Around sparse polynomials

Bruno Grenet

LIX — École Polytechnique

real τ-coniecture

-conjecture

Arithmetic Circuits

Arithmetic Circuits

Arithmetic Circuits

Complexity of a polynomial

 $\tau(f) = \text{size of its smallest circuit representation } \textit{without constant}$

The τ -conjecture

Conjecture

[Shub & Smale'95]

 $\exists c \text{ s.t. the number of integer roots of } f \in \mathbb{Z}[X] \text{ is } \leqslant (1+\tau(f))^c.$

The τ -conjecture

Conjecture

[Shub & Smale'95]

 $\exists c$ s.t. the number of integer roots of $f \in \mathbb{Z}[X]$ is $\leq (1 + \tau(f))^c$.

Theorem

[Bürgisser'07]

 τ -conjecture

 \implies super-polynomial lower bound for the permanent

The τ -conjecture

Conjecture

[Shub & Smale'95]

 $\exists c$ s.t. the number of integer roots of $f \in \mathbb{Z}[X]$ is $\leq (1 + \tau(f))^c$.

Theorem

[Bürgisser'07]

τ-conjecture

 \implies super-polynomial lower bound for the permanent

$$\mathsf{PER}_{\mathfrak{n}}(x_{11},\ldots,x_{nn}) = \mathsf{per} \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix} = \sum_{\sigma \in \mathfrak{S}_{\mathfrak{n}}} \prod_{i=1}^{n} x_{i\sigma(i)}$$

Conjecture

[Shub & Smale'95]

 $\exists c$ s.t. the number of integer roots of $f \in \mathbb{Z}[X]$ is $\leq (1 + \tau(f))^c$.

Theorem

[Bürgisser'07]

τ-conjecture

- \implies super-polynomial lower bound for the permanent
- $\implies \tau(\mathsf{Per}_{\mathfrak{n}})$ is not polynomially bounded in \mathfrak{n}

$$\mathsf{PER}_{\mathfrak{n}}(x_{11},\ldots,x_{nn}) = \mathsf{per} \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix} = \sum_{\sigma \in \mathfrak{S}_{\mathfrak{n}}} \prod_{i=1}^{n} x_{i\sigma(i)}$$

Conjecture

[Shub & Smale'95]

 $\exists c$ s.t. the number of integer roots of $f \in \mathbb{Z}[X]$ is $\leq (1 + \tau(f))^c$.

Theorem

[Bürgisser'07]

τ-conjecture

- \implies super-polynomial lower bound for the permanent
- $\implies \tau(\mathsf{Per}_n)$ is not polynomially bounded in n
- $\implies VP^0 \neq VNP^0$

$$\mathsf{PER}_{\mathfrak{n}}(x_{11}, \dots, x_{\mathfrak{n}\mathfrak{n}}) = \mathsf{per} \begin{pmatrix} x_{11} & \cdots & x_{1\mathfrak{n}} \\ \vdots & & \vdots \\ x_{\mathfrak{n}1} & \cdots & x_{\mathfrak{n}\mathfrak{n}} \end{pmatrix} = \sum_{\sigma \in \mathfrak{S}_{\mathfrak{n}}} \prod_{i=1}^{\mathfrak{n}} x_{i\sigma(i)}$$

The τ -conjecture is hard!

Theorem	[Shub & Smale'95]
τ -conjecture $\implies P_{\mathbb{C}} \neq NP_{\mathbb{C}}$	

The τ -conjecture is hard!

Theorem [Shub & Smale'95]

 $\tau\text{-conjecture} \implies P_{\mathbb{C}} \neq NP_{\mathbb{C}}$

Theorem [Cheng'03]

Extended τ -conjecture \implies Merel torsion theorem, ...

The τ -conjecture is hard!

Theorem	[Shub & Smale'95]
$ au$ -conjecture $\implies P_{\mathbb{C}} eq NP_{\mathbb{C}}$	
Theorem	[Cheng'03]
Extended τ -conjecture \implies Merel torsion theorem,	

► False for real roots (Chebyshev polynomials)

Conjecture

[Koiran'11]

Let $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ where the f_{ij} 's are t-sparse polynomials.

Then f has \leq poly(k, m, t) real roots.

Conjecture

[Koiran'11]

Let $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ where the f_{ij} 's are t-sparse polynomials.

Then f has $\leq poly(k, m, t)$ real roots.

Theorem

[Koiran'11]

Real τ-conjecture

 \implies Super-polynomial lower bound for the permanent

Conjecture

[Koiran'11]

Let $f = \sum_{i=1}^k \prod_{j=1}^m f_{ij}$ where the f_{ij} 's are t-sparse polynomials.

Then f has $\leq poly(k, m, t)$ real roots.

Theorem

[Koiran'11]

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

 \triangleright Case k = 1: Follows from Descartes' rule.

Conjecture

[Koiran'11]

Let $f = \sum_{i=1}^k \prod_{j=1}^m f_{ij}$ where the f_{ij} 's are t-sparse polynomials.

Then f has \leq poly(k, m, t) real roots.

Theorem

[Koiran'11]

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

- \triangleright Case k = 1: Follows from Descartes' rule.
- \triangleright Case k = 2: Open.

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (2t-1)$ real roots.

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (2t-1)$ real roots.

Proof. Induction on t: f has $\leq t - 1$ positive real roots

ightharpoonup t = 1: No positive real root

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (2t-1)$ real roots.

- ightharpoonup t = 1: No positive real root
- t > 1: Let $c_{\alpha}X^{\alpha} = \text{lowest degree monomial}$.

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (2t-1)$ real roots.

- > t = 1: No positive real root
- t > 1: Let $c_{\alpha}X^{\alpha} = \text{lowest degree monomial}$.
 - $g = f/X^{\alpha}$: same positive roots, nonzero constant coefficient

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (2t-1)$ real roots.

- t = 1: No positive real root
- t > 1: Let $c_{\alpha}X^{\alpha} = \text{lowest degree monomial}$.
 - $g = f/X^{\alpha}$: same positive roots, nonzero constant coefficient
 - $\circ~g'$ has (t-1) monomials \implies at most (t-2) positive roots

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (2t-1)$ real roots.

- > t = 1: No positive real root
- t > 1: Let $c_{\alpha}X^{\alpha} = \text{lowest degree monomial}$.
 - $g = f/X^{\alpha}$: same positive roots, nonzero constant coefficient
 - g' has (t-1) monomials \implies at most (t-2) positive roots
 - There is a root of g' between two consecutive roots of g [Rolle'1691]

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (2t-1)$ real roots.

- > t = 1: No positive real root
- t > 1: Let $c_{\alpha}X^{\alpha} = \text{lowest degree monomial}$.
 - $g = f/X^{\alpha}$: same positive roots, nonzero constant coefficient
 - \circ g' has (t-1) monomials \Longrightarrow at most (t-2) positive roots
 - There is a root of g' between two consecutive roots of g [Rolle'1691]

$$f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$$
: $\leq 2kt^{m} - 1$ real roots

Real τ -conjecture \implies Permanent is hard

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

Real τ -conjecture \implies Permanent is hard

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

Proof sketch. Assume the permanent is easy.

Real τ -conjecture \implies Permanent is hard

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

Proof sketch. Assume the permanent is easy.

[Bürgisser'07-09]

Real au-conjecture \implies Permanent is hard

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

Proof sketch. Assume the permanent is easy.

 $ightharpoonup \prod_{i=1}^{2^n} (X-i)$ has circuits of size poly(n)

- [Bürgisser'07-09]
- ightharpoonup Reduction to depth 4 \leadsto SPS polynomial of size $2^{o(n)}$

[Koiran'11]

Real au-conjecture \implies Permanent is hard

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

Proof sketch. Assume the permanent is easy.

 $ightharpoonup \prod_{i=1}^{2^n} (X-i)$ has circuits of size poly(n)

[Bürgisser'07-09]

Reduction to depth $4 \rightsquigarrow SPS$ polynomial of size $2^{o(n)}$

[Koiran'11]

 \triangleright Contradiction with real τ -conjecture

Real au-conjecture \implies Permanent is hard

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

Proof sketch. Assume the permanent is easy.

 $ightharpoonup \prod_{i=1}^{2^n} (X-i)$ has circuits of size poly(n)

- [Bürgisser'07-09]
- Reduction to depth $4 \rightsquigarrow SPS$ polynomial of size $2^{o(n)}$

[Koiran'11]

 \triangleright Contradiction with real τ -conjecture

Theorem [Koiran'11]

Circuit of size t and degree d

 \leadsto Depth-4 circuit of size $t^{\mathfrak{O}(\sqrt{d}\log d)}$

Theorem [Koiran'11]

Circuit of size t and degree d

 \rightsquigarrow Depth-4 circuit of size $t^{\mathfrak{O}(\sqrt{d}\log d)}$

Proof idea.

Construct an equivalent Arithmetic Branching Program \rightsquigarrow size $t^{log\,2d}+1$, depth $\delta=3d-1$

[Malod-Portier'08]

Theorem [Koiran'11]

Circuit of size t and degree d

 \rightsquigarrow Depth-4 circuit of size $t^{\mathfrak{O}(\sqrt{d}\log d)}$

Proof idea.

Construct an equivalent Arithmetic Branching Program \rightsquigarrow size $t^{log\,2d}+1$, depth $\delta=3d-1$

[Malod-Portier'08]

ightharpoonup ABP \equiv Matrix powering

Theorem [Koiran'11]

Circuit of size t and degree d

 \rightsquigarrow Depth-4 circuit of size $t^{O(\sqrt{d} \log d)}$

Proof idea.

Construct an equivalent Arithmetic Branching Program \rightsquigarrow size $t^{log\,2d}+1$, depth $\delta=3d-1$

[Malod-Portier'08]

- ightharpoonup ABP \equiv Matrix powering
- $\qquad M^{\delta} = (M^{\sqrt{\delta}})^{\sqrt{\delta}}$

Variants of the real au-conjecture

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

Variants of the real au-conjecture

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

τ -conjectures (implying Per $\notin VP^0$)

 $\forall f \in SPS(k, m, t)$,

 $\begin{array}{ll} \blacktriangleright & \exists \mathbb{L} \in \{\mathbb{R}, \mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, \ldots\}, & [\text{Phillipson-Rojas'13}] \\ & \#\{x \in \mathbb{L} : f(x) = 0\} \leqslant \mathsf{poly}(kmt); \end{array}$

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

τ-conjectures (implying Per ∉ VP⁰)

- $\exists \mathbb{L} \in \{\mathbb{R}, \mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, \ldots\},$ [Phillipson-Rojas'13] $\#\{x \in \mathbb{L} : f(x) = 0\} \leqslant \mathsf{poly}(kmt);$
- $\begin{array}{ll} \qquad & \exists \mathsf{p,\,prime,} & [\mathsf{Koiran\text{-}Portier\text{-}Rojas'13}] \\ & \#\{e \in \mathbb{N}: \exists x \in \mathbb{Z}, \nu_p(x) = e, \mathsf{f}(x) = 0\} \leqslant \mathsf{poly}(\mathsf{kmt}); \end{array}$

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are t-sparse} \right\}$$

τ-conjectures (implying Per ∉ VP°)

- $\exists \mathbb{L} \in \{\mathbb{R}, \mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, \ldots\},$ [Phillipson-Rojas'13] $\#\{x \in \mathbb{L} : f(x) = 0\} \leqslant \mathsf{poly}(kmt);$
- $\begin{array}{ll} \qquad & \exists p \text{, prime,} \\ & \#\{e \in \mathbb{N} : \exists x \in \mathbb{Z}, \nu_p(x) = e, f(x) = 0\} \leqslant \mathsf{poly}(kmt); \end{array}$
- ► The Newton polygon of f(X, Y) has \leq poly(kmt) many edges.

 [Koiran-Portier-Tavenas-Thomassé'13]

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \alpha_i f_i^m : f_i \text{ 's are t-sparse} \right\}$$

τ-conjectures (implying Per ∉ VP⁰)

- $\exists \mathbb{L} \in \{\mathbb{R}, \mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, \ldots\},$ [Phillipson-Rojas'13] $\#\{x \in \mathbb{L} : f(x) = 0\} \leqslant \mathsf{poly}(kmt);$
- $\begin{array}{ll} \qquad & \exists p \text{, prime,} \\ & \#\{e \in \mathbb{N} : \exists x \in \mathbb{Z}, \nu_p(x) = e, f(x) = 0\} \leqslant \mathsf{poly}(kmt); \end{array}$
- ► The Newton polygon of f(X, Y) has \leq poly(kmt) many edges.

 [Koiran-Portier-Tavenas-Thomassé'13]

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \alpha_i f_i^m : f_i \text{ 's are t-sparse} \right\}$$

τ-conjectures (implying Per ∉ VP⁰)

- $\exists \mathbb{L} \in \{\mathbb{R}, \mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, \ldots\},$ [Phillipson-Rojas'13] $\#\{x \in \mathbb{L} : f(x) = 0\} \leqslant \mathsf{poly}(kmt);$
- $\begin{array}{ll} \qquad & \exists \mathsf{p,\,prime,} & [\mathsf{Koiran\text{-}Portier\text{-}Rojas'13}] \\ & \#\{e \in \mathbb{N}: \exists x \in \mathbb{Z}, \nu_p(x) = e, \mathsf{f}(x) = 0\} \leqslant \mathsf{poly}(\mathsf{kmt}); \end{array}$
- ► The Newton polygon of f(X, Y) has \leq poly(kmt) many edges.

 [Koiran-Portier-Tavenas-Thomassé'13]
- \triangleright Valid with $2^{(m+\log(kt))^c}$ instead of poly(kmt).

$$SPS(k, m, t, A) = \left\{ \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}} : f_{j}'s \text{ are t-sparse, } \alpha_{ij} \leqslant A \right\}$$

$$SPS(k,m,t,A) = \left\{ \sum_{i=1}^k \prod_{j=1}^m f_j^{\alpha_{ij}} : f_j\text{'s are t-sparse, } \alpha_{ij} \leqslant A \right\}$$

Theorem

If $f \in SPS(k, m, t, A)$, its number of real roots is at most

 $ightharpoonup 2kt^{mA}-1;$

[Descartes'1637]

$$SPS(k,m,t,A) = \left\{ \sum_{i=1}^k \prod_{j=1}^m f_j^{\alpha_{ij}} : f_j\text{'s are t-sparse, } \alpha_{ij} \leqslant A \right\}$$

Theorem

If $f \in SPS(k, m, t, A)$, its number of real roots is at most

 $ightharpoonup 2kt^{mA}-1;$

[Descartes'1637]

ightharpoonup $t^{O(m2^{k-1})}$;

[G.-Koiran-Portier-Strozecki'11]

$$SPS(k,m,t,A) = \left\{ \sum_{i=1}^k \prod_{j=1}^m f_j^{\alpha_{ij}} : f_j\text{'s are t-sparse, } \alpha_{ij} \leqslant A \right\}$$

Theorem

If $f \in SPS(k, m, t, A)$, its number of real roots is at most

 $ightharpoonup 2kt^{mA} - 1;$

[Descartes'1637]

ightharpoonup $t^{O(m2^{k-1})}$:

[G.-Koiran-Portier-Strozecki'11]

ightharpoonup $t^{O(k^2m)}$.

[Koiran-Portier-Tavenas'13]

$$SPS(k,m,t,A) = \left\{ \sum_{i=1}^k \prod_{j=1}^m f_j^{\alpha_{ij}} : f_j\text{'s are t-sparse, } \alpha_{ij} \leqslant A \right\}$$

Theorem

If $f \in SPS(k, m, t, A)$, its number of real roots is at most

 $ightharpoonup 2kt^{mA}-1;$

[Descartes'1637]

ightharpoonup $t^{O(m2^{k-1})}$:

[G.-Koiran-Portier-Strozecki'11]

ightharpoonup $t^{O(k^2m)}$.

[Koiran-Portier-Tavenas'13]

If $f \in SPS(k, m, t)$, its Newton polygon has at most

kt^m many edges;

number of monomials

$$SPS(k,m,t,A) = \left\{ \sum_{i=1}^k \prod_{j=1}^m f_j^{\alpha_{ij}} : f_j\text{'s are t-sparse, } \alpha_{ij} \leqslant A \right\}$$

Theorem

If $f \in SPS(k, m, t, A)$, its number of real roots is at most

 $ightharpoonup 2kt^{mA}-1;$

[Descartes'1637]

 $ightharpoonup t^{O(m2^{k-1})}$:

[G.-Koiran-Portier-Strozecki'11]

ightharpoonup $t^{O(k^2m)}$.

[Koiran-Portier-Tavenas'13]

If $f \in SPS(k, m, t)$, its Newton polygon has at most

kt^m many edges;

number of monomials

ightharpoonup kt^{2m/3} many edges.

[Koiran-Portier-Tavenas-Thomassé'13]

Four different τ -conjectures $\implies VP^0 \neq VNP^0$

- ► Four different τ -conjectures $\implies VP^0 \neq VNP^0$
- ▶ Use your favorite formulation and tools!

- Four different τ -conjectures $\implies VP^0 \neq VNP^0$
- Use your favorite formulation and tools!
 - · Wronskian, combinatorial geometry, p-adic geometry, ...

- Four different τ -conjectures $\implies VP^0 \neq VNP^0$
- Use your favorite formulation and tools!
 - Wronskian, combinatorial geometry, p-adic geometry, ...
- Links with Khovanskii's fewnomial theory

- ► Four different τ -conjectures $\implies \mathsf{VP}^0 \neq \mathsf{VNP}^0$
- Use your favorite formulation and tools!
 - Wronskian, combinatorial geometry, p-adic geometry, ...
- Links with Khovanskii's fewnomial theory

Embarrassing Open Problem

Let f, g be t-sparse polynomials.

▶ What is the maximum number of real roots of fg + 1?

- ► Four different τ -conjectures $\implies VP^0 \neq VNP^0$
- Use your favorite formulation and tools!
 - · Wronskian, combinatorial geometry, p-adic geometry, ...
- Links with Khovanskii's fewnomial theory

Embarrassing Open Problem

Let f, g be t-sparse polynomials.

- ▶ What is the maximum number of real roots of fg + 1?
- Same question for the different τ -conjectures.

- ► Four different τ -conjectures $\implies \mathsf{VP}^0 \neq \mathsf{VNP}^0$
- Use your favorite formulation and tools!
 - Wronskian, combinatorial geometry, p-adic geometry, ...
- Links with Khovanskii's fewnomial theory

Embarrassing Open Problem

Let f, g be t-sparse polynomials.

- ▶ What is the maximum number of real roots of fg + 1?
- ► Same question for the different τ -conjectures.
- ► fg + 1 has $\leq t^2 + 1$ monomials \rightsquigarrow quadratic bounds;
- Best known lower bounds: O(t);

- ► Four different τ -conjectures $\implies \mathsf{VP}^0 \neq \mathsf{VNP}^0$
- Use your favorite formulation and tools!
 - Wronskian, combinatorial geometry, p-adic geometry, ...
- Links with Khovanskii's fewnomial theory

Embarrassing Open Problem

Let f, g be t-sparse polynomials.

- ▶ What is the maximum number of real roots of fg + 1?
- Same question for the different τ -conjectures.
- ► fg + 1 has $\leq t^2 + 1$ monomials \rightsquigarrow quadratic bounds;
- ▶ Best known lower bounds: O(t);
- ► The Newton polygon of fg + 1 has at most $t^{4/3}$ many edges.

joint work with A. Chattopdhyay, P. Koiran, N. Portier & Y. Strozecki

Factorization of a polynomial P

Find $F_1,\,\ldots,\,F_t,$ irreducible, s.t. $P=F_1\times\cdots\times F_t.$

Factorization of a polynomial P

Find F_1, \ldots, F_t , irreducible, s.t. $P = F_1 \times \cdots \times F_t$.

$$\mathbb{Z}[X]$$
 [Lenstra-Lenstra-Lovász'82]
$$\mathbb{Q}(\alpha)[X]$$
 [A. Lenstra'83, Landau'83]
$$\mathbb{Q}(\alpha)[X_1,\dots,X_n]$$
 [Kaltofen'85, A. Lenstra'87]

Factorization of a polynomial P

Find $F_1, ..., F_t$, irreducible, s.t. $P = F_1 \times \cdots \times F_t$.

$$\mathbb{Z}[X]$$
[Lenstra-Lenstra-Lovász'82]
$$\mathbb{Q}(\alpha)[X]$$
[A. Lenstra'83, Landau'83]
$$\mathbb{Q}(\alpha)[X_1,\ldots,X_n]$$
[Kaltofen'85, A. Lenstra'87]

Factorization of a polynomial P

Find $F_1, ..., F_t$, irreducible, s.t. $P = F_1 \times \cdots \times F_t$.

$$X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1$$

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \end{split}$$

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \\ &= (X + Y - 1) \times (XY - 1) \times (1 + XY + \dots + X^{100}Y^{100}) \end{split}$$

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \\ &= (X + Y - 1) \times (XY - 1) \times (1 + XY + \dots + X^{100}Y^{100}) \end{split}$$

Algorithms polynomial in log(deg(P))

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \\ &= (X + Y - 1) \times (XY - 1) \times (1 + XY + \dots + X^{100}Y^{100}) \end{split}$$

- Algorithms polynomial in log(deg(P))
- Some factors only

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \\ &= (X + Y - 1) \times (XY - 1) \times (1 + XY + \dots + X^{100}Y^{100}) \end{split}$$

- Algorithms polynomial in log(deg(P))
- Some factors only

Definition

$$P(X_1,...,X_n) = \sum_{j=1}^k a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \\ &= (X + Y - 1) \times (XY - 1) \times (1 + XY + \dots + X^{100}Y^{100}) \end{split}$$

- Algorithms polynomial in log(deg(P))
- Some factors only

Definition

$$P(X_1,...,X_n) = \sum_{j=1}^k a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

▶ Lacunary representation: $\{(\alpha_{1j},...,\alpha_{nj}:a_j):1\leqslant j\leqslant k\}$

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \\ &= (X + Y - 1) \times (XY - 1) \times (1 + XY + \dots + X^{100}Y^{100}) \end{split}$$

- Algorithms polynomial in log(deg(P))
- Some factors only

Definition

$$P(X_1,...,X_n) = \sum_{j=1}^k a_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

- ▶ Lacunary representation: $\{(\alpha_{1j},...,\alpha_{nj}:a_j):1\leqslant j\leqslant k\}$
- $size(P) \simeq \sum_{i} size(\alpha_{i}) + log(\alpha_{1i}) + \cdots + log(\alpha_{ni})$

Integral roots of integral polynomials

Gap Theorem

[Cucker-Koiran-Smale'98]

Let

$$P(X) = \underbrace{\sum_{j=1}^{\ell} \alpha_j X^{\alpha_j}}_{Q} + \underbrace{\sum_{j=\ell+1}^{k} \alpha_j X^{\alpha_j}}_{R} \in \mathbb{Z}[X]$$

with $\alpha_1\leqslant\alpha_2\leqslant\cdots\leqslant\alpha_k$. Suppose that

$$\alpha_{\ell+1} - \alpha_{\ell} > 1 + \log \left(\max_{j \leqslant \ell} |\alpha_j| \right)$$
,

then for all $x \in \mathbb{Z}$, $|x| \geqslant 2$, $P(x) = 0 \implies Q(x) = R(x) = 0$.

Integral roots of integral polynomials

Gap Theorem

[Cucker-Koiran-Smale'98]

Let

$$P(X) = \underbrace{\sum_{j=1}^{\ell} \alpha_j X^{\alpha_j}}_{Q} + \underbrace{\sum_{j=\ell+1}^{k} \alpha_j X^{\alpha_j}}_{R} \in \mathbb{Z}[X]$$

with $\alpha_1\leqslant\alpha_2\leqslant\cdots\leqslant\alpha_k.$ Suppose that

$$\alpha_{\ell+1} - \alpha_{\ell} > 1 + \log \left(\max_{j \leqslant \ell} |\alpha_j| \right)$$
,

then for all $x \in \mathbb{Z}$, $|x| \geqslant 2$, $P(x) = 0 \implies Q(x) = R(x) = 0$.

$$-9 + X^2 + 6X^7 + 2X^8 = -9 + X^2 + X^7(6 + 2X)$$

Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

▶ linear factors of univariate polynomials over \mathbb{Z} ;

[Cucker-Koiran-Smale'98]

Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

▶ linear factors of univariate polynomials over ℤ;

[Cucker-Koiran-Smale'98]

▶ low-degree factors of univariate polynomials over $\mathbb{Q}(\alpha)$;

[H. Lenstra'99]

Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors of univariate polynomials over \mathbb{Z} ;
 - [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of univariate polynomials over $\mathbb{Q}(\alpha)$;

[H. Lenstra'99]

▶ linear factors of bivariate polynomials over Q;

[Kaltofen-Koiran'05]

Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors of univariate polynomials over \mathbb{Z} ;
 - [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of univariate polynomials over $\mathbb{Q}(\alpha)$;
 - [H. Lenstra'99]

- ▶ linear factors of bivariate polynomials over Q;
- [Kaltofen-Koiran'05]
- **b** low-degree factors of multivariate polynomials over $\mathbb{Q}(\alpha)$.
 - [Kaltofen-Koiran'06]

Linear factors of bivariate polynomials

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

Linear factors of bivariate polynomials

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

Gap Theorem

Let

$$P = \underbrace{\sum_{j=1}^{\ell} \alpha_j X^{\alpha_j} (uX + v)^{\beta_j}}_{Q} + \underbrace{\sum_{j=\ell+1}^{k} \alpha_j X^{\alpha_j} (uX + v)^{\beta_j}}_{R}$$

with $uv \neq 0$, $\alpha_1 \leqslant \cdots \leqslant \alpha_k$. If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} > \alpha_1 + {\ell \choose 2}$$
,

then $P \equiv 0$ iff both $Q \equiv 0$ and $R \equiv 0$.

\mathbb{K} : any field of characteristic 0

Definition

 $val(P) = max \{v : X^v \text{ divides } P\}$

\mathbb{K} : any field of characteristic 0

Definition

 $val(P) = max \{v : X^v \text{ divides } P\}$

Theorem

Let
$$P = \sum_{j=1}^{\mathfrak{c}} a_{j} X^{\alpha_{j}} (uX + v)^{\beta_{j}} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_{1} \leqslant \cdots \leqslant \alpha_{\ell}$.

Then

$$val(P) \leqslant \max_{1 \leqslant j \leqslant \ell} \left(\alpha_j + \binom{\ell+1-j}{2} \right).$$

\mathbb{K} : any field of characteristic 0

Definition

 $val(P) = max \{v : X^v \text{ divides } P\}$

Theorem

Let
$$P=\sum_{i=1}^{\mathfrak{c}}a_{j}X^{\alpha_{j}}(uX+v)^{\beta_{j}}\not\equiv 0$$
, with $uv\neq 0$ and $\alpha_{1}\leqslant \cdots\leqslant \alpha_{\ell}.$

Then, if the family $(X^{\alpha_j}(uX+v)^{\beta_j})_j$ is linearly independent,

$$val(P) \leqslant \alpha_1 + \binom{\ell}{2}$$
.

Around sparse polynomials

\mathbb{K} : any field of characteristic 0

Definition

 $val(P) = max \{v : X^v \text{ divides } P\}$

Theorem

Let
$$P = \sum_{j=1}^{\mathfrak{c}} a_{j} X^{\alpha_{j}} (uX + v)^{\beta_{j}} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_{1} \leqslant \cdots \leqslant \alpha_{\ell}$.

Then, if the family $(X^{\alpha_j}(uX+v)^{\beta_j})_j$ is linearly independent,

$$val(P) \leqslant \alpha_1 + \binom{\ell}{2}$$
.

Hajós' Lemma: if $\alpha_1 = \cdots = \alpha_\ell$, $val(P) \leq \alpha_1 + (\ell - 1)$

The Wronskian

Definition

Let $f_1, \ldots, f_\ell \in \mathbb{K}[X]$. Then

$$wr(f_1, \dots, f_{\ell}) = det \begin{bmatrix} f_1 & f_2 & \dots & f_{\ell} \\ f'_1 & f'_2 & \dots & f'_{\ell} \\ \vdots & \vdots & & \vdots \\ f_1^{(\ell-1)} & f_2^{(\ell-1)} & \dots & f_{\ell}^{(\ell-1)} \end{bmatrix}.$$

The Wronskian

Definition

Let $f_1, \ldots, f_\ell \in \mathbb{K}[X]$. Then

$$wr(f_1, \dots, f_{\ell}) = det \begin{bmatrix} f_1 & f_2 & \dots & f_{\ell} \\ f'_1 & f'_2 & \dots & f'_{\ell} \\ \vdots & \vdots & & \vdots \\ f_1^{(\ell-1)} & f_2^{(\ell-1)} & \dots & f_{\ell}^{(\ell-1)} \end{bmatrix}.$$

Proposition

[Bôcher, 1900]

 $wr(f_1,\dots,f_\ell)\neq 0 \iff \text{the } f_j\text{'s are linearly independent.}$

Lemma

$$\operatorname{val}(\operatorname{wr}(f_1,\ldots,f_\ell)) \geqslant \sum_{j=1}^{\ell} \operatorname{val}(f_j) - {\ell \choose 2}$$

Proof.

Lemma

$$\operatorname{val}(\operatorname{wr}(f_1,\ldots,f_\ell)) \geqslant \sum_{j=1}^{\ell} \operatorname{val}(f_j) - {\ell \choose 2}$$

Lemma

Let $f_j=X^{\alpha_j}(uX+\nu)^{\beta_j}$, $u\nu\neq 0$, linearly independent, and s.t. $\alpha_j,\beta_j\geqslant \ell$. Then

$$\mathsf{val}(\mathsf{wr}(\mathsf{f}_1,\ldots,\mathsf{f}_\ell)) \leqslant \sum_{j=1}^\ell \alpha_j = \sum_{j=1}^\ell \mathsf{val}(\mathsf{f}_j).$$

Lemma

$$\operatorname{val}(\operatorname{wr}(f_1,\ldots,f_\ell)) \geqslant \sum_{j=1}^{\ell} \operatorname{val}(f_j) - \binom{\ell}{2}$$

Lemma

Let $f_j=X^{\alpha_j}(uX+\nu)^{\beta_j}$, $u\nu\neq 0$, linearly independent, and s.t. $\alpha_j,\beta_j\geqslant \ell$. Then

$$\mathsf{val}(\mathsf{wr}(\mathsf{f}_1,\ldots,\mathsf{f}_\ell)) \leqslant \sum_{j=1}^\ell \alpha_j = \sum_{j=1}^\ell \mathsf{val}(\mathsf{f}_j).$$

Proof of the theorem. $wr(P, f_2, ..., f_\ell) = a_1 wr(f_1, ..., f_\ell)$

Lemma

$$\operatorname{val}(\operatorname{wr}(f_1,\ldots,f_\ell)) \geqslant \sum_{i=1}^{\ell} \operatorname{val}(f_i) - {\ell \choose 2}$$

Lemma

Let $f_j=X^{\alpha_j}(uX+\nu)^{\beta_j}$, $u\nu\neq 0$, linearly independent, and s.t. $\alpha_j,\beta_j\geqslant \ell$. Then

$$\mathsf{val}(\mathsf{wr}(\mathsf{f}_1,\ldots,\mathsf{f}_\ell)) \leqslant \sum_{j=1}^\ell \alpha_j = \sum_{j=1}^\ell \mathsf{val}(\mathsf{f}_j).$$

Proof of the theorem. $wr(P, f_2, ..., f_\ell) = a_1 wr(f_1, ..., f_\ell)$

$$\sum_{j=1}^{\ell} \alpha_j \geqslant \text{val}(\text{wr}(f_1, \dots, f_{\ell})) \geqslant \text{val}(P) + \sum_{j=2}^{\ell} \alpha_j - \binom{\ell}{2}$$

$$\vdash \text{ Haj\'os' Lemma: val}\left(\sum_{j=1}^{\ell} a_j X^{\alpha} (uX + v)^{\beta_j}\right) \leqslant \alpha + (\ell - 1)$$

$$\vdash \mathsf{Haj\acute{o}s'} \mathsf{ Lemma: val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha} (\mathfrak{u}X + \mathfrak{v})^{\beta_j} \right) \leqslant \alpha + (\ell - 1)$$

$$\qquad \text{Haj\'os' Lemma: val}\left(\sum_{j=1}^{\ell}a_jX^{\alpha}(uX+\nu)^{\beta_j}\right)\leqslant \alpha+(\ell-1)$$

$$\qquad \text{Our result: val}\left(\sum_{j=1}^{\ell}\alpha_jX^{\alpha_j}(uX+\nu)^{\beta_j}\right)\leqslant \alpha_1+\binom{\ell}{2}$$

Lemmas: bounds attained, but not simultaneously

$$\qquad \qquad \text{Haj\'os' Lemma: val}\left(\sum_{j=1}^{\ell}a_jX^{\alpha}(\mathfrak{u}X+\mathfrak{v})^{\beta_j}\right)\leqslant \alpha+(\ell-1)$$

$$\qquad \qquad \text{Our result: val}\left(\sum_{j=1}^{\ell}\alpha_jX^{\alpha_j}(uX+\nu)^{\beta_j}\right)\leqslant \alpha_1+\binom{\ell}{2}$$

Lemmas: bounds attained, but not simultaneously

$$\forall \ell \geqslant 3, \exists P = \sum_{j=1}^{t} a_j X^{\alpha_j} (uX + v)^{\beta_j} \text{ s.t. } val(P) = \alpha_1 + (2\ell - 3)$$

$$\qquad \qquad \text{Haj\'os' Lemma: val} \left(\sum_{j=1}^{\ell} a_j X^{\alpha} (uX + v)^{\beta_j} \right) \leqslant \alpha + (\ell - 1)$$

$$\qquad \text{Our result: val} \left(\sum_{j=1}^{\ell} \alpha_j X^{\alpha_j} (uX + \nu)^{\beta_j} \right) \leqslant \alpha_1 + \binom{\ell}{2}$$

Lemmas: bounds attained, but not simultaneously

$$\forall \ell \geqslant 3, \exists P = \sum_{j=1}^{c} a_j X^{\alpha_j} (uX + v)^{\beta_j} \text{ s.t. } val(P) = \alpha_1 + (2\ell - 3)$$

$$X^{2\ell-3} = (1+X)^{2\ell+3} - 1 - \sum_{j=3}^{\ell} \frac{2\ell-3}{2j-5} {\ell+j-5 \choose 2j-6} X^{2j-5} (1+X)^{\ell-1-j}$$

Theorem

Let

$$P = \underbrace{\sum_{j=1}^{\ell} \alpha_j X^{\alpha_j} (uX + v)^{\beta_j}}_{Q} + \underbrace{\sum_{j=\ell+1}^{k} \alpha_j X^{\alpha_j} (uX + v)^{\beta_j}}_{R}$$

with $uv \neq 0$, $\alpha_1 \leqslant \cdots \leqslant \alpha_k$. If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} > \alpha_1 + {\ell \choose 2}$$
,

then $P \equiv 0$ iff both $Q \equiv 0$ and $R \equiv 0$.

Theorem

Let

$$P = \underbrace{\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j}}_{Q} + \underbrace{\sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}}_{R}$$

with $uv \neq 0$, $\alpha_1 \leqslant \cdots \leqslant \alpha_k$. If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} > \alpha_1 + {\ell \choose 2} \geqslant \operatorname{val}(Q),$$

then $P \equiv 0$ iff both $Q \equiv 0$ and $R \equiv 0$.

$$P = \left(c_{\mathsf{val}(Q)} X^{\mathsf{val}(Q)} + \cdots \right) + X^{\alpha_{\ell+1}} \left(\alpha_{\ell+1} (\mathfrak{u} X + \nu)^{\beta_{\ell+1}} + \cdots \right)$$

$$(Y - uX - v)$$
 divides $P(X, Y)$
 $\iff P(X, uX + v) \equiv 0$

$$\begin{split} (Y-uX-\nu) \text{ divides } P(X,Y) \\ \iff P(X,uX+\nu) &\equiv 0 \\ \iff P_1(X,uX+\nu) &\equiv \cdots \equiv P_s(X,uX+\nu) \equiv 0 \end{split}$$

$$\begin{split} (Y-uX-\nu) \text{ divides } P(X,Y) \\ \iff P(X,uX+\nu) &\equiv 0 \\ \iff P_1(X,uX+\nu) &\equiv \cdots \equiv P_s(X,uX+\nu) \equiv 0 \\ \iff (Y-uX-\nu) \text{ divides each } P_t(X,Y) \end{split}$$

$$\begin{array}{l} (Y-uX-\nu) \text{ divides } P(X,Y) \\ \iff P(X,uX+\nu) \equiv 0 \\ \iff P_1(X,uX+\nu) \equiv \cdots \equiv P_s(X,uX+\nu) \equiv 0 \\ \iff (Y-uX-\nu) \text{ divides each } P_t(X,Y) \end{array}$$

$$P_t = \sum_{j=i_t}^{j_t + \ell_t - 1} \alpha_j X^{\alpha_j} Y^{\beta_j} \text{ with } \alpha_{j_t + \ell_t - 1} - \alpha_{j_t} \leqslant \binom{\ell_t}{2}$$

Observation + Gap Theorem (recursively)

$$\begin{array}{l} (Y-uX-\nu) \text{ divides } P(X,Y) \\ \iff P(X,uX+\nu) \equiv 0 \\ \iff P_1(X,uX+\nu) \equiv \cdots \equiv P_s(X,uX+\nu) \equiv 0 \\ \iff (Y-uX-\nu) \text{ divides each } P_t(X,Y) \end{array}$$

$$\qquad P_t = \sum_{j=j_t}^{j_t + \ell_t - 1} \alpha_j X^{\alpha_j} Y^{\beta_j} \text{ with } \alpha_{j_t + \ell_t - 1} - \alpha_{j_t} \leqslant \binom{\ell_t}{2}$$

 \triangleright Independent from $\mathfrak u$ and $\mathfrak v$

$$\begin{split} (Y-uX-\nu) \text{ divides } P(X,Y) \\ \iff P(X,uX+\nu) &\equiv 0 \\ \iff P_1(X,uX+\nu) &\equiv \cdots \equiv P_s(X,uX+\nu) \equiv 0 \\ \iff (Y-uX-\nu) \text{ divides each } P_t(X,Y) \end{split}$$

$$\qquad P_t = \sum_{j=j_t}^{j_t + \ell_t - 1} \alpha_j X^{\alpha_j} Y^{\beta_j} \text{ with } \alpha_{j_t + \ell_t - 1} - \alpha_{j_t} \leqslant \binom{\ell_t}{2}$$

- \triangleright Independent from $\mathfrak u$ and $\mathfrak v$
- X does not play a special role

$$\begin{split} P &= X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \end{split}$$

$$\begin{split} P &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$\begin{split} P &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$\begin{split} P &= X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \end{split}$$

$$\begin{split} P &= X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \end{split}$$

$$\begin{split} P &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$P_1 &= X^3Y^6(-X^2 + Y^2 - 2Y + 1)$$

$$\begin{split} P &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$P_1 &= X^3Y^6(X - Y + 1)(1 - X - Y)$$

$$\begin{split} P &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$\begin{aligned} P_1 &= X^3Y^6(X - Y + 1)(1 - X - Y) \\ P_2 &= X^9Y^2(X - Y + 1) \\ P_3 &= X^{16}Y^{13}(X + Y)(X - Y + 1) \\ P_4 &= X^{29}Y^6(X + Y - 1)(X - Y + 1) \end{aligned}$$

$$P = X^{31}Y^{6} - 2X^{30}Y^{7} + X^{29}Y^{8} - X^{29}Y^{6} + X^{18}Y^{13}$$

$$-X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^{2} - X^{9}Y^{3}$$

$$+X^{9}Y^{2} - X^{5}Y^{6} + X^{3}Y^{8} - 2X^{3}Y^{7} + X^{3}Y^{6}$$

$$P_{1} = X^{3}Y^{6}(X - Y + 1)(1 - X - Y)$$

$$P_{2} = X^{9}Y^{2}(X - Y + 1)$$

$$P_{3} = X^{16}Y^{13}(X + Y)(X - Y + 1)$$

$$P_{4} = X^{29}Y^{6}(X + Y - 1)(X - Y + 1)$$

$$\implies \text{linear factors of P: } (X - Y + 1, 1)$$

Around sparse polynomials

$$\begin{split} P &= X^{31}Y^6 - 2X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \\ \\ P_1 &= X^3Y^6(X - Y + 1)(1 - X - Y) \\ P_2 &= X^9Y^2(X - Y + 1) \\ P_3 &= X^{16}Y^{13}(X + Y)(X - Y + 1) \\ P_4 &= X^{29}Y^6(X + Y - 1)(X - Y + 1) \\ \implies \text{linear factors of P: } (X - Y + 1, 1), (X, 3), (Y, 2) \end{split}$$

Find linear factors of
$$P(X,Y) = \sum_{j=1}^k \alpha_j X^{\alpha_j} Y^{\beta_j}$$

Find linear factors of
$$P(X,Y)=\sum_{j=1}^k \alpha_j X^{\alpha_j} Y^{\beta_j}$$
 monomials
$$(X, \text{min}_j \ \alpha_j) \\ (Y, \text{min}_j \ \beta_j)$$

[H. Lenstra'99]

round sparse polunomials

Let $P = \sum_{j=1}^k \alpha_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{Q}(\alpha)[X,Y]$ be given in lacunary representation. There exists a **deterministic polynomial-time** algorithm to compute its linear factors, with multiplicities.

monomials

binomials trinomials

$$\begin{array}{c} (X, \min_{j} \alpha_{j}) \\ (Y, \min_{j} \beta_{j}) \end{array}$$

 $(X - \alpha)$ Factors of $\sum_{j} \alpha_{j} X^{\alpha_{j}}$

(Y - uX)Roots of $u \mapsto \sum_{i} a_{i} u^{\beta_{i}}$

Univariate lacunary factorization
[H. Lenstra'99]

$$\begin{aligned} & \text{Common factors of} \\ & P_t = \sum_{j=j_t}^{j=j_t} \alpha_j X^{\alpha_j} Y^{\beta_j} \\ & \text{(deq}(P_t) \leqslant \mathcal{O}(\ell_t^2)) \end{aligned}$$

Low-degree factorization [Kaltofen'82, ..., Lecerf'07]

Bottleneck: Factorization of low-degree polynomials

Bottleneck: Factorization of low-degree polynomials

Bottleneck: Factorization of low-degree polynomials \(\triangle \) Complexity measure: qap(P)

$$\label{eq:gap} \begin{array}{ll} \text{P } & \text{gap}(P) = \begin{cases} \mathbb{O}(k\log k + k\log h_P) & \text{[Kaltofen-Koiran]} \\ \mathbb{O}(k^2) & \text{[This work]} \end{cases} \\ & h_P = \text{max}_i \, |\alpha_i| \text{ if } P \in \mathbb{Z}[X,Y] \end{array}$$

$$pap(P) = \begin{cases} \mathcal{O}(k \log k + k \log h_P) & \text{[Kaltofen-Koiran]} \\ \mathcal{O}(k^2) & \text{[This work]} \end{cases}$$

$$h_P = \mathsf{max}_j \, |\alpha_j| \text{ if } P \in \mathbb{Z}[X,Y]$$

- Multiplicities come for free!
 - [Kaltofen-Koiran] Apply k times the algorithm

$$\mathsf{P} \ \mathsf{gap}(\mathsf{P}) = \begin{cases} \mathcal{O}(k\log k + k\log h_\mathsf{P}) & [\mathsf{Kaltofen\text{-}Koiran}] \\ \mathcal{O}(k^2) & [\mathsf{This\ work}] \end{cases}$$

$$h_P = \mathsf{max}_j \, |\alpha_j| \text{ if } P \in \mathbb{Z}[X,Y]$$

- Multiplicities come for free!
 - [Kaltofen-Koiran] Apply k times the algorithm
- Algebraic number field only: based on [H. Lenstra'99]

Extensions

Multilinear factors, with a new Gap Theorem:

$$\operatorname{val}\left(\sum_{j=1}^{\ell}a_{j}X^{\alpha_{j}}(uX+w)^{\beta_{j}}(vX+t)^{\gamma_{j}}\right)\leqslant\alpha_{1}+2\binom{\ell}{2};$$

Extensions

Multilinear factors, with a new Gap Theorem:

$$\text{val}\left(\sum_{j=1}^{\ell}a_{j}X^{\alpha_{j}}(uX+w)^{\beta_{j}}(vX+t)^{\gamma_{j}}\right)\leqslant\alpha_{1}+2\binom{\ell}{2};$$

Multivariate polynomials: Apply the Gap Theorem with $\mathbb{L}=\mathbb{K}(X_2,\ldots,X_n);$

Extensions

Multilinear factors, with a new Gap Theorem:

$$\text{val}\left(\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX+w)^{\beta_j} (\nu X+t)^{\gamma_j}\right) \leqslant \alpha_1 + 2 \binom{\ell}{2};$$

- Multivariate polynomials: Apply the Gap Theorem with $\mathbb{L} = \mathbb{K}(X_2, \dots, X_n);$
- ightharpoonup Multilinear factors with $\geqslant 3$ monomials over
 - $\overline{\mathbb{Q}}$: absolute factorization;
 - \circ \mathbb{R} , \mathbb{C} : approximate factorization;
 - ..

Finite fields

$$(1+X)^{2^n} + (1+X)^{2^{n+1}} = X^{2^n}(X+1) \mod 2$$

Finite fields

$$(1+X)^{2^n} + (1+X)^{2^{n+1}} = X^{2^n}(X+1) \mod 2$$

Theorem

Let
$$P = \sum_{j=1}^{c} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X]$$
, where $p > \text{max}_j (\alpha_j + \beta_j)$.

Then $val(P) \leqslant max_j \left(\alpha_j + \binom{\ell+1-j}{2}\right)$, provided $P \not\equiv 0$.

Finite fields

$$(1+X)^{2^n} + (1+X)^{2^{n+1}} = X^{2^n}(X+1) \mod 2$$

Theorem

Let
$$P = \sum_{j=1}^{t} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X]$$
, where $p > \text{max}_j (\alpha_j + \beta_j)$.

Then $val(P) \leqslant max_j(\alpha_j + \binom{\ell+1-j}{2})$, provided $P \not\equiv 0$.

Proposition

 $wr(f_1,\ldots,f_k)\neq 0 \iff f_j\text{'s linearly independent over }\mathbb{F}_{p^s}[X^p].$

Find multilinear factors of
$$P = \sum_{j=1}^k \alpha_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$
 where $\alpha_j \in \mathbb{F}_{p^s}$ and $p > deg(P)$

Find multilinear factors of
$$P = \sum_{j=1}^k \alpha_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$
 where $\alpha_j \in \mathbb{F}_{p^s}$ and $p > deg(P)$ monomials $(\geqslant 3)$ -nomials

$$\begin{array}{c} (X, \min_j \alpha_j) \\ (Y, \min_j \beta_j) \end{array}$$

Common factors of $P_t = \sum_{j=j_t}^{j=j_t} a_j X^{\alpha_j}$ $(\text{deq}(P_t) \leqslant \mathcal{O}(\ell_*^2))$

Low-degree factorization [Gao'03, Lecerf'10]

und sparse polynomials

30 / 33

Multilinear factors of lacunary multivariate polynomials:

- Multilinear factors of lacunary multivariate polynomials:
 - $(\geqslant 3)$ -nomials \rightsquigarrow low-degree polynomials.

- Multilinear factors of lacunary multivariate polynomials:
 - $(\geqslant 3)$ -nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;

- Multilinear factors of lacunary multivariate polynomials:
 - (\geqslant 3)-nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.

- Multilinear factors of lacunary multivariate polynomials:
 - $(\geqslant 3)$ -nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.
 - \circ binomials \leadsto lacunary univariate polynomials.

- Multilinear factors of lacunary multivariate polynomials:
 - (\geqslant 3)-nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.
 - binomials → lacunary univariate polynomials.
 - Only available for number fields;

- Multilinear factors of lacunary multivariate polynomials:
 - (\geqslant 3)-nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.
 - binomials → lacunary univariate polynomials.
 - Only available for number fields;
 - NP-hard in positive characteristic.

- Multilinear factors of lacunary multivariate polynomials:
 - $(\geqslant 3)$ -nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.
 - binomials → lacunary univariate polynomials.
 - Only available for number fields;
 - NP-hard in positive characteristic.
- New Gap Theorem:

- Multilinear factors of lacunary multivariate polynomials:
 - $(\geqslant 3)$ -nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.
 - binomials \leadsto lacunary univariate polynomials.
 - Only available for number fields;
 - NP-hard in positive characteristic.
- New Gap Theorem:
 - Faster algorithm (large coefficients, multiplicities for free);

- Multilinear factors of lacunary multivariate polynomials:
 - $(\geqslant 3)$ -nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.
 - binomials \rightsquigarrow lacunary univariate polynomials.
 - Only available for number fields;
 - NP-hard in positive characteristic.
- New Gap Theorem:
 - Faster algorithm (large coefficients, multiplicities for free);
 - Easier implementation;

- Multilinear factors of lacunary multivariate polynomials:
 - $(\geqslant 3)$ -nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.
 - binomials → lacunary univariate polynomials.
 - Only available for number fields;
 - NP-hard in positive characteristic.
- New Gap Theorem:
 - Faster algorithm (large coefficients, multiplicities for free);
 - Easier implementation;
 - PIT algorithms for $\sum_{i} a_{i} \prod_{i} f_{i}^{\alpha_{i}}$, $\sum_{i} a_{j} X^{\alpha_{j}} (u X^{d} + v)^{\beta_{j}}$.

- Multilinear factors of lacunary multivariate polynomials:
 - $(\geqslant 3)$ -nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.
 - binomials → lacunary univariate polynomials.
 - Only available for number fields;
 - NP-hard in positive characteristic.
- New Gap Theorem:
 - Faster algorithm (large coefficients, multiplicities for free);
 - Easier implementation;
 - PIT algorithms for $\sum_j a_j \prod_i f_i^{\alpha_{ij}}$, $\sum_j a_j X^{\alpha_j} (u X^d + v)^{\beta_j}$.
- Extensions: Low-degree/lacunary factors, small characteristic.

- Multilinear factors of lacunary multivariate polynomials:
 - $(\geqslant 3)$ -nomials \rightsquigarrow low-degree polynomials.
 - Valid for any field of characteristic 0;
 - Valid to some extent in positive characteristic.
 - binomials → lacunary univariate polynomials.
 - Only available for number fields;
 - NP-hard in positive characteristic.
- New Gap Theorem:
 - Faster algorithm (large coefficients, multiplicities for free);
 - Easier implementation;
 - PIT algorithms for $\sum_j a_j \prod_i f_i^{\alpha_{ij}}$, $\sum_j a_j X^{\alpha_j} (u X^d + v)^{\beta_j}$.
- Extensions: Low-degree/lacunary factors, small characteristic.
- Correct bound for the valuation?

ightharpoonup Real au-conjecture and variants:

- Real τ -conjecture and variants:
 - Special cases, such as fg + 1;

- Real τ -conjecture and variants:
 - Special cases, such as fg + 1;
 - Links with fewnomials theory.

- Real τ -conjecture and variants:
 - Special cases, such as fg + 1;
 - Links with fewnomials theory.
- Generalize factorization algorithms:

- Real τ -conjecture and variants:
 - Special cases, such as fg + 1;
 - Links with fewnomials theory.
- Generalize factorization algorithms:
 - Low-degree factors, lacunary factors;

- \triangleright Real τ -conjecture and variants:
 - Special cases, such as fg + 1;
 - Links with fewnomials theory.
- Generalize factorization algorithms:
 - Low-degree factors, lacunary factors;
 - Other fields, especially small characteristic;

- \triangleright Real τ -conjecture and variants:
 - Special cases, such as fg + 1;
 - Links with fewnomials theory.
- Generalize factorization algorithms:
 - Low-degree factors, lacunary factors;
 - Other fields, especially small characteristic;
 - $\,{}^{\circ}\,$ More general polynomials \rightsquigarrow arithmetic circuits.

- Real τ -conjecture and variants:
 - Special cases, such as fg + 1;
 - Links with fewnomials theory.
- Generalize factorization algorithms:
 - Low-degree factors, lacunary factors;
 - Other fields, especially small characteristic;
 - More general polynomials → arithmetic circuits.
- Practical efficiency