-2 = 8):

= (a2 —a2), Bi=(b1+b22), pr=1fh C1,1 = P1+ Pa— Pes
=(a21—a11), Bo=(bi2+b11), p2=a2p C12 = pa+ ps

=ai, B3 = (b12— ba2), p3=a3Bs

; ) ’ ot
= a2, Ba=(by1—b11), ps= P 2,1 = P3 T P6
=(az1+a2), Bs=buy, ps = asfs G2 =p2+p3—ps+pr
=(a12+a11), Bs= b2, Ps = 036 c— a1 o
=(a11+a2), Br=(b11+bo2), pr=arfr 1 Coo

Observe:
C = p171 + poy2 + P33 + Paya + psys + pPeye + P7y7-

where

m=FE;1 "M=E3 wn=EB1+E)> v=E;+E,,
Y5 =Ei2—Epo, v6e=E1—Ep, 7= Ep E; j canonical basis
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Strassen’s Algorithm

Strassen’s algorithm: (2,2,2) in 7 multiplications (instead of 2-2-2 = 8):

ar = (a12 — a22), Bi1=(b21+ b22), p1=a1f1 C1,1 = P1+ Pa— Pes
ay = (az1—a11), 2= (bi2+b11), p2=a2p C12 = pa+ ps

az = a1, B3 = (b12 — br2), p3=asfs
; ) 7 o N
Qg4 = a2, Ba=(b21—b11), pa=ufs 2,1 - P3 T Pe
as = (az1 + @2), PBs = by, ps = asfBs G2 = P2 +p3—ps+pr
ag = (a12+a1,1), Bo= b, Pe = cv636 C = 1 €2
a7 = (a11 + a22), Br=(b11+b2p), pr=abr 1 o
Observe:
C = p171 + poy2 + P33 + Paya + psys + pPeye + P7y7-
where

m=E31, m=E3 wn=EBi1+E> vya=FE;i+E,,
Y5 = E172 — E2)2, Y6 = E271 — E272, Y7 = E272 E,',J' canonica/ basis

7
Tensor notation: Z ;i ® Bi ;.
i=1
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Tensors and algorithms

General tensor notation identified with a bilinear map:

(m,n,p)=>"

i=1 j

aj k ® by j ¢

m p n
=1 k=1

,
Representing (m, n, p) as Za,- ® Bi ® ; gives an algorithm.
i=1

Example: The elementary tensor (a12 + a35) ® bpa ® (c1,4 + C2,4) reads
as the algorithm

tmp < (a12 + ass) - boa
C1,4 < tmp
C2,4 < tmp
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t ® t': computes the composition of two tensors.

To multiply A of size (mm’, nn") by B of size (nn’, pp’), decompose A
and B into blocks:

where A; ; of size (m’, n’), Bj x of size (n’, p’).

If t =(m,n,p)and t' = (m n, p):

t@t ~ (mm' nn pp).
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t ® t': computes the composition of two tensors.

To multiply A of size (mm’, nn") by B of size (nn’, pp’), decompose A
and B into blocks:

where A; ; of size (m’, n’), Bj x of size (n’, p’).
If t =(m,n,p)and t' = (m n, p):
t@t ~ (mm' nn pp).

Also set t%% = t @t ®--- @ t ~ (mK, nk, pk).
—_—

k times

T. Sibut-Pinote, E. Schost Fast Matrix Product Algorithms: From Theory To Practice



Direct Sum of Tensors

t @ t’: computes two independent matrix products in parallel.

m N .

We will denote s@ tfort®td--- D t.
[ ————

s times
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Rank and w

Definition (Rank of a Tensor t)

r
R(t) := min < r |t can be written as Zx; ®Yi® z
i=1
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Rank and w

Definition (Rank of a Tensor t)

R(t) := min {r | t can be written as Zx; Y ® z;}
i=1

R({m, n, p)) is the minimal number of multiplications for {m, n, p).
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Definition (Rank of a Tensor t)

R(t) := min {r | t can be written as Zx; Y ® z;}
i=1

R({m, n, p)) is the minimal number of multiplications for {m, n, p).

Definition (Linear Algebra Exponent)

w := inf{7 | There exists an algorithm to multiply n X n matrices in
O(n") additions and multiplications}(€ [2,3])
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Definition (Rank of a Tensor t)

R(t) := min {r | t can be written as Zx; Y ® z;}

i=1
R({m, n, p)) is the minimal number of multiplications for {m, n, p).

Definition (Linear Algebra Exponent)

w := inf{7 | There exists an algorithm to multiply n X n matrices in
O(n") additions and multiplications}(€ [2, 3])

Theorem

inf{7 | R((n,n,n)) = O(n")} =w
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Back to Strassen’s Algorithm

Theorem (Strassen '69)
R ((2,2,2)) <7, hence w < log,(7) ~ 2.81.

Idea: R ((2%,2%,2k)) < 7% by induction on k.
Cut into blocks of size 2571 and proceed recursively.
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Back to Strassen’s Algorithm

Theorem (Strassen '69)

R ((2,2,2)) <7, hence w < log,(7) ~ 2.81.

Idea: R ((2%,2%,2k)) < 7% by induction on k.
Cut into blocks of size 2571 and proceed recursively.

Lemma

R({m,n,p)) < r= R({mnp, mnp, mnp)) < r.

Idea: If we can do (m, n, p) in r operations, then we can obtain (n, p, m)
and (p, m, n) in r operations. Then we compose them.
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Back to Strassen’s Algorithm

Theorem (Strassen '69)
R ((2,2,2)) <7, hence w < log,(7) ~ 2.81.

Idea: R ((2%,2%,2k)) < 7% by induction on k.
Cut into blocks of size 2571 and proceed recursively.

Lemma

R({m,n,p)) < r= R({mnp, mnp, mnp)) < r.

Idea: If we can do (m, n, p) in r operations, then we can obtain (n, p, m)
and (p, m, n) in r operations. Then we compose them.

3log(r)
R < < —"
(myn,p)) <r=w< fog(minp)

o R({mnp, mnp, mnp)) < r3;
o Proceed recursively for ((mnp)¥, (mnp)¥, (mnp)*) just like for the
(2,2,2) case.
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Bini's Approximate Algorithms ('79

Idea: K ~ K][e]

Definition (degenerate rank of a tensor t)

r

R(t) :=min{r | 3t(e), t(e) = Z ui(e) ® vi(e) ® wi(e)

i=1
with t(e) = €97 t 4+ £t (¢) and g > 0}.

Algorithmically, one can obtain t by computing t(¢) modulo 9.
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Bini's Approximate Algorithms ('79)

Idea: K ~ K][e]

Definition (degenerate rank of a tensor t)

r

R(t) :=min{r | 3t(e), t(e) = Z ui(e) ® vi(e) ® wi(e)

i=1
with t(e) = €97 t 4+ £t (¢) and g > 0}.
Algorithmically, one can obtain t by computing t(¢) modulo 9.

Theorem (Bini '79)

3log(r)
R({m,n,p)) <r=w< W

Consequence: w < 2.79.
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The 7-theorem

Theorem (7-theorem, Schonhage '81)

If
S
R (@ {mi, ni,Pi>> <r,
i=1
and
S
Z(mi ”iPi)ﬁ =1,
i=1
then
w < 36.

Consequence (Schonhage again): w < 2.55.

Crucial for recent records (including Le Gall '14: w < 2.37287)
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Towards a Practical Use of the 7-Theorem

Theoretical Obstacles

@ The 7-theorem gives great bounds on w but it is not seen as a way
to build ‘concrete’ matrix product algorithms (non-effective proofs).

@ 'Degenerate rank < rank’ relies on the fact that computing with
polynomials is asymptotically negligible compared with scalars.

Theoretical Contributions

@ More constructive proof of the 7-theorem (an algorithm).

@ Get rid of £ and use the 7-theorem constructively! (for specific kinds
of tensors)
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Sketch of the constructive proof

S ®k
(@(m;, ni7Pi>>

i=1
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Sketch of the constructive proof

s ®k
(@(m;, n,-,p,->> ~ @ (several matrix products (M, N, P))

i=1 p=(p1 ;s hts)
H1t et ps=k
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Sketch of the constructive proof

<é9<m,,n,-,p,->>®k ~ P )<u1, ) <Hm“' Hn“' Hp“’>

=1 p=(pa s s
H1t et ps=k
M N P

(:i) matrix products (M, N, P) in parallel
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Sketch of the constructive proof

<é9<m,,n,,p,->>®k ~ P )<u1, ) <Hm“' Hn“' Hp“’>

=1 p=(pa s s
H1t et ps=k
M N P

(:i) matrix products (M, N, P) in parallel

S

Suppose t(¢) is a degeneration of @(m;, n;, pi). In the same way,

: 17@ tu(e)
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Sketch of the constructive proof

<€SB<m;,n;,pf>>®k ~ D )<u1, ) <Hm“' H”M' Hpu'>

p=(pys s
H1t et ps=k
M N P

(:i) matrix products (M, N, P) in parallel

S

Suppose t(¢) is a degeneration of @(m;, n;, pi). In the same way,
i=
k
= @ tu(e)
“w

@ Choose one specific t,(¢) = we can do (ﬁ) (M, N, P) matrix
products in parallel effectively (with £'s).

@ Compute (M', N, P!y = (M'=1 N'=1 PI=1) @ (M, N, P) recursively
like previously, using t, to gain operatlons at each stage.
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Visualizing the exponent in the proof

((2,1,2) @ (1,3,1))%* = (4,1,4) © 26 (2,3,2) @ (1,9,1)

V2
vz,

l////// I////// [z

Figure : Direct Sum, iterated once, of two matrix products (2, 1,2) and (1, 3,1)
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Pan's aggregation tables ('84)

Builds a family of tensors computing independent matrix products to
improve w:

@ Input: table with various tensors. Example:

1

m—1

he]

LI

Xi0 @ Yok ® %2k ; (m, 1, p)

) )

,_.o

3 \

€Uy k,i ® EVk,i,0 ® Wo0 (L,(m-1)(p—1),1)

i=0 k=0

@ Every row gives a matrix product (actually, some variables to adjust);
o Aggregate terms by summing over columns,

m—1

here: Z X, .0+ Eug,k ,) (yo,k + EVkJ’o) ® (622;(,,' + W070).
i=0 k=

0
t= (<m,1,p @<1’( 1)(p_1)71>)+t2

'U
._.
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Correction term

—1p-—1

t=) Y (xio0+ctoki)® Yok +EViio) ® (€°2ki + wo,0)
0

3

I§
o

i

k=
To apply the 7-theorem we want:
t = &2 ((m,1,p) @ (1,(m—1)(p—1),1)) + terms of higher degree in ¢

Let us remove terms of degree 0 and 1, hence the corrected term:

m—1 p—1
th=t— <Z Xi,o> ® <Z}’O,k> @ Wp,0-
i=0 k=0
We get the output:
t = 62 (<m7 17 p> & <1a (m - 1)(p - 1)v 1>) + 83t2

Hence R({m,1,p) & (1,(m—1)(p—1),1)) <mp+1.

Consequence: w < 2.55 with m =4,p = 4.
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Combined use with the 7-theorem

Every matrix variable appears with the same degree in €: homogenous
tensor.

Theorem (S,S-P '12)

Let t be a homogenous tensor.
If we apply the algorithm of the constructive proof of the T-theorem to t,
for any j1 and k > 1, the resulting tensor t, (&) can be written as

t,(e) = e,

where t; does not contain any €.

Consequence

Set ¢ = 1in t,(e): get an e-free tensor computing disjoint matrix
products.
Even better: set ¢ = 1 in t(c) before extracting t, from t(¢)®.

We can get rid of the € while still benefiting from the 7-theorem!
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Example: 2 ® (4,9,4) in 243 multiplications (instead of
2. (4-9-4) = 288) with:

m—1p—1

Z Xio+eto ki) @ (Yo +evkio) @ (€22 + wo0)
i=0 k=0

m—1
- ( X;,o) (Z Yo k) @ wo,0-
i=0

with m=p =4, k=2 and p=(1,1) in the 7-theorem. This gives an
w-equivalent of ~ 2.90.
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Example: 2 ® (4,9,4) in 243 multiplications (instead of
2. (4-9-4) = 288) with:

._.

m—

p—1

Z Xi0 + €Ug ki) @ (Yo,k + EVi,i0) ® (€2Zk,i + wo,0)
i=0 k=0

-1 p—1
— (Z Xi,o> & (Z }/o,k> &Q wo,0-
i=0 k=0

with m=p =4, k=2 and p=(1,1) in the 7-theorem. This gives an
w-equivalent of ~ 2.90.

Better, with the same tensor: = (4,2),k=6,m=p = 4:

15 ® (256, 81, 256) matrix products in 23604048 multiplications,
w-equivalent ~ 2.80.
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Example: 2 ® (4,9,4) in 243 multiplications (instead of
2. (4-9-4) = 288) with:

._.

m—1p—1

Z Xi0 + €Ug ki) @ (Yo,k + EVi,i0) ® (€2Zk,i + wo,0)
i=0 k=0

B (le’m) ® (Ijzl }/O,k> ® wo,0-

i=0 k=0

with m=p =4, k=2 and p=(1,1) in the 7-theorem. This gives an
w-equivalent of ~ 2.90.

Better, with the same tensor: = (4,2),k=6,m=p = 4:
15 ® (256, 81, 256) matrix products in 23604048 multiplications,
w-equivalent ~ 2.80.

Even better, not built explicitly: © = (10,5), w-equivalent ~ 2.729.
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Software implementation in OCaml

@ Parse degenerate tensors as Pan-style aggregation tables;

@ Compose tensors symbolically;

o Extract a given coefficient p @ ([T m?", ] nt", [] p!") following the
7-theorem;

o Test of tensors by applying them to random matrices;

@ Maple code generation which computes the rank of a subterm of a
power of tensor without actually computing it;

@ C+4+ code generation implementing a given tensor.
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Specifics of doing this in OCaml

@ Static typing much helpful,
@ Caveat: some algebraic computations had to be recoded,;

@ Symbolic computations on algorithms akin to compilation passes:
AST manipulation;

@ Some interaction with Maple : generating code to do some
computations;

@ Parametricity: Export possible to Latex, C++, Maple.
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How to Use this Result and Implementation, Future Work

Roadmap of use

@ Try out new or modified Pan Tables = extract good algorithms;

@ Optimize corresponding code as much as possible (cache, other
algorithms at leaves, ...).

Future work

Finish trying out all Pan tables.

This work showed improvements in w are not purely theoretical results.
= Adapt other theoretical improvements to build concrete tensors?

For instance, the laser method?
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Thank you for your attention!

Any questions?
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