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L. The real T-conjecture

and, its variants
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Avrithmetic Circuits

Complexity of a polynomial

T(f) = size of its smallest circuit representation without constant
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round sparse polynomi. 3/33



Conjecture [Shub & Smale’95]

dc s.t. the number of integer roots of f € Z[X] is < (1 + 1(f))€.




The T-conjecture

Conjecture [Shub & Smale’95]
Jc s.t. the number of integer roots of f € Z[X] is < (1 + t(f))€.

Theorem [Biirgisser’07]

T-conjecture

= super-polynomial lower bound for the permanent

Around sparse polynomials
round sparse polynomi. 4733




Conjecture [Shub & Smale’95]

dc s.t. the number of integer roots of f € Z[X] is < (1 + 1(f))€.

Theorem [Biirgisser’07]

T-conjecture

= super-polynomial lower bound for the permanent

X110 Xin

n
PERn (X171, ., Xnn) = per : : = Z Hxiﬁ(i)

Xni .. Py 0ccG, i=1




Conjecture [Shub & Smale’95]

dc s.t. the number of integer roots of f € Z[X] is < (1 + 1(f))€.

Theorem [Biirgisser’07]

T-conjecture
= super-polynomial lower bound for the permanent

—> 7(PERy) is not polynomially bounded in n

X110 Xin

n
PERn (X171, ., Xnn) = per : : = Z Hxiﬁ(i)

Xni .. Py 0ccG, i=1




Conjecture [Shub & Smale’95]

dc s.t. the number of integer roots of f € Z[X] is < (1 + 1(f))€.

Theorem [Biirgisser’07]

T-conjecture
= super-polynomial lower bound for the permanent
—> 7(PERy) is not polynomially bounded in n

— VP? £ VNP°

X110 Xin

n
PERn (X171, ., Xnn) = per : : = Z Hxiﬁ(i)

Xni .. Py 0ccG, i=1




The t-conjecture is hard!

Theorem [Shub & Smale’95]

T-conjecture = Pc¢ # NP¢
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The t-conjecture is hard!

Theorem [Shub & Smale’95]
T-conjecture = Pc¢ # NP¢

Theorem [Cheng’03]

Extended t-conjecture = Merel torsion theorem, ...

Around sparse polynomial:
round sparse polynomials 5/33




Theorem [Shub & Smale’95]

T-conjecture = P¢ # NP¢

Theorem [Cheng’03]

Extended T-conjecture = Merel torsion theorem, ...

False for real roots (Chebyshev polynomials)
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Conjecture [Koiran'11]

Letf=3%, [T, fij where the fij's are t-sparse polynomials.

Then f has < poly(k, m,t) real roots.

Theorem [Koiran'11]

Real T-conjecture
= Super-polynomial lower bound for the permanent

Case k = 1: Follows from Descartes’ rule.

Case k = 2: Open.




Descartes’ rule without signs

Theorem

If f € R[X] has t monomials, then it has < (2t — 1) real roots.
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Theorem

If f € R[X] has t monomials, then it has < (2t — 1) real roots.

Proof. Induction on t: f has <t — 1 positive real roots
t = 1: No positive real root
t > 1: Let coX* = lowest degree monomial.

g = f/X%: same positive roots, nonzero constant coefficient
g’ has (t — 1) monomials = at most (t — 2) positive roots
There is a root of g’ between two consecutive roots of g [Rolle’1691]

f=Yi, [TZ fij: < 2kt™ — 1 real roots



Real T-conjecture = Permanent is hard

SPS(k,m,t) =< f = Z Hfii : fij's are t-sparse

i=1j=
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k m
SPS(k,m,t) =< f = Z Hf” : fij's are t-sparse
i=1j=1

Proof sketch. Assume the permanent is easy.
Hf; (X —1) has circuits of size poly(n) [Biirgisser’07-09]

Reduction to depth 4 ~» SPS polynomial of size 2°(™) [Koiran'11]

Contradiction with real T-conjecture



Reduction to deprh 4

Theorem o

Circuit of size t and degree d
~» Depth-4 circuit of size $0(Vdlogd)
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Theorem [Koiran'11]

Circuit of size t and degree d
~ Depth-4 circuit of size tO(Vdlogd)

Proof idea.

Construct an equivalent Arithmetic Branching Program
~ size tl092d 4 1, depth 6 =3d —1 [Malod-Portier'08]

ABP = Matrix powering



Variants of the real T-conjecture

k m
SPS(k,m,t) =< f = Z Hfii : fij's are t-sparse
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k m
SPS(k,m,t) =< f = Z Hfii : fij's are t-sparse
i=1j=1

T-conjectures (implying Per ¢ VP°)
Vf € SPS(k, m, t),

» JL € {R,Q,Q3,Qs,...}, [Phillipson-Rojas’13]
#{x € L: f(x) = 0} < poly(kmt);
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k
SPS(k,m,t) =< f= Z aiff™ :fi's are t-sparse
i=1

T-conjectures (implying Per ¢ VP°)

Vf € SPS(k, m,t),

» dL e {R, Q2,Q3,Qs,... 3 [Phillipson-Rojas’13]
#{x € L: f(x) =0} < poly(kmt);

» dp, prime, [Koiran-Portier-Rojas’13]
#{e e N:Ix € Z, vy (x) = e, f(x) = 0} < poly(kmt);

» The Newton polygon of f(X,Y) has < poly(kmt) many edges.

[Koiran-Portier-Tavenas-Thomassé’13]

Valid with 2(m+9(kt))¢ ipstead of poly(kmt).




Known upper bounds

SPS(k, m,t,A) ZHf% fj's are t-sparse, aj; < A

i=1j=1
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Known upper bounds

SPS(k, m,t,A) ZHf;x" fj's are t-sparse, aj; < A

i=1j=1
Theorem
If f € SPS(k, m,t,A), its number of real roots is at most

> 2kt™A 1, [Descartes’1637]
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Known upper bounds

SPS(k, m,t,A) ZHf;x" fj's are t-sparse, aj; < A

i=1j=1
Theorem
If f € SPS(k, m,t,A), its number of real roots is at most

> 2kt™A 1, [Descartes’1637]
» tO(mZ“*‘ ).

[G.-Koiran-Portier-Strozecki'11]
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Known upper bounds

SPS(k, m,t,A) ZHf;x" fj's are t-sparse, aj; < A

i=1j=1
Theorem
If f € SPS(k, m,t,A), its number of real roots is at most

> 2kt™A 1, [Descartes’1637]
» tO(mZ“*‘ ).

[G.-Koiran-Portier-Strozecki'11]

> tO(k*m) [Koiran-Portier-Tavenas’13]
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SPS(k,m,t, A) ZHf) Y i fj's are t-sparse, ajj; < A
i=1j=1

Theorem
If f € SPS(k, m,t,A), its number of real roots is at most

> 2kt™A —1; [Descartes'1637]
> {O0(m2<T), [G.-Koiran-Portier-Strozecki'11]

> tO(*m) [Koiran-Portier-Tavenas'13]
If f € SPS(k,m,t), its Newton polygon has at most

> kt™ many edges; number of monomials




SPS(k,m,t, A) ZHf) Y i fj's are t-sparse, ajj; < A
i=1j=1

Theorem
If f € SPS(k, m,t,A), its number of real roots is at most

> 2kt™A —1; [Descartes’1637]
> tO(m2E1). [G.-Koiran-Portier-Strozecki'11]
> t(ﬁ)(kzm). [Koiran-Portier-Tavenas'13]

If f € SPS(k,m,t), its Newton polygon has at most
> kt™ many edges; number of monomials

> kt?m/3 many edges. [Koiran-Portier-Tavenas-Thomassé’13]
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Four different T-conjectures = VP° # VNP

Use your favorite formulation and tools!
Wronskian, combinatorial geometry, p-adic geometry, ...

Links with Khovanskii's fewnomial theory

Embarrassing Open Problem

Let f, g be t-sparse polynomials.
» What is the maximum number of real roots of fg 4 17

» Same question for the different T-conjectures.

fg + 1 has < t? + 1 monomials ~» quadratic bounds;
Best known lower bounds: O(t);

The Newton polygon of fg + 1 has at most t*/3 many edges.




Joint work with

A. Chattopdhyay, P. Koiran, N. Portier & Y. Strozecki



Classical factorization algorithms

Factorization of a polynomial P

Find Fq, ..., Fy, irreducible, st. P=F; x --- x Fy.
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Factorization of a polynomial P

Find Fq, ..., F¢, irreducible, st. P=TF7 x --- x F;.
Z[X]
[Lenstra-Lenstra-Lovasz'82]
FolX]
[Berlekamp’67]

Qo) [X]

[A. Lenstra’8

Q) [Xq

[Kaltofen'85,

3, Landau’83]

X
A. Lenstra’87]

|

Fq[Xh--')Xn]



Factorization of a polynomial P

Find Fq, ..., F¢, irreducible, st. P=TF7 x --- x F;.

Z[X]
[Lenstra-Lenstra-Lovasz'82]
l Fy[X]
[Berlekamp’67]
Q(x)[X] |

Complexity

Polynomial in the degree of the polynomials

1
Q(“)[X] Yooy Xn]
[Kaltofen'85, A. Lenstra’87]
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Algorithms polynomial in log(deg(P))

Some factors only



Lacunary polynomials
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X102y 101 | 51014102 _ 5101101 _ 5 vy | |
=(X+Y—=1)x (X'OTylol _q)
=(X+Y—1) x (XY —1) x (1 4+ XY +---+ X00y100)
Algorithms polynomial in log(deg(P))

Some factors only

Definition

k
P(X1y.ey Xn) = ) X7 - X
j=1

> Lacunary representation: {(ot1j,...,&nj:a;): 1 <j <k}

> size(P) ~ ) .size(a;) + log(a15) + - - - + log(otn;)

)




Integral roots of integral polynomials

Gap Theorem [Cucker-Koiran-Smale’98]
Let ¢ Le
PX)=Y aX¥+ ¥ aX% € ZIX]
=1 j=t+1
—_—

| —
Q R

with a7 < o < -+ < k. Suppose that

o — o > 1+ log [ max|a;| |,
0+1 ¢ g j<g|J|

then forall x € Z, [x| > 2, P(x) =0 = Q(x) = R(x) =0.
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Integral roots of integral polynomials

Gap Theorem [Cucker-Koiran-Smale’98]
Let ¢ Le
PX)=Y aX¥+ ¥ aX% € ZIX]
=1 j=t+1
—_—

| —
Q R

with a7 < o < -+ < k. Suppose that

o — o > 1+ log [ max|a;| |,
0+1 ¢ g j<e|’|

then forall x € Z, [x| > 2, P(x) =0 = Q(x) = R(x) =0.
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Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

> linear factors of univariate polynomials over 7;
[Cucker-Koiran-Smale’98]
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Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

> linear factors of univariate polynomials over 7;
[Cucker-Koiran-Smale’98]

> low-degree factors of univariate polynomials over O)(oc);
[H. Lenstra’99]

> linear factors of bivariate polynomials over O;
[Kaltofen-Koiran'05]
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Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

> linear factors of univariate polynomials over 7;
[Cucker-Koiran-Smale’98]

> low-degree factors of univariate polynomials over O)(oc);
[H. Lenstra’99]

> linear factors of bivariate polynomials over O;
[Kaltofen-Koiran'05]

> low-degree factors of multivariate polynomials over ().
[Kaltofen-Koiran'06]

Around sparse polynomials
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Observation

(Y —uX —v) divides P(X,Y) < P(X,uX+v) =0

Gap Theorem

Let
¢ k
P= Z a; X% (uX +v)Pi + Z a; X% (uX +v)Pi
j=1 j=+1
Q R

with uv #£0, ot < -+ < . If

¢
Xg+1 > X7 + <2>

then P = 0 iff both Q =0 and R = 0.




Bound on the valuation

Definition

val(P) = max {v: XV divides P}
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Bound on the valuation

Definition
val(P) = max {v: XV divides P}
Theorem
¢
LetP = Z a; X% (uX+v)Pi £ 0, withuv £ 0and o < -+ < oxg.

j=1
Then

04+1—j
< a .
val(P) < 12]@%2 (oc] 4 ( ) >)

Around sparse polynomials
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K: any field of characteristic 0

Definition

val(P) = max {v: XV divides P}

Theorem

j=1

¢
Let P = Z a; X (uX+v) P # 0, withuv #0and o7 < -+ < .

Then, if the family (X% (uX —I—V)f’i)j is linearly independent,

val(P) < a1 + <§)




K: any field of characteristic 0

Definition

val(P) = max {v: XV d

ivides P}

Theorem

j=1

¢
Let P = Z a; X (uX+v) P # 0, withuv #0and o7 < -+ < .

Then, if the family (X% (uX —I—V)f’i)j is linearly independent,

val(P) < a1 + <§)

Hajos' Lemma: if o

=...=qpval(P) <o +(—1)




The Wronskian

Definition
Let fq,..., fp € K[X]. Then

f2

f

wr(f1,...,f¢) = det

1) 1)
f1 fZ
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The Wronskian

Definition
Let fq,..., fp € K[X]. Then
2
f)
wr(fq,...,f¢) = det .

(t-1)

fg€—1 ) fz

Proposition [Bocher, 1900]

wr(fy,...,fg) #0 <= the fj's are linearly independent.

Around sparse polynomial:
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Wronskian €9 valuation

val(wr(f1,...,fe)) > ) val(fy) — (2)

j=1
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Wronskian €9 valuation

val(wr(f1,...,fe)) > ) val(fy) — (2)

j=1

Lemma

Let f; = X% (uX +v)Bi, uv # 0, linearly independent, and s.t.
o, By = {. Then

val(wr(fy,...,f¢)) < Z ey = Zval(fj).

j=1 j=1
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Lemma

val(wr(fy,...,f¢)) > ) val(fj) — <§>

j=1

Lemma

Let f; = X% (uX +v)Bi, uv #£ 0, linearly independent, and s.t.
g, 35 = €. Then

val(wr(fy,...,fe)) < ) o5 =Y val(fj).

j=1 j=1

Proof of the theorem. wr(P, fy,...,f¢) = aj wr(fq,..., )



Lemma

Val(WI’(f] yoooy Ty

(4
Dz Y ) - ()

=1

Lemma

Let f; = X% (uX +v)Bi, uv #£ 0, linearly independent, and s.t.

g, 35 = €. Then

val(wr(fq,..., g

[4 (4
)<Y =) val(fy)

j=1 j=1
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Lemmas: bounds attained, but not simultaneously
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Ve>3,3P =) XM (uX+v)P st val(P) = o +
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Let
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P= Z a; X% (uX +v)Pi + Z ;X% (uX +v)Pi
j=1 j=E+1

Q R

with uv £ 0, o7 < -+ < . If £ is the smallest index s.t.

{
g1 > 0 + <2>> val(Q),

then P =0 iff both Q =0 and R =0.

F= <Cval(Q)Xval(Q) v ) e (am (uX + v)Best 4. )
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Observation + Gap Theorem (recursively)

(Y —uX —v) divides P(X,Y)
— PX,uX+v) =0
— Pi(X,uX+v)=---=Ps(X,uX+v)=0
<— (Y —uX—v) divides each P¢(X,Y)

je+le—1 ¢
Pt — Z a)-X""’Yf’J‘ with Kj+e,—1 — &, < <2t)
J=jt

Independent from u and v

X does not play a special role
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P =X'Y2(X=Y+1)

= XY X+ V)(X—Y +1)
Py =X YO(X+Y—-1(X=Y+1)

— linear factors of P: (X =Y+ 1,1), (X, 3), (Y,2)



Complete algorithm

Find linear factors of P(X,Y) = Z aj X% YR;

Around sparse polynomials
e 26/ 33
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Find linear factors of P(X,Y) Z a; X%iYB;
j=1

monomials binomials trinomials

- J N\

(X, min; o) (X—a) Comm%n f1actors of
Y mins . Fact £ X% Jt+Hl—
(Y, min; 35) actors of }_; a; Pt:Zan(XjYBj
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Low-degree factorization

Univariate lacunary factorization
[Kaltofen'82, ..., Lecerf'07]

[H. Lenstra’99]
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Let P = Z an“iYBi € Q(«)[X,Y] be given in lacunary repre-
j=1
sentation. There exists a deterministic polynomial-time algo-
rithm to compute its linear factors, with multiplicities.

N
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Low-degree factorization

Univariate lacunary factorization
[Kaltofen'82, ..., Lecerf'07]

[H. Lenstra’99]
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Bottleneck: Factorization of low-degree polynomials
L Complexity measure: gap(P)

(P) = O(klogk + kloghp) [Kaltofen-Koiran]
2el a O(kz) [This work]
hp = max; |(1j| ifPe Z[X, Y]
Multiplicities come for free!
[Kaltofen-Koiran] Apply k times the algorithm

Algebraic number field only: based on [H. Lenstra’99]



Multilinear factors, with a new Gap Theorem:

¢
val Zan"‘i(u,X+W)E’5(VX+‘L)yi <0q+2<§>;
j=1



Multilinear factors, with a new Gap Theorem:
- ¢
val Z ;X% (uX +wW)B WX+ | <o+ 2<2>;
=1

Multivariate polynomials: Apply the Gap Theorem with
L= K(Xz, .o .,Xn),'



Multilinear factors, with a new Gap Theorem:

¢
val Zan"‘i(u,X+W)E’5(VX+‘L)yi <0q+2<§>;
j=1

Multivariate polynomials: Apply the Gap Theorem with
L= K(Xz, .o .,Xn),'
Multilinear factors with > 3 monomials over

Q: absolute factorization;
R, C: approximate factorization;
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T+X)2 +(1+X7 =X (X+1) mod 2

Theorem

(4
Let P = Z a; X (uX +v)Pi e Fps [X], where p > max; (o5 + ;).
=1
Then val(P) < maxj (o + (H;ﬂ)), provided P # 0.

wr(fq,...,fx) #0 <= fj's linearly independent



Factorization algorithm

K
Find multilinear factors of P = Z aX{ X

=1
where a; € Fps and p > deg(P)

Around sparse polynomial:
round sparse polynomials 3033

A
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Find multilinear factors of P = Z an;X]‘j . 'Xﬁn‘j
j=1
where a; € Fps and p > deg(P)

monomials binomials (= 3)-nomials
(X, min; og;) (uXP —vXY) Commone fa%tors of
(Y, min; ;) ) iy .
Py = X%
Roots of univariate ¢ ij 4
lacunary polynomials (deg(Py) < O(€2))

Low-degree factorization
[Gao'03, Lecerf'10]
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Find multilinear factors of P = Z anix]‘j . -Xg"’j
j=1
where a; € Fps and p > deg(P)

|

monomials binomials (= 3)-nomials

N\

Common factors of
jt+et—]

Pt = Z anD‘j
1=t
(deg(Py) < O(£1))

[Kipnis-Shamir'99,Bi-Cheng-Rojas’13] Low-degree factorization
[Gao'03, Lecerf'10]
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Multilinear factors of lacunary multivariate polynomials:

(> 3)-nomials ~~ low-degree polynomials.
Valid for any field of characteristic O;
Valid to some extent in positive characteristic.

binomials ~» lacunary univariate polynomials.

Only available for number fields;
NP-hard in positive characteristic.

New Gap Theorem:

Faster algorithm (large coefficients, multiplicities for free);
Easier implementation;
PIT algorithms for 3 ; a; ] [; T, 25 a;X% (uXd +v)B;.

Extensions: Low-degree/lacunary factors, small characteristic.

Correct bound for the valuation?
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Real T-conjecture and variants:

Special cases, such as fg + 1;
Links with fewnomials theory.

Generalize factorization algorithms:

Low-degree factors, lacunary factors;
Other fields, especially small characteristic;
More general polynomials ~~ arithmetic circuits.

Practical efficiency
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