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Outline

1 Introduction – why Ramanujan series are special, and how to
prove them

What they are not
How to prove them

2 Generalizations – some recent developments, and how they
relate to generating functions

General theorem
Proof

3 Computer algebra – leading to some examples that cannot be
explained by classical (modular) theory

Wilf-Zeilberger
Legendre’s relation
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Hypergeometric series

Pochhammer symbol: (a)n =
Γ(a+ n)

Γ(a)
.

Generalized hypergeometric series pFq:

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
.

Complete elliptic integral K and E:

K(k) =
π

2
2F1

( 1
2 ,

1
2

1

∣∣∣∣k2) , E(k) =
π

2
2F1

(
−1

2 ,
1
2

1

∣∣∣∣k2) .
k′ :=

√
1− k2, K ′(k) := K(k′), E′(k) := E(k′).
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Ramanujan series for 1/π – what they are

S. Ramanujan (1914) found innovative ways to write 1/π as a
series involving algebraic (sometimes rational) summands:

∞∑
n=0

(s)n(12)n(1− s)n
n!3

(a+ bn) zn0 =
1

π
,

where a, b, z0 are algebraic, and s ∈ {1/2, 1/3, 1/4, 1/6}.

In terms of a hypergeometric series:

4F3

(
s, 12 , 1− s, 1 + a

b

1, 1, ab

∣∣∣∣z0) =
1

a π
.
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Ramanujan series for 1/π – examples

First anticipated by G. Bauer (1859),

∞∑
n=0

(12)3n
n!3

(1 + 4n) (−1)n =
2

π
.

Ramanujan series were first proven by the Borweins (1987), and
refined by the Chudnovskys (1988).

For instance, the series

∞∑
n=0

(16)n(12)n(56)n

n!3
(13591409+545140134n)

( −1

533603

)n
=

6403203/2

12π

was used by the latter to compute over 2 billion digits of π, then a
world record.

Such computations contributed to the early development of high-
performance computing.
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Ramanujan series for 1/π – what they are not

Earlier (and many later) series for powers of π are less
sophisticated.

For example,

∞∑
n=0

(
2n
n

)
2n+ 1

1

24n
=
π

3

is just a special case of

sin−1(x) = x 2F1

( 1
2 ,

1
2

3
2

∣∣∣∣x2).
Other examples often involve closed forms of hypergeometric series
at special values, such as Gauss’ theorem for a 2F1 at 1, Dougall’s
formula for a 4F3 at −1, . . . E. g. the latter gives

∞∑
n=0

(16)3n
n!3

(1 + 12n)(−1)n =
3

π
.
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Ramanujan series for 1/π – what they are not

Another way to get 1/π uses the Fourier-Legendre expansion.

The
Legendre polynomials Pn can be expressed as

Pn(x) = 2F1

(
−n, n+ 1

1

∣∣∣∣1− x2

)
.

We may expand a function f as

f(x) =
∞∑
n=0

an Pn(x), where an =
2n+ 1

2

∫ 1

−1
Pn(x) f(x) dx.

E. g. picking f(x) = (1− x2)m−1/2 then setting x = 0 gives

∞∑
n=0

(12)3n
n!3

(1 + 4n)(−1)n
(n+ 1

2)−m

(n+ 1)m
=

(−1)m

(12)2m

2

π
.

Setting m = 0 gives Bauer’s series. This approach is also limited.
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Ramanujan series for 1/π – how they work

The Ramanujan series

∞∑
n=0

(s)n(12)n(1− s)n
n!3

(a+ bn) zn0 =
1

π

can be written as

a 3F2

(
s, 12 , 1− s

1, 1

∣∣∣∣z0)+ (b z0)
d

dz
3F2

(
s, 12 , 1− s

1, 1

∣∣∣∣z) ∣∣∣∣
z=z0

=
1

π
.

Clausen’s formula (1828) states that

3F2

(
s, 12 , 1− s

1, 1

∣∣∣∣4k2(1− k2)) = 2F1

(
s, 1− s

1

∣∣∣∣k2)2

.

So let z0 = 4k2(1− k2), but not just for any k.
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Theta functions

When s = 1/2,

2F1

(
s, 1− s

1

∣∣∣∣k2)2∣∣∣∣
s=1/2

=
4

π2
K(k)2,

while for s = 1/3, 1/4 or 1/6, there are transformations that
express the 2F1 in terms of K as well.

There’re a few ways to proceed from here, but they all depend on
the intricate relationships between K and Jacobi θ functions.

θ2(q) =

∞∑
n=−∞

q(n+1/2)2 , θ3(q) =

∞∑
n=−∞

qn
2
, θ4(q) =

∞∑
n=−∞

(−1)nqn
2
.

Fact: with the (unexpected) parametrization − log(q) = πK
′(k)

K(k) :

k(q) =
θ22(q)

θ23(q)
, k′(q) =

θ24(q)

θ23(q)
, K(k(q)) =

π

2
θ23(q).
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Modular machinery

Fact: k(q)2 is a modular function on the congruence subgroup
Γ0(4).

This means with q = e2πiτ , and integers a, b, c, d,

k(q(τ))2 = k
(
q(aτ+bcτ+d)

)2
, where ad− bc = 1 and 4|c.

Consequently, for p ∈ N, k(qp) is an algebraic function of k(q);
alternatively, there is a polynomial Pp in two variables with integer
coefficients such that

Pp
(
k(q), k(qp)

)
= 0.

Pp is known as the pth order modular equation.

Moreover, Mp := K(k(qp))/K(k(q)) is also an algebraic function
of k(q), called the multiplier of order p.
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Modular machinery

Due to θ function transformations, k(e−π
√
p) = k′(eπ/

√
p). Since

k(e−π
√
p) and k(e−π/

√
p) are related by the pth order modular

equation, we can solve for them.

kp := k(e−π
√
p) is called the pth singular value.

In fact K(kp) can be evaluated in closed form (Selberg-Chowla),
moreover

E(kp) =
(

1− αp√
p

)
K(kp) +

π

4
√
pK(kp)

,

where αp is a singular value of the 2nd kind (also computable and
algebraic).

J. M. Borwein and P. B. Borwein, Pi and the AGM: A study in
analytic number theory and computational complexity, Wiley,
New York, 1987.
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Derivatives

The final pieces we need are

d

dk
K(k) =

E(k)

k(1− k2)
− K(k)

k
,

d

dk
E(k) =

E(k)

k
− K(k)

k
.

As we’ve seen, a Ramanujan series is a linear combination of
4
π2K(k)2 and its derivative, 8

π2

[
E(k)K(k)
k(1−k2) −

K(k)2

k

]
.

At k = kp, and using the formula for E(kp), this reduces to a linear
combination of 1

π2K(kp)
2 and 1

π , with algebraic coefficients.

We pick the coefficients of the linear combination such that the
1
π2K(kp)

2 term vanishes, leaving behind only 1
π .

( 1
π is not that special, it’s a by-product of a transformation.)
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General result (s = 1/2)

∞∑
n=0

(12)3n
n!3

(
αp −

√
p k2p︸ ︷︷ ︸

a

+
√
p(1− 2k2p)︸ ︷︷ ︸

b

n
) (

4k2p(1− k2p)︸ ︷︷ ︸
z0

)n
=

1

π
.

The difficulty lies in computing the singular values kp and αp,
which in turn require the pth order modular equation.

The coefficients in modular equations grow quickly as p increases.
For instance, the Chudnovsky series uses p = 163, but no one so
far has exhibited P163, so the series has no satisfactory proof.

Open question 1

Find an efficient algorithm to generate the pth order modular
equation for any p ∈ N.
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Outline

1 Introduction – why Ramanujan series are special, and how to
prove them

What they are not
How to prove them

2 Generalizations – some recent developments, and how they
relate to generating functions

General theorem
Proof

3 Computer algebra – leading to some examples that cannot be
explained by classical (modular) theory

Wilf-Zeilberger
Legendre’s relation
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Generalizations of Ramanujan series

More recently, several authors (B. Berndt, H. H. Chan, S. Cooper,
W. Zudilin, et al.) have proven new series of Ramanujan type:

∞∑
n=0

h(n) (a+ bn) zn0 =
1

π
,

where h(n) is a sequence ∈ Q of some arithmetic significance.

The proofs heavily involve modular forms (parametrizing z and the
generating function of h(n) as products of η or θ functions). But
in all known cases, the ogf of h(n) is (essentially) of the form

∞∑
n=0

h(n) zn = f(z) 3F2

(
s, 12 , 1− s

1, 1

∣∣∣∣g(z)

)
, f, g algebraic.

From here we can apply the same procedure: use Clausen’s
formula to relate this to K, evaluate at singular values, etc.
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General theorem

One of the most general results of this type, capturing many
Ramanujan type series (including the original ones), is:

Theorem (J. W., W. Zudilin 2011)

{ ∞∑
n=0

unX
n

}{ ∞∑
n=0

unY
n

}
= 1

1−cXY

∞∑
n=0

un

n∑
m=0

(
n
m

)2
G(X,Y )mG(Y,X)n−m,

where

G(X,Y ) =
X(1− aY + cY 2)

(1− cXY )2
,

and un satisfies the recurrence

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1, u−1 = 0, u0 = 1.

There are 14 special triplets of (a, b, c) for which {un} is an integer
sequence (Apéry-like sequence).
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General theorem

For instance, identifying the RHS as a representation of the
Legendre polynomial, we have

∞∑
n=0

unPn

(
(X + Y )(1 + cXY )− 2aXY

(Y −X)(1− cXY )

)
︸ ︷︷ ︸

h(n)

(
Y −X

1− cXY︸ ︷︷ ︸
z

)n

= (1− cXY )

{ ∞∑
n=0

unX
n

︸ ︷︷ ︸
∼K(x)

}{ ∞∑
n=0

unY
n

︸ ︷︷ ︸
∼K(y)

}
.

The RHS involves K’s of different arguments, but can be simplified
if we pick x = k(qp), y = k(q), then use the multiplier Mp:

K(x)K(y) = MpK(y)2.

18 / 32



Introduction Generalizations CAS General theorem Proof

General theorem

For instance, identifying the RHS as a representation of the
Legendre polynomial, we have

∞∑
n=0

unPn

(
(X + Y )(1 + cXY )− 2aXY

(Y −X)(1− cXY )

)
︸ ︷︷ ︸

h(n)

(
Y −X

1− cXY︸ ︷︷ ︸
z

)n

= (1− cXY )

{ ∞∑
n=0

unX
n

︸ ︷︷ ︸
∼K(x)

}{ ∞∑
n=0

unY
n

︸ ︷︷ ︸
∼K(y)

}
.

The RHS involves K’s of different arguments, but can be simplified
if we pick x = k(qp), y = k(q), then use the multiplier Mp:

K(x)K(y) = MpK(y)2.

18 / 32



Introduction Generalizations CAS General theorem Proof

General theorem

For instance, identifying the RHS as a representation of the
Legendre polynomial, we have

∞∑
n=0

unPn

(
(X + Y )(1 + cXY )− 2aXY

(Y −X)(1− cXY )

)
︸ ︷︷ ︸

h(n)

(
Y −X

1− cXY︸ ︷︷ ︸
z

)n

= (1− cXY )

{ ∞∑
n=0

unX
n

︸ ︷︷ ︸
∼K(x)

}{ ∞∑
n=0

unY
n

︸ ︷︷ ︸
∼K(y)

}
.

The RHS involves K’s of different arguments, but can be simplified
if we pick x = k(qp), y = k(q), then use the multiplier Mp:

K(x)K(y) = MpK(y)2.

18 / 32



Introduction Generalizations CAS General theorem Proof

Example

With (a, b, c) = (7, 2,−8), p = 2, q = exp(−4
√

2/3π):

∞∑
n=0

n∑
k=0

(
n

k

)3

︸ ︷︷ ︸
un

Pn

(
1 +
√

3√
6

)
(7− 2

√
3︸ ︷︷ ︸

a

+ 18︸︷︷︸
b

n)

(
2−
√

3

2
√

6︸ ︷︷ ︸
z0

)n

=
27 + 11

√
3√

2π
.

J. Wan and W. Zudilin, Generating functions of Legendre
polynomials: a tribute to Fred Brafman, J. Approx. Theory
164 (2012), 488–503.

The moral seems to be: as long as a sequence has an ogf
expressible as a product of K’s, it can produce Ramanujan type
series for 1/π. We still need the singular values, but do not require
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Proof of the Theorem

The Theorem was discovered with help from a computer search.

The original proof involved finding an differential annihilator (in X
and Y ) for the LHS, then painstakingly converting it into an
equivalent annihilator in G(X,Y ) and G(Y,X).

Then, show that it annihilates the RHS. Much of the conversion
process was computerized.

A fully computerized proof was given by A. Bostan, P. Lairez
and B. Salvy (INRIA) in 2012, using HolonomicFunctions.

The Theorem has been generalized even further by H. H. Chan
and Y. Tanigawa in 2013.
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Open questions

Open question 2

Find a closed form for

∞∑
n=0

Pn(x)3 zn,

where x and z may be related in some way.

Open question 3

Suppose the generating function
∑∞

n=0An(x) zn satisfies a 2nd
order linear differential equation. What can we say about

∞∑
n=0

(
2n

n

)
An(x) zn?

Again, x and z may be related in some way.
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Outline

1 Introduction – why Ramanujan series are special, and how to
prove them

What they are not
How to prove them

2 Generalizations – some recent developments, and how they
relate to generating functions

General theorem
Proof

3 Computer algebra – leading to some examples that cannot be
explained by classical (modular) theory

Wilf-Zeilberger
Legendre’s relation
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Wilf-Zeilberger proof

Here is a proof of Bauer’s series that does not involve modularity.

Consider

F (m,n) =
(12)2n (−m)n

n!2 (m+ 3
2)n

(1 + 4n) (−1)n.

Find G(m,n) =
2n2

(4n+ 1)(m− n+ 1)
F (m,n), which satisfies

G(m,n+ 1)−G(m,n) = F (m,n)− 2m+ 2

2m+ 3
F (m+ 1, n).

Sum both sides wrt n:
∑
n

F (m,n) =
2m+ 2

2m+ 3

∑
n

F (m+ 1, n).

So
∑
n

F (m,n) =
Γ(m+ 3/2)

Γ(3/2)Γ(m+ 1)
.

Finally, set m = −1
2 ; equality still holds due to Carlson’s theorem.
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Wilf-Zeilberger proof

J. Guillera has systematically studied all the rational Ramanujan
series and gave WZ proofs for many of them.

The trick is to insert a parameter m into the summand.

Examples of Guillera’s series obtained using WZ:

∞∑
n=0

(14)2n(34)2n
(12)n n!3

48n2 + 32n+ 3

2n+ 1

1

4n
=

8
√

2

π
,

∞∑
n=0

(13)n(12)3n(23)n

n!5
(74n2 + 27n+ 3)

(3

4

)3n
=

48

π2
.

These are not explained by modular theory.

Open question 4

In all the series proven by WZ so far, the only prime factors of z0
are 2 and 3. Why?
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Legendre’s relation

The four functions K, E, K ′, E′ are not independent:

Legendre (1811)

E(k)K ′(k) + E′(k)K(k)−K(k)K ′(k) =
π

2
.

We can produce Ramanujan-type series using not much more than
Legendre’s relation!

Suppose a function G satisfies an ODE of order at least 4, and

π2G(z) = K(α(z))K(β(z)).

Let z0 be a point such that α(z0)
2 = 1− β(z0)

2, so the RHS
= K(α(z0))K

′(α(z0)).

25 / 32



Introduction Generalizations CAS Wilf-Zeilberger Legendre’s relation

Legendre’s relation

The four functions K, E, K ′, E′ are not independent:

Legendre (1811)

E(k)K ′(k) + E′(k)K(k)−K(k)K ′(k) =
π

2
.

We can produce Ramanujan-type series using not much more than
Legendre’s relation!

Suppose a function G satisfies an ODE of order at least 4, and

π2G(z) = K(α(z))K(β(z)).

Let z0 be a point such that α(z0)
2 = 1− β(z0)

2, so the RHS
= K(α(z0))K

′(α(z0)).

25 / 32



Introduction Generalizations CAS Wilf-Zeilberger Legendre’s relation

Legendre’s relation

The four functions K, E, K ′, E′ are not independent:

Legendre (1811)

E(k)K ′(k) + E′(k)K(k)−K(k)K ′(k) =
π

2
.

We can produce Ramanujan-type series using not much more than
Legendre’s relation!

Suppose a function G satisfies an ODE of order at least 4, and

π2G(z) = K(α(z))K(β(z)).

Let z0 be a point such that α(z0)
2 = 1− β(z0)

2, so the RHS
= K(α(z0))K

′(α(z0)).

25 / 32



Introduction Generalizations CAS Wilf-Zeilberger Legendre’s relation

Legendre’s relation

The four functions K, E, K ′, E′ are not independent:

Legendre (1811)

E(k)K ′(k) + E′(k)K(k)−K(k)K ′(k) =
π

2
.

We can produce Ramanujan-type series using not much more than
Legendre’s relation!

Suppose a function G satisfies an ODE of order at least 4, and

π2G(z) = K(α(z))K(β(z)).

Let z0 be a point such that α(z0)
2 = 1− β(z0)

2, so the RHS
= K(α(z0))K

′(α(z0)).

25 / 32



Introduction Generalizations CAS Wilf-Zeilberger Legendre’s relation

Legendre’s relation

For some undetermined coefficients Ai(z0), compute

π2
[
A1G(z0) +A2

d

dz
G(z0) +A3

d2

dz2
G(z0) +A4

d3

d3z
G(z0)

]
= B1EK

′(z0) +B2E
′K(z0) +B3KK

′(z0) +B4EE
′(z0).

The B′is depend on the Ai’s; we’ve used the fact that the
derivatives of E and K are again expressible in terms of E and K.

Solve for Ai such that

B1 = 1, B2 = 1, B3 = −1, B4 = 0,

and apply Legendre’s relation.

J. Wan, Series for 1/π using Legendre’s relation,
Integr. Transf. Spec. F. 25 (2014), 1–14.
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Example (Brafman)

Brafman’s formula (1951), which inspired and was generalized by
the Theorem, gives an example of a factorization of G into the
product of two K’s.

With ρ = (1− 2xz+ z2)1/2, α = (1− ρ− z)/2, β = (1− ρ+ z)/2,

∞∑
n=0

(s)n(1− s)n
n!2

Pn(x)zn︸ ︷︷ ︸
G(z)

= 2F1

(
s, 1− s

1

∣∣∣∣α) 2F1

(
s, 1− s

1

∣∣∣∣β).

Let s = 1/4 and apply the transformation below to both 2F1’s:

2F1

( 1
4 ,

3
4

1

∣∣∣∣z2) =
1√

1 + z
2F1

( 1
2 ,

1
2

1

∣∣∣∣ 2z

1 + z

)
.
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1

∣∣∣∣α) 2F1

(
s, 1− s

1

∣∣∣∣β).

Let s = 1/4 and apply the transformation below to both 2F1’s:

2F1

( 1
4 ,

3
4

1

∣∣∣∣z2) =
1√

1 + z
2F1

( 1
2 ,

1
2

1

∣∣∣∣ 2z

1 + z

)
.
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A lot of computer algebra

We require
2
√
α

1 +
√
α

+
2
√
β

1 +
√
β

= 1.

The solutions can be parametrized by:

x0 =
1 + 3q
√
q (3 + q)

, z0 =
16
√
q (3 + q)

(9− q)2
.

As outlined, take a linear combination of derivatives of G.
Substitute in the above x0 and z0, and choose the coefficients such
that the result is EK ′ + E′K −KK ′.
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The result

For each q ∈ (0, 1), we get a series for 1/π:

∞∑
n=0

( 1
4 )n( 3

4 )n

n!2
Pn(x0)

(
C0+C1n+C2n

2+C3n
3
)
z0

n =
3(3 + q)(9− q)5/2

2π
,

where

C3 = (1− q)2(63 + q)2,

C2 = −48(1− q)(81 + 162q + 13q2),

C1 = −(9− 41q)(9 + 106q + 13q2),

C0 = 96q2(7 + q).
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‘Elementary’ proof of Ramanujan series

At q = 0, both z0 and the denominator of x0 vanish.

Letting q → 0 replaces Pn by its leading coefficient,
(
2n
n

)
2−n.

Eliminate the n3 term using the ODE. We recover a Ramanujan
series:

∞∑
n=0

(14)n(12)n(34)n

n!3
(1 + 7n)

(32

81

)n
=

9

2π
.

Many (all?) other Ramanujan series with s = 1/2, 1/3, 1/4, 1/6
can be recovered in this manner, by choosing an appropriate G and
a transformation.

This seems to eliminate the need for modular functions, except
many of the transformations used seem modular in nature.

Other authors (Guillera, Zudilin, . . . ) are independently using
transformations to avoid modular functions.
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Non-modular example

A draw back of this method is that the functions get complicated
very quickly, and some form of automatic differentiation is needed.

Guillera (2015) simplified the computation in some cases, and
produced new series. The idea is to search for a series using PSLQ,
then reconstruct the differential operator from it. This avoids
equation-solving.

This method can produce series which look like they belong to a
class of (modular) series, but are in fact not modular. E. g.

∞∑
n=0

(
2n

n

)2

Pn

(
1

2

)
(3 + 14n)

(
3

128

)n
=

8
√

2

π
.

It looks like a consequence of the Theorem, but it’s not.
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Conclusion

Ramanujan’s series stand out from other series for 1/π (or other
transcendental constants).

A lot of special function and modular function theory have been
developed and invoked to prove and generalize them.

Open question 5

But what are the ‘simplest’ explanations for the series? Can they
be completely reduced to algebra? Can we avoid modularity
altogether?

Are the simplest explanations also the most enlightening ones?

Thank you.
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