Résolution de systèmes zéro-dimensionnels avec symétries.

Jules Svartz

CNRS/INRIA/LIP6/UPMC - Polsys Team

Séminaire Specfun

Mardi 15 Avril

$$I = \langle f_1, \dots, f_t \rangle \subset \mathbb{K}[x_1, \dots, x_n]$$

Solve $f_1 = \dots = f_t = 0$

$$I = \langle f_1, \dots, f_t \rangle \subset \mathbb{K}[x_1, \dots, x_n]$$

Solve $f_1 = \dots = f_t = 0$
NP HARD

$$I = \langle f_1, \dots, f_t \rangle \subset \mathbb{K}[x_1, \dots, x_n]$$

Solve $f_1 = \dots = f_t = 0$
NP HARD
Structured Systems

Action of Matrix Groups on Polynomials

Action of G

$$G \subset GL_n(\mathbb{K})$$
 acts on $\mathbb{K}[x_1, \ldots, x_n]$: for $A \in G$, $f^A(x) = f(A.x)$ with $x = {}^t(x_1, x_2, \ldots, x_n)$.

Example

$$\sigma = (123) \hookrightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\sigma \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ x_1 \end{pmatrix}$$
$$(x_1^2 x_2 + x_3)^{\sigma} = x_2^2 x_3 + x_1$$

Stable Equations $\forall A \in G \quad f_i^A = f_i$

Stable Ideal $f \in I, A \in G \Rightarrow f^A \in I$

Local

Stable Equations $\forall A \in G \quad f_i^A = f_i$

Global

Stable Ideal $f \in I, A \in G \Rightarrow f^A \in I$

4/48

Contributions

Contributions

Contributions

Vortex Problem: A Symbolic Approach.

Jean-Charles Faugère, J.S.

ISSAC 2012

Hurricane

Equations

$$\forall i \in \{1, \dots, N\}$$
 $f_i = \overline{z_i} - \sum_{j \neq i} \frac{1}{z_i - z_j} = 0$

Equations

$$\forall i \in \{1, \dots, N\}$$
 $f_i = \overline{z_i} - \sum_{j \neq i} \frac{1}{z_i - z_j} = 0$

Invariance under \mathfrak{S}_N

Action of
$$\mathfrak{S}_N$$
: $\sigma(z_i) = z_{\sigma(i)}$ for all *i*. For any σ , $f_i^{\sigma} = f_{\sigma(i)}$

Equations

$$\forall i \in \{1,\ldots,N\}$$
 $f_i = \overline{z_i} - \sum_{j \neq i} \frac{1}{z_i - z_j} = 0$

Invariance under \mathfrak{S}_N

Action of
$$\mathfrak{S}_N$$
: $\sigma(z_i) = z_{\sigma(i)}$ for all *i*. For any σ , $f_i^{\sigma} = f_{\sigma(i)}$

Invariance under complex conjugation

$$(z_1,\ldots,z_N)$$
 solution $\Rightarrow (\overline{z_1},\ldots,\overline{z_N})$ solution.

N = 3: Equations

$$U_1 = Z_1(z_1 - z_2)(z_1 - z_3) - 2z_1 + z_2 + z_3$$
 of degree 3 (6 equations)

N = 3: Equations

$$U_1 = Z_1(z_1 - z_2)(z_1 - z_3) - 2z_1 + z_2 + z_3$$
 of degree 3 (6 equations)

N = 3: Divided Differences

 $4\sum_{i} Z_{i} z_{i}^{2} = 3$, $\sum_{i} Z_{i} z_{i} - 9 = \sum_{i} Z_{i} = 0$ (Degree 1, 2, 3).

N = 3: Equations

$$U_1 = Z_1(z_1 - z_2)(z_1 - z_3) - 2z_1 + z_2 + z_3$$
 of degree 3 (6 equations)

N = 3: Divided Differences

$$4\sum_{i} Z_{i} Z_{i}^{2} = 3$$
, $\sum_{i} Z_{i} Z_{i} - 9 = \sum_{i} Z_{i} = 0$ (Degree 1, 2, 3)

New Invariants

N = 3: Equations

$$U_1 = Z_1(z_1 - z_2)(z_1 - z_3) - 2z_1 + z_2 + z_3$$
 of degree 3 (6 equations)

N = 3: Divided Differences

$$4\sum_{i} Z_{i} Z_{i}^{2} = 3$$
, $\sum_{i} Z_{i} Z_{i} - 9 = \sum_{i} Z_{i} = 0$ (Degree 1, 2, 3)

New Invariants

$$\underbrace{s_k = \sum_{i=1}^N z_i^k \qquad S_k = \sum_{i=1}^N Z_i^k}_{\text{Newton sums}} \qquad r_k = \sum_{i=1}^N z_i^k Z_i \qquad R_k = \sum_{i=1}^N z_i Z_i^k$$

Theorem: Vortex Problem Equations

For each k,
$$2r_k = \sum_{i=0}^{k-1} s_i s_{k-1-i} - k s_{k-1}$$
 and same equation with $z \leftrightarrow Z$.

8/48

Equivalent problem : use of the \mathfrak{S}_N -symmetry

Find all solutions $(z_1, ..., z_N)$ \Leftrightarrow Find all possible symmetric functions $(e_1, ..., e_N)$ of the z_i \Leftrightarrow Find all polynomials $Q = x^N + e_2 x^{N-2} + \dots + (-1)^N e_N$ with Disc $(Q) \neq 0$

Equivalent problem : use of the \mathfrak{S}_N -symmetry

Find all solutions $(z_1, ..., z_N)$ \Leftrightarrow Find all possible symmetric functions $(e_1, ..., e_N)$ of the z_i \Leftrightarrow Find all polynomials $Q = x^N + e_2 x^{N-2} + \dots + (-1)^N e_N$ with $\text{Disc}(Q) \neq 0$

Theorem

$$Q = \prod(x - z_i)$$
 solution of Vortex Problem $\iff \forall i \quad \overline{z_i} = \frac{Q''(z_i)}{2Q'(z_i)}$.

Equivalent problem : use of the \mathfrak{S}_N -symmetry

Find all solutions $(z_1, ..., z_N)$ \Leftrightarrow Find all possible symmetric functions $(e_1, ..., e_N)$ of the z_i \Leftrightarrow Find all polynomials $Q = x^N + e_2 x^{N-2} + \dots + (-1)^N e_N$ with $\text{Disc}(Q) \neq 0$

Theorem

$$Q = \prod(x - z_i)$$
 solution of Vortex Problem $\iff \forall i \quad \overline{z_i} = \frac{Q''(z_i)}{2Q'(z_i)}$.

Plug
$$Z_i = \frac{Q''(z_i)}{2Q'(z_i)}$$
 in the invariant equations !

Removing Capital Letters: Example N = 3

$$N = 3$$
: Inverse of Q' with $Q = x^3 + e_2 x - e_3$

$$Q'(x) \times (-6e_2x^2 - 9e_3x - 4e_2^2) \equiv 1[Q]$$

Removing Capital Letters: Example N = 3

$$N = 3$$
: Inverse of Q' with $Q = x^3 + e_2 x - e_3$

$$Q'(x) \times (-6e_2x^2 - 9e_3x - 4e_2^2) \equiv 1[Q]$$

N = 3: Mix both equations

$$4\sum Z_i^2 z_i = 3$$
 and $Z_i = \frac{Q''(z_i)}{2Q'(z_i)} \rightsquigarrow \text{Disc}(\mathbb{Q})e_2e_3 = 0$

$$N = 3$$
: Inverse of Q' with $Q = x^3 + e_2 x - e_3$

$$Q'(x) \times (-6e_2x^2 - 9e_3x - 4e_2^2) \equiv 1[Q]$$

N = 3: Mix both equations

$$4\sum Z_i^2 z_i = 3$$
 and $Z_i = \frac{Q''(z_i)}{2Q'(z_i)} \rightsquigarrow \text{Disc}(\mathbb{Q})e_2e_3 = 0$

N = 3: Solve the equations

$$e_2 \neq 0$$
 and $e_3 = 0$ or $e_2 = 0$ and $e_3 \neq 0$

$$N = 3$$
: Inverse of Q' with $Q = x^3 + e_2 x - e_3$

$$Q'(x) \times (-6e_2x^2 - 9e_3x - 4e_2^2) \equiv 1[Q]$$

N = 3: Mix both equations

$$4\sum Z_i^2 z_i = 3$$
 and $Z_i = \frac{Q''(z_i)}{2Q'(z_i)} \rightsquigarrow \text{Disc}(\mathbb{Q})e_2e_3 = 0$

N = 3: Solve the equations

$$e_2 \neq 0 \text{ and } e_3 = 0 \text{ or } e_2 = 0 \text{ and } e_3 \neq 0$$

N = 3: Recover Solutions in z_i , up to symmetries

Two Solutions: regular triangle or three aligned points.
Example N = 4

N = 4: Reformulation in term of e_i

$$\begin{cases} e_3(e_2^2 + 12e_4)^2 = 0\\ e_2(e_2^4 - 16e_2^2e_4 + 9e_2e_3^2 + 48e_4^2) = 0\\ 16e_2^4e_4 - 4e_2^3e_3^2 - 128e_2^2e_4^2 + 144e_2e_3^2e_4 - 27e_3^4 + 256e_4^3 \neq 0 \end{cases}$$

Example N = 4

N = 4: Reformulation in term of e_i

$$\begin{cases} e_3(e_2^2 + 12e_4)^2 = 0\\ e_2(e_2^4 - 16e_2^2e_4 + 9e_2e_3^2 + 48e_4^2) = 0\\ 16e_2^4e_4 - 4e_2^3e_3^2 - 128e_2^2e_4^2 + 144e_2e_3^2e_4 - 27e_3^4 + 256e_4^3 \neq 0 \end{cases}$$

Example N = 4

N = 4: Reformulation in term of e_i

$$\begin{cases} e_3(e_2^2 + 12e_4)^2 = 0\\ e_2(e_2^4 - 16e_2^2e_4 + 9e_2e_3^2 + 48e_4^2) = 0\\ 16e_2^4e_4 - 4e_2^3e_3^2 - 128e_2^2e_4^2 + 144e_2e_3^2e_4 - 27e_3^4 + 256e_4^3 \neq 0 \end{cases}$$

N = 4: Naive Approach

205 Polynomials in the DRL Gb of Max Length 111, Degree 6.

11/48

Experimental Results

Direct Approach : Obtain a Gröbner Basis, with $z_1 = Z_1 = 1$.

	3	4	5
\mathbb{Q}	0.02 <i>s</i>	176.8 <i>s</i>	∞
\mathbb{F}_{65521}	0.01 <i>s</i>	0.2 <i>s</i>	∞

Time to generate the symmetric system

	4	5	6	7	8
Magma	0.0 <i>s</i>	0.0 <i>s</i>	0.06 <i>s</i>	70.6 <i>s</i>	7649.6 <i>s</i>
Maple	0.0 <i>s</i>	0.2 <i>s</i>	0.9 <i>s</i>	41.9 <i>s</i>	2407.3 <i>s</i>

Time to solve the symmetric system (Magma)

	4	5	6	7
Q	0.02 <i>s</i>	0.10 <i>s</i>	297 <i>s</i>	$\infty ightarrow$ 20mn (FGb)
F ₆₅₅₂₁	0.00 <i>s</i>	0.02 <i>s</i>	3.9 <i>s</i>	1681s ightarrow 144s (FGb)

SAGBI Bases and Polynomial Systems with Stable Equations.

Jean-Charles Faugère, Guënael Renault, J.S

SAGBI Bases and Polynomial Systems with Stable Equations

Aim

- In this talk: $G \subset \mathfrak{S}_n$, char $(\mathbb{K}) \nmid |G|$.
- $f_1, \ldots, f_t \in \mathbb{K}[x_1, \ldots, x_n]^G$ generating *I*.
- Aim: Computing $V = \mathbb{V}(I)$ faster than with usual algorithms.

SAGBI Bases and Polynomial Systems with Stable Equations

Aim

- In this talk: $G \subset \mathfrak{S}_n$, char $(\mathbb{K}) \nmid |G|$.
- $f_1, \ldots, f_t \in \mathbb{K}[x_1, \ldots, x_n]^G$ generating *I*.
- Aim: Computing $V = \mathbb{V}(I)$ faster than with usual algorithms.

Idea

Work in
$$\mathbb{R}^G = \mathbb{K}[x_1, \dots, x_n]^G$$
 instead of $\mathbb{R} = \mathbb{K}[x_1, \dots, x_n]$.
 $\mathbb{I}^G := \langle f_1, \dots, f_t \rangle_{\mathbb{R}^G}$

Use Structure to reduce the size of the matrices

Use Structure to reduce the size of the matrices

Ideal in R^G :

- $R^G = \bigoplus_d R^G_d$
- SAGBI-Normal Form.
- Smaller matrices !

Definition

Since char
$$(\mathbb{K}) \nmid |G|$$
, $\Re(f) = \frac{1}{|G|} \sum_{A \in G} f^A$ defined a projection
from $R_d = \mathbb{K}_d[x_1, \dots, x_n]$ to $R_d^G = \mathbb{K}_d[x_1, \dots, x_n]^G$ for each d .

Definition

Since char
$$(\mathbb{K}) \nmid |G|$$
, $\Re(f) = \frac{1}{|G|} \sum_{A \in G} f^A$ defined a projection
from $R_d = \mathbb{K}_d[x_1, \dots, x_n]$ to $R_d^G = \mathbb{K}_d[x_1, \dots, x_n]^G$ for each d .

Properties [Sturmfels08, Kemper & Steel98]

• { $\Re(m) \mid m$ monomial of degree d} is a basis of R_d^G .

Definition

Since char
$$(\mathbb{K}) \nmid |G|$$
, $\Re(f) = \frac{1}{|G|} \sum_{A \in G} f^A$ defined a projection
from $R_d = \mathbb{K}_d[x_1, \dots, x_n]$ to $R_d^G = \mathbb{K}_d[x_1, \dots, x_n]^G$ for each d .

Properties [Sturmfels08, Kemper & Steel98]

- { $\Re(m) \mid m$ monomial of degree d} is a basis of R_d^G .
- dim $R_d^G \simeq \dim R_d/|G|$

Definition

Since char
$$(\mathbb{K}) \nmid |G|$$
, $\Re(f) = \frac{1}{|G|} \sum_{A \in G} f^A$ defined a projection
from $R_d = \mathbb{K}_d[x_1, \dots, x_n]$ to $R_d^G = \mathbb{K}_d[x_1, \dots, x_n]^G$ for each d .

Properties [Sturmfels08, Kemper & Steel98]

- { $\Re(m) \mid m$ monomial of degree d} is a basis of R_d^G .
- dim $R_d^G \simeq \dim R_d/|G|$

Definition

Since char
$$(\mathbb{K}) \nmid |G|$$
, $\Re(f) = \frac{1}{|G|} \sum_{A \in G} f^A$ defined a projection
from $R_d = \mathbb{K}_d[x_1, \dots, x_n]$ to $R_d^G = \mathbb{K}_d[x_1, \dots, x_n]^G$ for each d .

Properties [Sturmfels08, Kemper & Steel98]

- $\{\Re(m) \mid m \text{ monomial of degree } d\}$ is a basis of R_d^G .
- dim $R_d^G \simeq \dim R_d/|G|$

Cyclic-5, \leq = DRL-ordering

$$\begin{cases} f_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ f_2 = x_1 x_2 + x_2 x_3 + x_3 x_4 + x_4 x_5 \\ f_3 = x_1 x_2 x_3 + x_2 x_3 x_4 + x_3 x_4 x_5 + x_4 x_5 x_1 + x_5 x_1 x_2 \\ f_4 = x_1 x_2 x_3 x_4 + x_2 x_3 x_4 x_5 + x_3 x_4 x_5 x_1 + x_4 x_5 x_1 x_2 + x_5 x_1 x_2 x_3 \\ f_5 = x_1 x_2 x_3 x_4 x_5 - 1 \end{cases}$$

Definition

Since char
$$(\mathbb{K}) \nmid |G|$$
, $\Re(f) = \frac{1}{|G|} \sum_{A \in G} f^A$ defined a projection
from $R_d = \mathbb{K}_d[x_1, \dots, x_n]$ to $R_d^G = \mathbb{K}_d[x_1, \dots, x_n]^G$ for each d .

Properties [Sturmfels08, Kemper & Steel98]

- { $\Re(m) \mid m$ monomial of degree d} is a basis of R_d^G .
- dim $R_d^G \simeq \dim R_d/|G|$

Cyclic-5, $\leq =$ DRL-ordering

$$\begin{cases} f_1 = 5\Re(x_1) & \text{Very Compact Representation } ! \\ f_2 = 5\Re(x_1x_2) & \\ f_3 = 5\Re(x_1x_2x_3) & \\ f_4 = 5\Re(x_1x_2x_3x_4) & \\ f_5 = \Re(x_1x_2x_3x_4x_5) - \Re(1) & \\ \end{cases}$$

Reynolds Operator and SAGBI-Bases in R^G

Definition

• \mathcal{G} Gröbner Basis of *I*, ideal of $R = \mathbb{K}[x_1, \dots, x_n]$ for \preceq , iff

 $\forall f \in I \quad \exists \ g \in \mathcal{G} \qquad \mathsf{LM}_{\preceq}(g) | \mathsf{LM}_{\preceq}(f)$

Reynolds Operator and SAGBI-Bases in R^G

Definition

• \mathcal{G} Gröbner Basis of *I*, ideal of $R = \mathbb{K}[x_1, \dots, x_n]$ for \preceq , iff

$$\forall f \in I \quad \exists \ g \in \mathcal{G} \qquad \mathsf{LM}_{\preceq}(g) | \mathsf{LM}_{\preceq}(f)$$

 S SAGBI-Gröbner Basis of I^G, ideal of R^G = K[x₁,...,x_n]^G for ≤, iff ∀f ∈ I^G ∃ g ∈ S, h ∈ R^G LM_≤(f) = LM_≤(g)LM_≤(h)

Reynolds Operator and SAGBI-Bases in R^G

Definition

• \mathcal{G} Gröbner Basis of *I*, ideal of $R = \mathbb{K}[x_1, \dots, x_n]$ for \preceq , iff

$$\forall f \in I \quad \exists \ g \in \mathcal{G} \qquad \mathsf{LM}_{\preceq}(g) | \mathsf{LM}_{\preceq}(f)$$

 S SAGBI-Gröbner Basis of I^G, ideal of R^G = K[x₁,...,x_n]^G for ≤, iff ∀f ∈ I^G ∃ g ∈ S, h ∈ R^G LM_≤(f) = LM_≤(g)LM_≤(h)

Reynolds Operator and SAGBI-Bases in R^G

Definition

• \mathcal{G} Gröbner Basis of *I*, ideal of $R = \mathbb{K}[x_1, \ldots, x_n]$ for \preceq , iff

$$\forall f \in I \quad \exists \ g \in \mathcal{G} \qquad \mathsf{LM}_{\preceq}(g) | \mathsf{LM}_{\preceq}(f)$$

 S SAGBI-Gröbner Basis of I^G, ideal of R^G = K[x₁,...,x_n]^G for ≤, iff ∀f ∈ I^G ∃ g ∈ S, h ∈ R^G LM_≤(f) = LM_≤(g)LM_≤(h)

Properties

Notion of SAGBI-Top reduction.

Reynolds Operator and SAGBI-Bases in R^G

Definition

• \mathcal{G} Gröbner Basis of *I*, ideal of $R = \mathbb{K}[x_1, \ldots, x_n]$ for \preceq , iff

$$\forall f \in I \quad \exists \ g \in \mathcal{G} \qquad \mathsf{LM}_{\preceq}(g) | \mathsf{LM}_{\preceq}(f)$$

 S SAGBI-Gröbner Basis of I^G, ideal of R^G = K[x₁,...,x_n]^G for ≤, iff ∀f ∈ I^G ∃ g ∈ S, h ∈ R^G LM_≤(f) = LM_≤(g)LM_≤(h)

Properties

- Notion of SAGBI-Top reduction.
- \rightsquigarrow SAGBI-Full reduction

Reynolds Operator and SAGBI-Bases in R^G

Definition

• \mathcal{G} Gröbner Basis of *I*, ideal of $R = \mathbb{K}[x_1, \dots, x_n]$ for \preceq , iff

$$\forall f \in I \quad \exists \ g \in \mathcal{G} \qquad \mathsf{LM}_{\preceq}(g) | \mathsf{LM}_{\preceq}(f)$$

 S SAGBI-Gröbner Basis of I^G, ideal of R^G = K[x₁,...,x_n]^G for ≤, iff ∀f ∈ I^G ∃ g ∈ S, h ∈ R^G LM_≤(f) = LM_≤(g)LM_≤(h)

Properties

- Notion of SAGBI-Top reduction.
- \rightsquigarrow SAGBI-Full reduction
- ~ SAGBI-Normal Form.

Matrix F_5 -algorithm

Equations : f_1, \ldots, f_t . f_i of degree d_i .

for
$$d = d_1$$
 to D do
for $i = 1$ to t do
 $m_1^d \succeq \dots \succeq m_{\mu}^d$
 $\widetilde{M_{d,i-1}}$
 $\widetilde{M_{d,i}} =$ Row-Echelon $\overbrace{m_1^{d-d_i} f_i}_{:m_1^{d-d_i} f_i} \underbrace{\dots \dots \dots}_{:m_{\ell}^{d-d_i} f_i} \underbrace{\dots \dots \dots}_{:\dots \dots}_{:\dots \dots}_{:\dots \dots}$
end for
end for
end for
 m_j^d : monomials of degree $\leq d$.
 $m_j^{d-d_i}$: monomials of degree $\leq d - d_i$, except those in $LM(\widetilde{M_{d-d_i,i-1}})$.

SAGBI-Matrix F_5 -algorithm

Equations : f_1, \ldots, f_t . f_i of degree d_i in \mathbb{R}^G .

for
$$d = d_1$$
 to D do
for $i = 1$ to t do
$$\widehat{M}(m_1^d) \succeq \cdots \succeq \Re(m_{\mu}^d)$$
$$(\widehat{M}_{d,i-1} \land \widehat{M}_{d,i-1} \land \widehat{$$

$$m_{j}^{d-d_{i}}: \text{ monomials of degree} \leq d - d_{i}, \text{ such that } \{\Re(m_{j}^{d-d_{i}})\} \text{ basis of } R_{d-d_{i}}^{G}, \underbrace{\text{except those in } LM(M_{d-d_{i},i-1})}_{SAGBI-F_{\text{B}}\text{-criterion}}.$$

19/48

Theorem : Dimension of ring of Invariants

$$\frac{\sum_{d=0}^{D} \dim R_d^G}{\sum_{d=0}^{D} \dim R_d} \xrightarrow{D \to +\infty} \frac{1}{|G|}$$

Theoretical Complexity of SAGBI-F5

$$O\left(\frac{t}{|G|^{\omega}}{D \choose D}^{\omega}\right)$$
, to obtain a SAGBI basis up to degree D of $\langle f_1, \ldots, f_t \rangle_{R^G}$.

• SAGBI-*F*₅ allows us to compute a SAGBI-Gröbner basis of *I^G* up to some degree *D*.

- SAGBI-*F*₅ allows us to compute a SAGBI-Gröbner basis of *I^G* up to some degree *D*.
- 🛆 SAGBI Bases are not finite in general.

- SAGBI-*F*₅ allows us to compute a SAGBI-Gröbner basis of *I^G* up to some degree *D*.
- 🛆 SAGBI Bases are not finite in general.
- The symmetric functions $\sigma_i(x_1,\ldots,x_n)$ belong to R^G .

- SAGBI-*F*₅ allows us to compute a SAGBI-Gröbner basis of *I^G* up to some degree *D*.
- 🛆 SAGBI Bases are not finite in general.
- ^{*} The symmetric functions $\sigma_i(x_1, \ldots, x_n)$ belong to R^G .
- We Use the SAGBI Basis up to degree D to compute SAGBI-Normal Forms of symmetric polynomials in $K[x_1, \ldots, x_n]^{\mathfrak{S}_n} = \mathbb{K}[\sigma_1, \ldots, \sigma_n]$ of degree less than D with respect to I^G , and look for a Gröbner basis.

 $\begin{array}{l} \leq = \mathsf{DRL} \text{ ordering in } R = \mathbb{K}[x_1, \dots, x_n] \\ \leq_w = \text{ weighted DRL ordering in } \mathbb{K}[e_1, \dots, e_n] \\ \leq_{\mathsf{Lex}} = \mathsf{Lexicographic ordering in } \mathbb{K}[e_1, \dots, e_n]. \end{array}$

 $\leq = \text{DRL ordering in } R = \mathbb{K}[x_1, \dots, x_n] \\ \leq_w = \text{weighted DRL ordering in } \mathbb{K}[e_1, \dots, e_n] \\ \leq_{\text{Lex}} = \text{Lexicographic ordering in } \mathbb{K}[e_1, \dots, e_n].$

$$I = \langle f_1, \dots, f_t \rangle$$
$$D = \min \{ \deg(f_i) \}$$

$$\leq = \text{DRL ordering in } R = \mathbb{K}[x_1, \dots, x_n] \\ \leq_w = \text{weighted DRL ordering in } \mathbb{K}[e_1, \dots, e_n] \\ \leq_{\text{Lex}} = \text{Lexicographic ordering in } \mathbb{K}[e_1, \dots, e_n].$$

$$\begin{array}{|c|c|c|c|c|} I = \langle f_1, \dots, f_t \rangle & \mathsf{SAGBI} \text{-} F_5 \\ D = \min \{ \mathsf{deg}(f_i) \} & \mathsf{GagBI} \text{-} F_5 \\ \end{array}$$

$$\leq = \text{DRL ordering in } R = \mathbb{K}[x_1, \dots, x_n] \\ \leq_w = \text{weighted DRL ordering in } \mathbb{K}[e_1, \dots, e_n] \\ \leq_{\text{Lex}} = \text{Lexicographic ordering in } \mathbb{K}[e_1, \dots, e_n].$$

$$\leq = \text{DRL ordering in } R = \mathbb{K}[x_1, \dots, x_n] \\ \leq_w = \text{weighted DRL ordering in } \mathbb{K}[e_1, \dots, e_n] \\ \leq_{\text{Lex}} = \text{Lexicographic ordering in } \mathbb{K}[e_1, \dots, e_n].$$

$$\leq = DRL \text{ ordering in } R = \mathbb{K}[x_1, \dots, x_n] \\ \leq_w = \text{ weighted DRL ordering in } \mathbb{K}[e_1, \dots, e_n] \\ \leq_{\mathsf{Lex}} = \text{Lexicographic ordering in } \mathbb{K}[e_1, \dots, e_n].$$

General Strategy

$$\leq = \text{DRL ordering in } R = \mathbb{K}[x_1, \dots, x_n] \\ \leq_w = \text{weighted DRL ordering in } \mathbb{K}[e_1, \dots, e_n] \\ \leq_{\text{Lex}} = \text{Lexicographic ordering in } \mathbb{K}[e_1, \dots, e_n].$$

General Strategy

$$\leq = \text{DRL ordering in } R = \mathbb{K}[x_1, \dots, x_n] \\ \leq_w = \text{weighted DRL ordering in } \mathbb{K}[e_1, \dots, e_n] \\ \leq_{\text{Lex}} = \text{Lexicographic ordering in } \mathbb{K}[e_1, \dots, e_n].$$

Example: Cyclic-5 Problem

$$\begin{cases} f_1 = 5\Re(x_1) \\ f_2 = 5\Re(x_1x_2) \\ f_3 = 5\Re(x_1x_2x_3) \\ f_4 = 5\Re(x_1x_2x_3x_4) \\ f_5 = \Re(x_1x_2x_3x_4x_5) - \Re(1) \\ \bullet \ G = C_5 \subset \mathfrak{S}_5, \ e_i = i - \text{th symmetric function in } (x_1, \dots, x_5). \end{cases}$$

Example: Cyclic-5 Problem

$$\begin{array}{l} f_1 = 5 \Re(x_1) \\ f_2 = 5 \Re(x_1 x_2) \\ f_3 = 5 \Re(x_1 x_2 x_3) \\ f_4 = 5 \Re(x_1 x_2 x_3 x_4) \\ f_5 = \Re(x_1 x_2 x_3 x_4 x_5) - \Re(1) \end{array}$$

- $G = C_5 \subset \mathfrak{S}_5$, $e_i = i$ -th symmetric function in (x_1, \ldots, x_5) .
- SAGBI Basis in Degree 8 for DRL ordering : 99 polynomials.

$$\begin{array}{l} f_1 = 5\Re(x_1) \\ f_2 = 5\Re(x_1x_2) \\ f_3 = 5\Re(x_1x_2x_3) \\ f_4 = 5\Re(x_1x_2x_3x_4) \\ f_5 = \Re(x_1x_2x_3x_4x_5) - \Re(1) \end{array}$$

• $G = C_5 \subset \mathfrak{S}_5$, $e_i = i$ -th symmetric function in (x_1, \ldots, x_5) .

- SAGBI Basis in Degree 8 for DRL ordering : 99 polynomials.
- w-DRL \mathfrak{S}_n -Gröbner Basis:

 $e_2^3 + 5 e_3^2$, $e_2^2 e_3 - 25 e_2$, $e_2 e_3^2 - 25 e_3$, $e_3^3 + 5 e_2^2$, e_1 , e_4 , $e_5 - 1$

$$\begin{array}{l} f_1 = 5\Re(x_1) \\ f_2 = 5\Re(x_1x_2) \\ f_3 = 5\Re(x_1x_2x_3) \\ f_4 = 5\Re(x_1x_2x_3x_4) \\ f_5 = \Re(x_1x_2x_3x_4x_5) - \Re(1) \end{array}$$

- $G = C_5 \subset \mathfrak{S}_5$, $e_i = i$ -th symmetric function in (x_1, \ldots, x_5) .
- SAGBI Basis in Degree 8 for DRL ordering : 99 polynomials.
- w-DRL \mathfrak{S}_n -Gröbner Basis: $e_2^3 + 5 e_3^2, e_2^2 e_3 - 25 e_2, e_2 e_3^2 - 25 e_3, e_3^3 + 5 e_2^2, e_1, e_4, e_5 - 1$
- Lex \mathfrak{S}_n -Gröbner Basis:

 $e_5 - 1, e_4, e_3(e_3^5 + 5^5) e_3, 125e_2 + e_3^4, e_1$

$$f_{1} = 5\Re(x_{1})$$

$$f_{2} = 5\Re(x_{1}x_{2})$$

$$f_{3} = 5\Re(x_{1}x_{2}x_{3})$$

$$f_{4} = 5\Re(x_{1}x_{2}x_{3}x_{4})$$

$$f_{5} = \Re(x_{1}x_{2}x_{3}x_{4}x_{5}) - \Re(1)$$

- $G = C_5 \subset \mathfrak{S}_5$, $e_i = i$ -th symmetric function in (x_1, \ldots, x_5) .
- SAGBI Basis in Degree 8 for DRL ordering : 99 polynomials.
- w-DRL \mathfrak{S}_n -Gröbner Basis: $e_2^3 + 5 e_3^2, e_2^2 e_3 - 25 e_2, e_2 e_3^2 - 25 e_3, e_3^3 + 5 e_2^2, e_1, e_4, e_5 - 1$
- Lex \mathfrak{S}_n -Gröbner Basis: $e_5 - 1, e_4, e_3(e_3^5 + 5^5) e_3, 125e_2 + e_3^4, e_1$
- 6 solutions in $(e_i)_i \rightarrow \text{ at most } 6 \times 5! = 720$ solutions in $\mathbb{V}(I)$

$$f_{1} = 5\Re(x_{1})$$

$$f_{2} = 5\Re(x_{1}x_{2})$$

$$f_{3} = 5\Re(x_{1}x_{2}x_{3})$$

$$f_{4} = 5\Re(x_{1}x_{2}x_{3}x_{4})$$

$$f_{5} = \Re(x_{1}x_{2}x_{3}x_{4}x_{5}) - \Re(1)$$

- $G = C_5 \subset \mathfrak{S}_5$, $e_i = i$ -th symmetric function in (x_1, \ldots, x_5) .
- SAGBI Basis in Degree 8 for DRL ordering : 99 polynomials.
- w-DRL \mathfrak{S}_n -Gröbner Basis: $e_2^3 + 5 e_3^2, e_2^2 e_3 - 25 e_2, e_2 e_3^2 - 25 e_3, e_3^3 + 5 e_2^2, e_1, e_4, e_5 - 1$
- Lex \mathfrak{S}_n -Gröbner Basis: $e_5 - 1, e_4, e_3(e_3^5 + 5^5) e_3, 125e_2 + e_3^4, e_1$
- 6 solutions in $(e_i)_i \rightsquigarrow$ at most $6 \times 5! = 720$ solutions in $\mathbb{V}(I)$

• Kernoving spurious solutions: Only 70 solutions !

• This approach can be used with any Group.

- This approach can be used with any Group.
- Both Modular and Non-modular Cases.

- This approach can be used with any Group.
- Both Modular and Non-modular Cases.
- Can be generalized to other algebras.

Gröbner Bases of ideals invariant under a commutative group : the non-modular case.

Jean-Charles Faugère, J.S.

ISSAC 2013

Contributions

Contributions

Example : Problem invariant under $C_2 \times C_4$

 $G = \langle M_1, M_2 \rangle$ acts on $R = \mathbb{F}_{17}[x_1, x_2, x_3, x_4, x_5, x_6]$. M_1 exchanges x_1 and x_2 and M_2 performs a cycle on (x_3, x_4, x_5, x_6) .

$$f_1 = Random$$
 polynomial of degree 2, $f_1^{M_2} = f_1$.
 $f_2 = Random$ polynomial of degree 3, $f_2^{M_1} = f_2$.

If you insist...

$$\begin{split} f_1 &= x_1^2 + 11x_1x_2 + 5x_2^2 + 4x_1x_3 + 11x_2x_3 + 4x_3^2 + 4x_1x_4 + 11x_2x_4 + \\ x_3x_4 + 4x_4^2 + 4x_1x_5 + 11x_2x_5 + 6x_3x_5 + x_4x_5 + 4x_5^2 + 4x_1x_6 + 11x_2x_6 + \\ x_3x_6 + 6x_4x_6 + x_5x_6 + 4x_6^2 + 14x_1 + 10x_2 + 15x_3 + 15x_4 + 15x_5 + 15x_6 + 14 \end{split}$$

$$\begin{split} f_2 &= x_1^3 + 11x_1^2x_2 + 11x_1x_2^2 + x_2^3 + 7x_1^2x_3 + 14x_1x_2x_3 + 7x_2^2x_3 + \\ 5x_1x_3^2 + 5x_2x_3^2 + 16x_3^3 + 16x_1x_2x_4 + 13x_1x_3x_4 + 13x_2x_3x_4 + 6x_3^2x_4 + \\ 7x_1x_4^2 + 7x_2x_4^2 + 12x_3x_4^2 + 13x_4^3 + 13x_1^2x_5 + 6x_1x_2x_5 + 13x_2^2x_5 + \\ 15x_1x_3x_5 + 15x_2x_3x_5 + x_3^2x_5 + 9x_1x_4x_5 + 9x_2x_4x_5 + 2x_4^2x_5 + 2x_1x_5^2 + \\ 2x_2x_5^2 + 13x_3x_5^2 + 9x_4x_5^2 + 3x_1^2x_6 + x_1x_2x_6 + 3x_2^2x_6 + 9x_1x_3x_6 + \\ 9x_2x_3x_6 + 4x_3^2x_6 + 5x_1x_4x_6 + 5x_2x_4x_6 + 7x_3x_4x_6 + 7x_4^2x_6 + 5x_1x_5x_6 + \\ 5x_2x_5x_6 + x_3x_5x_6 + 16x_4x_5x_6 + 15x_5^2x_6 + 15x_1x_6^2 + 15x_2x_6^2 + 14x_3x_6^2 + \\ 11x_4x_6^2 + 9x_5x_6^2 + 2x_6^3 + 13x_1x_2 + 6x_1x_3 + 6x_2x_3 + 4x_3^2 + 4x_1x_4 + \\ 4x_2x_4 + 9x_3x_4 + 8x_4^2 + 13x_1x_5 + 13x_2x_5 + 12x_3x_5 + 6x_5^2 + 9x_1x_6 + \\ 9x_2x_6 + 15x_4x_6 + 5x_5x_6 + 8x_6^2 + 8x_1 + 8x_2 + x_3 + 3x_4 + 10x_5 + 16x_6 + 3 \\ \end{split}$$

 $I = \langle f_1, f_1^{M_1}, f_2, f_2^{M_2}, f_2^{M_2^2}, f_2^{M_2^2} \rangle$ is a (globally) *G*-stable ideal.

• $A^{|G|} = I_n$ $\forall A \in G \rightsquigarrow$ Every matrix of G is diagonalizable in a finite extension of \mathbb{K} .

- $A^{|G|} = I_n$ $\forall A \in G \rightsquigarrow$ Every matrix of G is diagonalizable in a finite extension of \mathbb{K} .
- G abelian \rightsquigarrow Same base-change matrix P.

- $A^{|G|} = I_n$ $\forall A \in G \rightsquigarrow$ Every matrix of G is diagonalizable in a finite extension of \mathbb{K} .
- G abelian ~ Same base-change matrix P.
- $G_{\mathcal{D}} = \{ P^{-1}AP \mid A \in G \}$: group of diagonal matrices.

- $A^{|G|} = I_n$ $\forall A \in G \rightsquigarrow$ Every matrix of G is diagonalizable in a finite extension of \mathbb{K} .
- G abelian ~ Same base-change matrix P.
- $G_{\mathcal{D}} = \{ P^{-1}AP \mid A \in G \}$: group of diagonal matrices.
- $I_{\mathcal{D}} = \{ f^P \mid f \in I \}$ is $G_{\mathcal{D}}$ -stable.

Example : Change of variables

Example : Change of variables

Remember

$$\begin{split} f_1 &= x_1^2 + 11x_1x_2 + 5x_2^2 + 4x_1x_3 + 11x_2x_3 + 4x_3^2 + 4x_1x_4 + 11x_2x_4 + \\ x_3x_4 + 4x_4^2 + 4x_1x_5 + 11x_2x_5 + 6x_3x_5 + x_4x_5 + 4x_5^2 + 4x_1x_6 + 11x_2x_6 + \\ x_3x_6 + 6x_4x_6 + x_5x_6 + 4x_6^2 + 14x_1 + 10x_2 + 15x_3 + 15x_4 + 15x_5 + 15x_6 + 14 \end{split}$$

$$\begin{split} f_2 &= x_1^3 + 11x_1^2x_2 + 11x_1x_2^2 + x_2^3 + 7x_1^2x_3 + 14x_1x_2x_3 + 7x_2^2x_3 + \\ 5x_1x_3^2 + 5x_2x_3^2 + 16x_3^3 + 16x_1x_2x_4 + 13x_1x_3x_4 + 13x_2x_3x_4 + 6x_3^2x_4 + \\ 7x_1x_4^2 + 7x_2x_4^2 + 12x_3x_4^2 + 13x_4^3 + 13x_1^2x_5 + 6x_1x_2x_5 + 13x_2^2x_5 + \\ 15x_1x_3x_5 + 15x_2x_3x_5 + x_3^2x_5 + 9x_1x_4x_5 + 9x_2x_4x_5 + 2x_4^2x_5 + 2x_1x_5^2 + \\ 2x_2x_5^2 + 13x_3x_5^2 + 9x_4x_5^2 + 3x_1^2x_6 + x_1x_2x_6 + 3x_2^2x_6 + 9x_1x_3x_6 + \\ 9x_2x_3x_6 + 4x_3^2x_6 + 5x_1x_4x_6 + 5x_2x_4x_6 + 7x_3x_4x_6 + 7x_4^2x_6 + 5x_1x_5x_6 + \\ 5x_2x_5x_6 + x_3x_5x_6 + 16x_4x_5x_6 + 15x_5^2x_6 + 15x_1x_6^2 + 15x_2x_6^2 + 14x_3x_6^2 + \\ 11x_4x_6^2 + 9x_5x_6^2 + 2x_6^3 + 13x_1x_2 + 6x_1x_3 + 6x_2x_3 + 4x_3^2 + 4x_1x_4 + \\ 4x_2x_4 + 9x_3x_4 + 8x_4^2 + 13x_1x_5 + 13x_2x_5 + 12x_3x_5 + 6x_5^2 + 9x_1x_6 + \\ 9x_2x_6 + 15x_4x_6 + 5x_5x_6 + 8x_6^2 + 8x_1 + 8x_2 + x_3 + 3x_4 + 10x_5 + 16x_6 + 3 \\ \end{split}$$

 $I = \langle f_1, f_1^{M_1}, f_2, f_2^{M_2}, f_2^{M_2^2}, f_2^{M_2^3} \rangle$ is a *G*-invariant ideal.

 $f_1^P = 12x_1^2 + 8x_1x_2 + 7x_4^2 + 8x_3x_5 + 11x_1x_6 + 9x_2x_6 + 15x_6^2 + 13x_1 + 7x_2 + 9x_6 + 14$

$$\begin{split} f_2^P &= x_1^2 x_2 + 7 x_2^3 + 9 x_1^2 x_3 + 9 x_2^2 x_3 + 16 x_2 x_3^2 + 3 x_1^2 x_4 + 14 x_2^2 x_4 + \\ 13 x_2 x_3 x_4 + 4 x_3^2 x_4 + 9 x_2 x_4^2 + 12 x_4^3 + 16 x_1^2 x_5 + 7 x_2^2 x_5 + 2 x_2 x_3 x_5 + \\ 16 x_3^2 x_5 + 15 x_2 x_4 x_5 + 7 x_3 x_4 x_5 + x_4^2 x_5 + 16 x_2 x_5^2 + 2 x_3 x_5^2 + 7 x_4 x_5^2 + \\ 15 x_5^3 + 9 x_1^2 x_6 + 15 x_2^2 x_6 + 9 x_2 x_3 x_6 + 6 x_3^2 x_6 + 3 x_2 x_4 x_6 + 15 x_3 x_4 x_6 + \\ 9 x_4^2 x_6 + 6 x_2 x_5 x_6 + 12 x_3 x_5 x_6 + 2 x_4 x_5 x_6 + 10 x_5^2 x_6 + 16 x_3 x_6^2 + \\ 6 x_5 x_6^2 + 5 x_6^3 + 4 x_1^2 + 13 x_2^2 + 5 x_2 x_3 + 15 x_3^2 + 5 x_2 x_4 + 2 x_3 x_4 + 5 x_4^2 + \\ 15 x_2 x_5 + 15 x_3 x_5 + 6 x_4 x_5 + 8 x_5^2 + 13 x_2 x_6 + 13 x_3 x_6 + x_4 x_6 + \\ 13 x_5 x_6 + 16 x_6^2 + 16 x_2 + 11 x_3 + 8 x_4 + 15 x_5 + 13 x_6 + 3 \end{split}$$

$$\begin{split} I_{\mathcal{D}} = \langle f_1^P, f_1^{PD_1}, f_2^P, f_2^{PD_2}, f_2^{PD_2^2}, f_2^{PD_2^3} \rangle \text{ is a } \mathcal{G}_{\mathcal{D}}\text{-invariant ideal with} \\ \mathcal{G}_{\mathcal{D}} = \langle D_1, D_2 \rangle. \end{split}$$

Theorem: Structure of Finite Abelian Groups

Evey Abelian Group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1|q_2|\ldots|q_\ell$.

Theorem: Structure of Finite Abelian Groups

Evey Abelian Group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1|q_2|\ldots|q_\ell$.

- $G_{\mathcal{D}}$ diagonal group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \mathbb{Z}/q_2\mathbb{Z}$, with $q_1|q_2$.
- D_1, D_2 two diagonal matrices generating $\mathbb{Z}/q_1\mathbb{Z}$ and $\mathbb{Z}/q_2\mathbb{Z}$.

Theorem: Structure of Finite Abelian Groups

Evey Abelian Group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1|q_2|\ldots|q_\ell$.

- $G_{\mathcal{D}}$ diagonal group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \mathbb{Z}/q_2\mathbb{Z}$, with $q_1|q_2$.
- D_1, D_2 two diagonal matrices generating $\mathbb{Z}/q_1\mathbb{Z}$ and $\mathbb{Z}/q_2\mathbb{Z}$.
- $D_1^{q_1} = I_n \Rightarrow D_1 = \text{Diag}(\xi_1^{\lambda_1}, \dots, \xi_1^{\lambda_n})$ with ξ_1 a q_1 -primitive root of 1 and $\lambda_i \in \mathbb{Z}/q_1\mathbb{Z}$.

Theorem: Structure of Finite Abelian Groups

Evey Abelian Group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1|q_2|\ldots|q_\ell$.

- $G_{\mathcal{D}}$ diagonal group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \mathbb{Z}/q_2\mathbb{Z}$, with $q_1|q_2$.
- D_1, D_2 two diagonal matrices generating $\mathbb{Z}/q_1\mathbb{Z}$ and $\mathbb{Z}/q_2\mathbb{Z}$.
- $D_1^{q_1} = I_n \Rightarrow D_1 = \text{Diag}(\xi_1^{\lambda_1}, \dots, \xi_1^{\lambda_n})$ with ξ_1 a q_1 -primitive root of 1 and $\lambda_i \in \mathbb{Z}/q_1\mathbb{Z}$.

•
$$m = \prod_{i=1}^n x_i^{\alpha_i}$$
.

Theorem: Structure of Finite Abelian Groups

Evey Abelian Group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1|q_2|\ldots|q_\ell$.

- $G_{\mathcal{D}}$ diagonal group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \mathbb{Z}/q_2\mathbb{Z}$, with $q_1|q_2$.
- D_1, D_2 two diagonal matrices generating $\mathbb{Z}/q_1\mathbb{Z}$ and $\mathbb{Z}/q_2\mathbb{Z}$.
- $D_1^{q_1} = I_n \Rightarrow D_1 = \text{Diag}(\xi_1^{\lambda_1}, \dots, \xi_1^{\lambda_n})$ with ξ_1 a q_1 -primitive root of 1 and $\lambda_i \in \mathbb{Z}/q_1\mathbb{Z}$.

•
$$m = \prod_{i=1}^{n} x_{i}^{\alpha_{i}}$$
.
• $m^{D_{1}} = \prod_{i=1}^{n} (x_{i}\xi_{1}^{\lambda_{i}})^{\alpha_{i}} = \xi_{1}^{\lambda_{1}\alpha_{1}+\dots+\lambda_{n}\alpha_{n}}m$

Theorem: Structure of Finite Abelian Groups

Evey Abelian Group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1|q_2|\ldots|q_\ell$.

- $G_{\mathcal{D}}$ diagonal group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \mathbb{Z}/q_2\mathbb{Z}$, with $q_1|q_2$.
- D_1, D_2 two diagonal matrices generating $\mathbb{Z}/q_1\mathbb{Z}$ and $\mathbb{Z}/q_2\mathbb{Z}$.
- $D_1^{q_1} = I_n \Rightarrow D_1 = \text{Diag}(\xi_1^{\lambda_1}, \dots, \xi_1^{\lambda_n})$ with ξ_1 a q_1 -primitive root of 1 and $\lambda_i \in \mathbb{Z}/q_1\mathbb{Z}$.

Theorem: Structure of Finite Abelian Groups

Evey Abelian Group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1|q_2|\ldots|q_\ell$.

- $G_{\mathcal{D}}$ diagonal group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \mathbb{Z}/q_2\mathbb{Z}$, with $q_1|q_2$.
- D_1, D_2 two diagonal matrices generating $\mathbb{Z}/q_1\mathbb{Z}$ and $\mathbb{Z}/q_2\mathbb{Z}$.
- $D_1^{q_1} = I_n \Rightarrow D_1 = \text{Diag}(\xi_1^{\lambda_1}, \dots, \xi_1^{\lambda_n})$ with ξ_1 a q_1 -primitive root of 1 and $\lambda_i \in \mathbb{Z}/q_1\mathbb{Z}$.
- m = Πⁿ_{i=1} x^{α_i}.
 m^{D₁} = Πⁿ_{i=1}(x_iξ^{λ_i})^{α_i} = ξ<sup>λ₁α₁+···+λ_nα_nm.
 g₁ = λ₁α₁ + ··· + λ_nα_n ∈ ℤ/q₁ℤ is called the ⟨D₁⟩-degree of m.
 </sup>
- Same action for $D_2 \longrightarrow \langle D_2 \rangle$ -degree.

Theorem: Structure of Finite Abelian Groups

Evey Abelian Group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1|q_2|\ldots|q_\ell$.

- $G_{\mathcal{D}}$ diagonal group $\simeq \mathbb{Z}/q_1\mathbb{Z} \times \mathbb{Z}/q_2\mathbb{Z}$, with $q_1|q_2$.
- D_1, D_2 two diagonal matrices generating $\mathbb{Z}/q_1\mathbb{Z}$ and $\mathbb{Z}/q_2\mathbb{Z}$.
- $D_1^{q_1} = I_n \Rightarrow D_1 = \text{Diag}(\xi_1^{\lambda_1}, \dots, \xi_1^{\lambda_n})$ with ξ_1 a q_1 -primitive root of 1 and $\lambda_i \in \mathbb{Z}/q_1\mathbb{Z}$.
- $m = \prod_{i=1}^{n} x_i^{\alpha_i}$. • $m^{D_1} = \prod_{i=1}^{n} (x_i \xi_1^{\lambda_i})^{\alpha_i} = \xi_1^{\lambda_1 \alpha_1 + \dots + \lambda_n \alpha_n} m$. • $m = \lambda_1 \alpha_1 + \dots + \lambda_n \alpha_n \in \mathbb{Z}/q_1 \mathbb{Z}$ is called the (D_1) -degree
- $g_1 = \lambda_1 \alpha_1 + \dots + \lambda_n \alpha_n \in \mathbb{Z}/q_1\mathbb{Z}$ is called the $\langle D_1 \rangle$ -degree of m.
- Same action for $D_2 \longrightarrow \langle D_2 \rangle$ -degree.
- $(g_1, g_2) \in \mathbb{Z}/q_1\mathbb{Z} \times \mathbb{Z}/q_2\mathbb{Z}$ is called the $G_{\mathcal{D}}$ -degree of m.

Remember

$$f_1^P = 12x_1^2 + 8x_1x_2 + 7x_4^2 + 8x_3x_5 + 11x_1x_6 + 9x_2x_6 + 15x_6^2 + 13x_1 + 7x_2 + 9x_6 + 14$$

$$\begin{split} f_2^P &= x_1^2 x_2 + 7 x_2^3 + 9 x_1^2 x_3 + 9 x_2^2 x_3 + 16 x_2 x_3^2 + 3 x_1^2 x_4 + 14 x_2^2 x_4 + \\ 13 x_2 x_3 x_4 + 4 x_3^2 x_4 + 9 x_2 x_4^2 + 12 x_4^3 + 16 x_1^2 x_5 + 7 x_2^2 x_5 + 2 x_2 x_3 x_5 + 16 x_3^2 x_5 + \\ 15 x_2 x_4 x_5 + 7 x_3 x_4 x_5 + x_4^2 x_5 + 16 x_2 x_5^2 + 2 x_3 x_5^2 + 7 x_4 x_5^2 + 15 x_5^3 + 9 x_1^2 x_6 + \\ 15 x_2^2 x_6 + 9 x_2 x_3 x_6 + 6 x_3^2 x_6 + 3 x_2 x_4 x_6 + 15 x_3 x_4 x_6 + 9 x_4^2 x_6 + 6 x_2 x_5 x_6 + \\ 12 x_3 x_5 x_6 + 2 x_4 x_5 x_6 + 10 x_5^2 x_6 + 16 x_3 x_6^2 + 6 x_5 x_6^2 + 5 x_6^3 + 4 x_1^2 + 13 x_2^2 + 5 x_2 x_3 + \\ 15 x_3^2 + 5 x_2 x_4 + 2 x_3 x_4 + 5 x_4^2 + 15 x_2 x_5 + 15 x_3 x_5 + 6 x_4 x_5 + 8 x_5^2 + 13 x_2 x_6 + \\ 13 x_3 x_6 + x_4 x_6 + 13 x_5 x_6 + 16 x_6^2 + 16 x_2 + 11 x_3 + 8 x_4 + 15 x_5 + 13 x_6 + 3 \end{split}$$

$G_{\mathcal{D}}$ -homogeneous components

 $f_1^P = 12x_1^2 + 8x_1x_2 + 7x_4^2 + 8x_3x_5 + 11x_1x_6 + 9x_2x_6 + 15x_6^2 + 13x_1 + 7x_2 + 9x_6 + 14$

$$\begin{split} f_2^P &= x_1^2 x_2 + 7 x_2^3 + 9 x_1^2 x_3 + 9 x_2^2 x_3 + 16 x_2 x_3^2 + 3 x_1^2 x_4 + 14 x_2^2 x_4 + \\ 13 x_2 x_3 x_4 + 4 x_3^2 x_4 + 9 x_2 x_4^2 + 12 x_4^3 + 16 x_1^2 x_5 + 7 x_2^2 x_5 + 2 x_2 x_3 x_5 + 16 x_3^2 x_5 + \\ 15 x_2 x_4 x_5 + 7 x_3 x_4 x_5 + x_4^2 x_5 + 16 x_2 x_5^2 + 2 x_3 x_5^2 + 7 x_4 x_5^2 + 15 x_5^3 + 9 x_1^2 x_6 + \\ 15 x_2^2 x_6 + 9 x_2 x_3 x_6 + 6 x_3^2 x_6 + 3 x_2 x_4 x_6 + 15 x_3 x_4 x_6 + 9 x_4^2 x_6 + 6 x_2 x_5 x_6 + \\ 12 x_3 x_5 x_6 + 2 x_4 x_5 x_6 + 10 x_5^2 x_6 + 16 x_3 x_6^2 + 6 x_5 x_6^2 + 5 x_6^3 + 4 x_1^2 + 13 x_2^2 + 5 x_2 x_3 + \\ 15 x_3^2 + 5 x_2 x_4 + 2 x_3 x_4 + 5 x_4^2 + 15 x_2 x_5 + 15 x_3 x_5 + 6 x_4 x_5 + 8 x_5^2 + 13 x_2 x_6 + \\ 13 x_3 x_6 + x_4 x_6 + 13 x_5 x_6 + 16 x_6^2 + 16 x_2 + 11 x_3 + 8 x_4 + 15 x_5 + 13 x_6 + 3 \end{split}$$

$G_{\mathcal{D}}$ -homogeneous components

 $f_1^P = 12x_1^2 + 8x_1x_2 + 7x_4^2 + 8x_3x_5 + 11x_1x_6 + 9x_2x_6 + 15x_6^2 + 13x_1 + 7x_2 + 9x_6 + 14$

$$\begin{split} f_2^P &= x_1^2 x_2 + 7 x_2^3 + 9 x_1^2 x_3 + 9 x_2^2 x_3 + 16 x_2 x_3^2 + 3 x_1^2 x_4 + 14 x_2^2 x_4 + \\ 13 x_2 x_3 x_4 + 4 x_3^2 x_4 + 9 x_2 x_4^2 + 12 x_4^3 + 16 x_1^2 x_5 + 7 x_2^2 x_5 + 2 x_2 x_3 x_5 + 16 x_3^2 x_5 + \\ 15 x_2 x_4 x_5 + 7 x_3 x_4 x_5 + x_4^2 x_5 + 16 x_2 x_5^2 + 2 x_3 x_5^2 + 7 x_4 x_5^2 + 15 x_5^3 + 9 x_1^2 x_6 + \\ 15 x_2^2 x_6 + 9 x_2 x_3 x_6 + 6 x_3^2 x_6 + 3 x_2 x_4 x_6 + 15 x_3 x_4 x_6 + 9 x_4^2 x_6 + 6 x_2 x_5 x_6 + \\ 12 x_3 x_5 x_6 + 2 x_4 x_5 x_6 + 10 x_5^2 x_6 + 16 x_3 x_6^2 + 6 x_5 x_6^2 + 5 x_6^3 + 4 x_1^2 + 13 x_2^2 + 5 x_2 x_3 + \\ 15 x_3^2 + 5 x_2 x_4 + 2 x_3 x_4 + 5 x_4^2 + 15 x_2 x_5 + 15 x_3 x_5 + 6 x_4 x_5 + 8 x_5^2 + 13 x_2 x_6 + \\ 13 x_3 x_6 + x_4 x_6 + 13 x_5 x_6 + 16 x_6^2 + 16 x_2 + 11 x_3 + 8 x_4 + 15 x_5 + 13 x_6 + 3 \end{split}$$

Sums of Terms of same G_D -degree are called G_D -homogeneous components.
$f_1^P = 12x_1^2 + 8x_1x_2 + 7x_4^2 + 8x_3x_5 + 11x_1x_6 + 9x_2x_6 + 15x_6^2 + 13x_1 + 7x_2 + 9x_6 + 14$

$$\begin{split} f_2^P &= x_1^2 x_2 + 7 x_2^3 + 9 x_1^2 x_3 + 9 x_2^2 x_3 + 16 x_2 x_3^2 + 3 x_1^2 x_4 + 14 x_2^2 x_4 + \\ 13 x_2 x_3 x_4 + 4 x_3^2 x_4 + 9 x_2 x_4^2 + 12 x_4^3 + 16 x_1^2 x_5 + 7 x_2^2 x_5 + 2 x_2 x_3 x_5 + 16 x_3^2 x_5 + \\ 15 x_2 x_4 x_5 + 7 x_3 x_4 x_5 + x_4^2 x_5 + 16 x_2 x_5^2 + 2 x_3 x_5^2 + 7 x_4 x_5^2 + 15 x_5^3 + 9 x_1^2 x_6 + \\ 15 x_2^2 x_6 + 9 x_2 x_3 x_6 + 6 x_3^2 x_6 + 3 x_2 x_4 x_6 + 15 x_3 x_4 x_6 + 9 x_4^2 x_6 + 6 x_2 x_5 x_6 + \\ 12 x_3 x_5 x_6 + 2 x_4 x_5 x_6 + 10 x_5^2 x_6 + 16 x_3 x_6^2 + 6 x_5 x_6^2 + 5 x_6^3 + 4 x_1^2 + 13 x_2^2 + 5 x_2 x_3 + \\ 15 x_3^2 + 5 x_2 x_4 + 2 x_3 x_4 + 5 x_4^2 + 15 x_2 x_5 + 15 x_3 x_5 + 6 x_4 x_5 + 8 x_5^2 + 13 x_2 x_6 + \\ 13 x_3 x_6 + x_4 x_6 + 13 x_5 x_6 + 16 x_6^2 + 16 x_2 + 11 x_3 + 8 x_4 + 15 x_5 + 13 x_6 + 3 \end{split}$$

Sums of Terms of same G_D -degree are called G_D -homogeneous components.

Theorem

If $I_{\mathcal{D}}$ is $G_{\mathcal{D}}$ -stable and $f \in I_{\mathcal{D}}$, the $G_{\mathcal{D}}$ -homogeneous components of f belong to $I_{\mathcal{D}}$.

 $I_{\mathcal{D}} = \langle h_1, \ldots, h_6 \rangle$, with:

 $h_1 = x_1 x_2 + 12 x_1 x_6 + 8 x_1$ of G_D -degree (1,0).

 $h_2 = x_1^2 + 2x_4^2 + 12x_3x_5 + 5x_2x_6 + 14x_6^2 + 2x_2 + 5x_6 + 4$ of G_D -degree (0,0).

 $\begin{aligned} h_3 &= x_2 x_3 x_4 + 13 x_1^2 x_5 + 11 x_2^2 x_5 + 4 x_4^2 x_5 + 8 x_3 x_5^2 + 9 x_3 x_4 x_6 \\ &+ 7 x_2 x_5 x_6 + 7 x_5 x_6^2 + 8 x_3 x_4 + 9 x_2 x_5 + x_5 x_6 + 9 x_5 \text{ of } \mathcal{G}_{\mathcal{D}} \text{-degree (0,3).} \end{aligned}$

 $h_4 = x_2 x_3^2 + 14 x_1^2 x_4 + 3 x_2^2 x_4 + 5 x_4^3 + 10 x_3 x_4 x_5 + x_2 x_5^2 + 11 x_3^2 x_6 + 14 x_2 x_4 x_6 + 7 x_5^2 x_6 + 2 x_3^2 + 12 x_2 x_4 + 9 x_5^2 + 16 x_4 x_6 + 9 x_4 \text{ of } G_{\mathcal{D}}\text{-degree}$ (0, 2).

 $h_5 = x_1^2 x_3 + x_2^2 x_3 + 15x_3^2 x_5 + 13x_2 x_4 x_5 + 13x_5^3 + x_2 x_3 x_6 + 4x_4 x_5 x_6 \\ + 15x_3 x_6^2 + 10x_2 x_3 + 12x_4 x_5 + 9x_3 x_6 + 5x_3 \text{ of } G_{\mathcal{D}} \text{-degree (0, 1)}.$

$$\begin{split} h_6 &= x_1^2 x_2 + 7 x_2^3 + 4 x_3^2 x_4 + 9 x_2 x_4^2 + 2 x_2 x_3 x_5 + 7 x_4 x_5^2 + 9 x_1^2 x_6 \\ &+ 15 x_2^2 x_6 + 9 x_4^2 x_6 + 12 x_3 x_5 x_6 + 5 x_6^3 + 4 x_1^2 + 13 x_2^2 + 5 x_4^2 + 15 x_3 x_5 \\ &+ 13 x_2 x_6 + 16 x_6^2 + 16 x_2 + 13 x_6 + 3 \text{ of } \mathcal{G}_{\mathcal{D}} \text{-degree (0,0)}. \end{split}$$

Macaulay's matrix in degree 8 of h_1 , h_2 , h_3 , h_4 , h_5 , h_6

Size 3696×3003

Same matrix, row and columns sorted by G_D -degrees first

Block diagonal matrix with 8 blocks of size \simeq 462 \times 375.

Product of two monomials

For all monomials m and m', $\deg_{G_{\mathcal{D}}}(mm') = \deg_{G_{\mathcal{D}}}(m) + \deg_{G_{\mathcal{D}}}(m').$

Product of two monomials

For all monomials m and m', $\deg_{G_{\mathcal{D}}}(mm') = \deg_{G_{\mathcal{D}}}(m) + \deg_{G_{\mathcal{D}}}(m').$

Grading

 $R = \oplus_{g \in G_{\mathcal{D}}} R_g = \oplus_{d \in \mathbb{N}, g \in G_{\mathcal{D}}} R_{d,g}$

Product of two monomials

For all monomials m and m', $\deg_{G_{\mathcal{D}}}(mm') = \deg_{G_{\mathcal{D}}}(m) + \deg_{G_{\mathcal{D}}}(m').$

Grading

$$R = \oplus_{g \in G_{\mathcal{D}}} R_g = \oplus_{d \in \mathbb{N}, g \in G_{\mathcal{D}}} R_{d,g}$$

S-polynomials of *G*-homogeneous polynomials

 $S(f,h) = \frac{LM(f) \lor LM(h)}{LM(f)} f - \frac{LM(f) \lor LM(h)}{LM(h)} \frac{LC(f)}{LC(h)} h \text{ is } G_{\mathcal{D}}\text{-homogeneous}$ if f and h are.

Product of two monomials

For all monomials m and m', $\deg_{G_{\mathcal{D}}}(mm') = \deg_{G_{\mathcal{D}}}(m) + \deg_{G_{\mathcal{D}}}(m').$

Grading

$$R = \oplus_{g \in G_{\mathcal{D}}} R_g = \oplus_{d \in \mathbb{N}, g \in G_{\mathcal{D}}} R_{d,g}$$

S-polynomials of G-homogeneous polynomials

 $S(f,h) = \frac{LM(f) \lor LM(h)}{LM(f)} f - \frac{LM(f) \lor LM(h)}{LM(h)} \frac{LC(f)}{LC(h)} h \text{ is } G_{\mathcal{D}}\text{-homogeneous}$ if f and h are.

Computation

Any Gröbner basis algorithm preserves the G_D -homogeneity ! \rightsquigarrow Application to F_5 .

- $I_{\mathcal{D}}$ a $G_{\mathcal{D}}$ -stable zero-dimensional ideal.
- \mathcal{G}_{\leq_1} : Gröbner basis of $I_{\mathcal{D}}$ for \leq_1 .

- $I_{\mathcal{D}}$ a $G_{\mathcal{D}}$ -stable zero-dimensional ideal.
- \mathcal{G}_{\leq_1} : Gröbner basis of $I_{\mathcal{D}}$ for \leq_1 .
- \mathcal{E} : Basis of R/I given by monomials not reducible by \mathcal{G}_{\preceq_1} .

- $I_{\mathcal{D}}$ a $G_{\mathcal{D}}$ -stable zero-dimensional ideal.
- \mathcal{G}_{\leq_1} : Gröbner basis of $I_{\mathcal{D}}$ for \leq_1 .
- $\begin{aligned} \mathcal{E}: \text{ Basis of } R/I \text{ given by monomials not reducible by } \mathcal{G}_{\preceq_1}. \\ \text{FGLM computes matrices of the maps:} \end{aligned}$

$$\begin{array}{rccc} M_i &: & \mathsf{Vect}(\mathcal{E}) & \longrightarrow & \mathsf{Vect}(\mathcal{E}) \\ & f & \mapsto & \mathsf{NF}(x_i f, \mathcal{G}_{\preceq_1}) \end{array}$$

- $I_{\mathcal{D}}$ a $G_{\mathcal{D}}$ -stable zero-dimensional ideal.
- \mathcal{G}_{\leq_1} : Gröbner basis of $I_{\mathcal{D}}$ for \leq_1 .
- $\begin{aligned} \mathcal{E}: \text{ Basis of } R/I \text{ given by monomials not reducible by } \mathcal{G}_{\preceq_1}. \\ \text{FGLM computes matrices of the maps:} \end{aligned}$

$$egin{array}{rcl} M_i &: & {\sf Vect}({\mathcal E}) & \longrightarrow & {\sf Vect}({\mathcal E}) \ & f & \mapsto & {\sf NF}(x_i f, {\mathcal G}_{\preceq_1}) \end{array}$$

Normal-Form preserves the G_{D} -homogeneity

$$deg_{G_{\mathcal{D}}}(NF(mx_{i},\mathcal{G}_{\preceq_{1}})) = deg_{G_{\mathcal{D}}}(mx_{i}) = deg_{G_{\mathcal{D}}}(m) + deg_{G_{\mathcal{D}}}(x_{i})$$

- $I_{\mathcal{D}}$ a $G_{\mathcal{D}}$ -stable zero-dimensional ideal.
- \mathcal{G}_{\leq_1} : Gröbner basis of $I_{\mathcal{D}}$ for \leq_1 .

 \mathcal{E} : Basis of R/I given by monomials not reducible by $\mathcal{G}_{\leq 1}$. Abelian-FGLM computes matrices of the maps:

$$\begin{array}{rcl} M_{i, \mathbf{g}} : & \mathsf{Vect}(\mathcal{E}_{\mathbf{g}}) & \longrightarrow & \mathsf{Vect}(\mathcal{E}_{\mathbf{g} + deg_{\mathcal{G}_{\mathcal{D}}}(\mathbf{x}_{i})}) \\ & f & \mapsto & NF(\mathbf{x}_{i}f, \mathcal{G}_{\preceq_{1}}) \end{array}$$

with \mathcal{E}_g the subset of monomials in \mathcal{E} of $\mathcal{G}_{\mathcal{D}}\text{-degree }g.$

Normal-Form preserves the $G_{\mathcal{D}}$ -homogeneity $deg_{G_{\mathcal{D}}}(NF(mx_i, \mathcal{G}_{\prec_1})) = deg_{G_{\mathcal{D}}}(mx_i) = deg_{G_{\mathcal{D}}}(m) + deg_{G_{\mathcal{D}}}(x_i)$

$$\begin{array}{rcl} M_{i, \mathbf{g}} : & \mathsf{Vect}(\mathcal{E}_{\mathbf{g}}) & \longrightarrow & \mathsf{Vect}(\mathcal{E}_{\mathbf{g} + deg_{\mathcal{G}_{\mathcal{D}}}(\mathbf{x}_{i})}) \\ & f & \mapsto & NF(\mathbf{x}_{i}f, \mathcal{G}_{\preceq 1}) \end{array}$$

• $I_{\mathcal{D}} = \langle h_1, h_2, h_3, h_4, h_5, h_6 \rangle$ is zero-dimensional of degree 308.

$$\begin{array}{rcl} M_{i, \mathbf{g}} : & \mathsf{Vect}(\mathcal{E}_{\mathbf{g}}) & \longrightarrow & \mathsf{Vect}(\mathcal{E}_{\mathbf{g} + \deg_{\mathcal{G}_{\mathcal{D}}}(\mathsf{x}_i)}) \\ & f & \mapsto & \mathsf{NF}(\mathsf{x}_i f, \mathcal{G}_{\preceq 1}) \end{array}$$

- $I_{\mathcal{D}} = \langle h_1, h_2, h_3, h_4, h_5, h_6 \rangle$ is zero-dimensional of degree 308.
- The sizes of the staircases \mathcal{E}_g for $g \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ are: 69, 23, 51, 17, 60, 20, 51, 17.

$$\begin{array}{rcl} M_{i,g}: & \mathsf{Vect}(\mathcal{E}_g) & \longrightarrow & \mathsf{Vect}(\mathcal{E}_{g+\deg_{\mathcal{G}_D}(\mathsf{x}_i)}) \\ & f & \mapsto & \mathsf{NF}(\mathsf{x}_i f, \mathcal{G}_{\preceq_1}) \end{array}$$

• $I_{\mathcal{D}} = \langle h_1, h_2, h_3, h_4, h_5, h_6 \rangle$ is zero-dimensional of degree 308.

- The sizes of the staircases \mathcal{E}_g for $g \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ are: 69, 23, 51, 17, 60, 20, 51, 17.
- Instead of building 6 matrices of sizes 308×308 , we build 48 matrices of various sizes $|\mathcal{E}_g| \times |\mathcal{E}_{g+\deg_{G_D}(x_i)}|$.

$$\begin{array}{rcl} M_{i,g}: & \mathsf{Vect}(\mathcal{E}_g) & \longrightarrow & \mathsf{Vect}(\mathcal{E}_{g+\deg_{\mathcal{G}_D}(\mathsf{x}_i)}) \\ & f & \mapsto & \mathsf{NF}(\mathsf{x}_i f, \mathcal{G}_{\preceq_1}) \end{array}$$

• $I_{\mathcal{D}} = \langle h_1, h_2, h_3, h_4, h_5, h_6 \rangle$ is zero-dimensional of degree 308.

- The sizes of the staircases \mathcal{E}_g for $g \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ are: 69, 23, 51, 17, 60, 20, 51, 17.
- Instead of building 6 matrices of sizes 308 × 308, we build 48 matrices of various sizes |\mathcal{E}_g| × |\mathcal{E}_{g+deg_{G_D}}(x_i)|.
- 83402 coefficients instead of 569184.

Complexity Questions

Reminder : Repartition of the monomials

$$\frac{\#\{\text{Monomials of degree} \leq d \text{ and } \mathcal{G}_{\mathcal{D}}\text{-degree } g\}}{\#\{\text{Monomials of degree} \leq d\}} \xrightarrow[d \to +\infty]{1} \frac{1}{|\mathcal{G}_{\mathcal{D}}|}$$

Reminder : Repartition of the monomials

$$\frac{\#\{\text{Monomials of degree} \leq d \text{ and } \mathcal{G}_{\mathcal{D}}\text{-degree } g\}}{\#\{\text{Monomials of degree} \leq d\}} \xrightarrow[d \to +\infty]{} \frac{1}{|\mathcal{G}_{\mathcal{D}}|}$$

Theoretical speed-up

Matrices have number of rows and columns divided by $\simeq |G_{\mathcal{D}}| \rightsquigarrow$ Gain of $|G_{\mathcal{D}}|^{\omega}$ in F_5 and $|G_{\mathcal{D}}|^2$ in FGLM compared to classical algorithms.

Reminder : Repartition of the monomials

 $\frac{\#\{\text{Monomials of degree} \leq d \text{ and } \mathcal{G}_{\mathcal{D}}\text{-degree } g\}}{\#\{\text{Monomials of degree} \leq d\}} \xrightarrow[d \to +\infty]{1} \frac{1}{|\mathcal{G}_{\mathcal{D}}|}$

Theoretical speed-up

Matrices have number of rows and columns divided by $\simeq |G_{\mathcal{D}}| \rightsquigarrow$ Gain of $|G_{\mathcal{D}}|^{\omega}$ in F_5 and $|G_{\mathcal{D}}|^2$ in FGLM compared to classical algorithms.

In practice

- Abelian-F₄ has been implemented in C and Abelian-FGLM in Magma.
- In Practice, Cyclic-9 Problem with Abelian- F_4 : 9 Matrices of sizes $8073 \pm 3.4\% \times 10435 \pm 2.6\%$ instead of one matrix of size 72558×93917 .

Some Timings with Abelian- F_4

The Cyclic-n Problem

The Cyclic-n Problem

Quadratic Equations of $G_{\mathcal{D}}$ -degrees 0 and 1.

Quadratic Equations of $G_{\mathcal{D}}$ -degrees 0 and 1.

Total Timings

Quadratic Equations of G_D -degrees 0 and 1.

Quadratic Equations of G_D -degrees 0 and 1.

44/48

Quadratic Equations of $G_{\mathcal{D}}$ -degrees 0 and 1.

Theorem

 G_{D} -invariant ideals generated by quadratic equations with a fixed number of distincts G_{D} -degrees invariant under the Cyclic group of order *n* can be solved in polynomial-time.

Given $h = \sum_{i=0}^{n-1} h_i x^i \in \mathbb{F}_p[x]$, find $f = \sum_{i=0}^{n-1} f_i x^i \in \mathbb{F}_p[x]$ such that f and $f h \mod x^n - 1$ have their coefficients in $\{0, 1\}$.

Given $h = \sum_{i=0}^{n-1} h_i x^i \in \mathbb{F}_p[x]$, find $f = \sum_{i=0}^{n-1} f_i x^i \in \mathbb{F}_p[x]$ such that f and $f h \mod x^n - 1$ have their coefficients in $\{0, 1\}$.

Equations

The coefficients of (f h mod xⁿ − 1) are linear forms in the variables f_j, given by l_i = ∑_{j=0}^{n−1} f_jh_[(i−j) mod n].

Given $h = \sum_{i=0}^{n-1} h_i x^i \in \mathbb{F}_p[x]$, find $f = \sum_{i=0}^{n-1} f_i x^i \in \mathbb{F}_p[x]$ such that f and $f h \mod x^n - 1$ have their coefficients in $\{0, 1\}$.

Equations

- The coefficients of (f h mod xⁿ − 1) are linear forms in the variables f_j, given by l_i = ∑_{j=0}^{n−1} f_jh_[(i−j) mod n].
- With $\sigma = (0 \ 1 \ 2 \ \dots n 1)$ acting on (f_0, \dots, f_{n-1}) , we have $\ell_i^{\sigma} = \ell_{\sigma(i)}$

Given $h = \sum_{i=0}^{n-1} h_i x^i \in \mathbb{F}_p[x]$, find $f = \sum_{i=0}^{n-1} f_i x^i \in \mathbb{F}_p[x]$ such that f and $f h \mod x^n - 1$ have their coefficients in $\{0, 1\}$.

Equations

- The coefficients of (f h mod xⁿ − 1) are linear forms in the variables f_j, given by l_i = ∑_{i=0}^{n−1} f_jh_[(i−j) mod n].
- With $\sigma = (0 \ 1 \ 2 \ \dots n 1)$ acting on (f_0, \dots, f_{n-1}) , we have $\ell_i^{\sigma} = \ell_{\sigma(i)}$
- $\{f_i^2 f_i\} \cup \{\ell_i^2 \ell_i\}$ form a system of 2n equations globally stable under σ .

• Better speed-up in FGLM ?

- Better speed-up in FGLM ?
- Take the sparsity of the system after change of variables into account. → Work in progress !

- Better speed-up in FGLM ?
- Take the sparsity of the system after change of variables into account. → Work in progress !
- Extension to other groups (Representation Theory ?) ?

Thank you for your attention !