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PoLSys(K)

Input: f1,...,fs € K[Xq,...,Xn]
Question: Is there a € K" s.t. f(a) = 0?

HomPoLSys (K)

Input: fq,...,fs € K[Xo,...,Xnl,

: —n+1
Question: Is there a acR" st f(a) =0?
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Glimpse of Elimination Theory

For which v; « is there a root?

There exist Ry,..., Ry € K[y] s.t.

R1(v) 0 fi(a)
: = da,

Ru(y) - fo(a)
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Wlog, homogeneous polynomials, non trivial roots
f1y.o oy Trp1 € K[Xo,...,Xn] ~ a unique resultant polynomial
Sylvester Matrix ~» Macaulay Matrix (exponential size)

s polynomials # n + 1 variables ~ several polynomials needed

ResuLTANT(K)

Input: f1,...,f4+1 € K[Xp,...,X,], homogeneous

: —=n+1
Question: Is there a nonzero a € K st. f(a) =07
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f1, ....far1 € KiXo,...,Xn], homogeneous, of degrees di, ..., dn
D=) (di—1), M} ={X§° X% :a0+...+ & =D}
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Definition

The first Macaulay matrix is defined as follows:
> Its rows and columns are indexed by Mp;

» The row indexed by X represents
XD(
Wﬁ' where i = min{j : dj < o).

i

Other Macaulay matrices are defined by reordering the f;’s.




f1, ....far1 € KiXo,...,Xn], homogeneous, of degrees di, ...
D=) (di—1), M} ={X§° X% :a0+...+ & =D}
i

»dn

Definition

The first Macaulay matrix is defined as follows:
> Its rows and columns are indexed by Mp;

» The row indexed by X represents
XD(
Wﬁ' where i = min{j : dj < o).

i

Other Macaulay matrices are defined by reordering the f;’s.

Resultant : GCD of the determinants of n Macaulay matrices




Canny’s upper bound

Theorem [Canny’87]

The resultant is computable in polynomial space.
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Theorem [Canny’87]

The resultant is computable in polynomial space.

Proof idea.

The resultant can be expressed as det(M )/ det(N ), where M is Macaulay, and
N a submatrix of M;

An entry of M (resp. N) can be computed in polynomial time;

The determinant can be computed in logarithmic space.



Large determinants

Theorem [G.-Koiran-Portier’10-13]

» Macaulay matrices can be represented by polynomial-size
boolean circuits.

» Deciding the nullity of the determinant of a matrix represented
by a boolean circuit is PSPACE-complete (over any field).

Bruno Grenet 8722




Theorem [G.-Koiran-Portier'10-13]

» Macaulay matrices can be represented by polynomial-size
boolean circuits.

» Deciding the nullity of the determinant of a matrix represented
by a boolean circuit is PSPACE-complete (over any field).

Proof idea.
Let M be a PSPACE Turing Machine;

Let G%; its graph of configurations:

initial configuration cj,
accepting configuration cq;

Gt can be represented by a boolean circuit;
There exists a path ¢; ~ cq in Gy iff x € £(M);

Let A ~ adjacency matrix of G} :

det(A )L 00— Heci~vicy



The resultant in Valiant’s model of computation

Theorem

In Valiant's algebraic model of computation:

» The resultant belongs to VPSPACE, [Koiran-Perifel’07]

» Determinants of succinctly represented matrices is
VPSPACE-complete. [Malod'11]
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Upper bounds for polynomial systems

Upper bounds
» PoiSys(F,) € PSPACE
= HomPoLSys(IF, ), Resutant(FF, ) € PSPACE

» Under GRH, PoLSys(Z) € AM [Koiran’96]
—> HoMmPoLSYs(Z), RESuLTANT(Z) € AM

Bruno Grenet 10/ 22
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Eetithi— (fe il with £ a G o XL
Let P(x) be the set of prime numbers < x;

Let P¢(x) be the set of prime numbers < x, s.t. f has a root mod p.

Theorem [Koiran'96]

There exist polynomial-time computable A and xg s.t.
» If f has no root in C, then #P¢(xo) < A;
» If f has a root in C, then #%P¢(xo) > 8A(log A + 3).

Algorithm.
Compute A, xo;
Take a random hash function h: P(xo) — {0, 12 9AL

Check whether there exist x,y € P¢(xo) s.t. h(x) =h(y); « NP

proba. 1 if f has a root in C;
proba. < 1/4 if f has no root in C.
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BooLsys

» Boolean variables
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Lower bounds for non-square systems

Proposition [Folklore]
For p =0 or prime, PoLSys(IF,) & HomPoLSys([F, ) are NP-hard.

BooLsys HomPoLSys

» Boolean variables » Variables (over IF,) X, and
UlyeooyUn X],...,X-n_

» Equations » Polynomials X5 — X7 for every i > 0 and

® u; — lrue
® U =y
o =1y Vuy
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[Folklore]
For p = 0 or prime, PoLSys(IF,) & HomPoLSys(IF, ) are
Proof. Case HomPoLSys(IF, ), with p # 2:
BooLsys HomPolLSys
» Boolean variables > Variables (over I,) Xo and
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[Folklore]
For p = 0 or prime, PoLSys(IF,) & HomPoLSys(IF, ) are
Proof. Case HomPoLSys(IF, ), with p # 2:
BooLsys HomPolLSys
» Boolean variables > Variables (over I,) Xo and
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» Equations > Polynomials X5 — X for every i > 0 and
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Notation: [Fy = Q

[Folklore]
For p = 0 or prime, PoLSys(IF,) & HomPoLSys(IF, ) are
Proof. Case HomPoLSys(IF, ), with p # 2:
BooLsys HomPolLSys
» Boolean variables > Variables (over I,) Xo and
UlyeeoyUn X],...,Xn
» Equations > Polynomials X5 — X for every i > 0 and
o u; = True ® Xo - (Xi+Xo)
° u; =y (] Xo-(Xi+X,—)
o =1y Vuy o (Xi+Xo0)?—(Xj+Xo) - (Xi + Xo)




Lower bound for the resultant in char. O

Proposition [Heintz-Morgenstern’'93]

RESULTANT(Z) is NP-hard.
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RESULTANT(Z) is

Proof. ParTiTiON: S = {1,

Xi = X3

Xa X5

WXy 4+ Un Xy

[Heintz-Morgenstern’93]

Lt Z sl E 5 Sl iy

ies’ jgs’
=00

Il
&

| PotSys | HomPoLSys | RESULTANT |

Z
Fp

NP-hard
NP-hard

NP-hard
NP-hard

NP-hard
Open



Hardness in positive characteristics

HomPoLSys

> Variables Xy and Xy, ..., Xy, over If,

» Polynomials X3 — X? for every i > 0 and

e Xo - (Xi +Xo)
* Xo - (Xi+Xj)
o (Xi+Xo)* — (X5 4+ Xo) - (X +Xo)

Bruno Grenet 1422
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# homogeneous polynomials > # variables

Two strategies:

Reduce the number of polynomials
Increase the number of variables
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HomPoLSys(IF,) is NP-hard:
# homogeneous polynomials > # variables

Two strategies:

Reduce the number of polynomials
Increase the number of variables

HomPoLSys

> Variables Xy and Xy, ..., X;, over [,

» Polynomials X3 — X? for every i > 0 and
® Xo - (Xi+Xo)
L XO ° (Xl aF X])
o (Xi+Xo)? = (Xj + Xo) - (Xi +Xo)
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For f1,...,fs homogeneous of degree 2,

s
gi := Z(Xi]‘fj,o = i <.
j=1

va e B, (v, f(a) =0 vi,gi(a) = 0)

if ai; algebraically independent




For f1,...,fs homogeneous of degree 2,

s
gi := Z(Xi]‘fj,o = i <.
j=1

va e B, (v, f(a) =0 vi,gi(a) = 0)

if ai; algebraically independent

Replace algebraic independence by random choice



Two useful results

Effective Bertini Theorem

Let f1,...,fs and go,...,gn be as on previous slide. Then there
exists a polynomial F of degree at most 3" s.t.

Fla) #0 = Va(Vi, fi(a) =0 <= Vj,g;(a) =0).
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Effective Bertini Theorem

Let f1,...,fs and go,...,gn be as on previous slide. Then there
exists a polynomial F of degree at most 3™*7 st.

F(a) #0 — Va(Vi,fi(a) =0 < Vj,gj(a) =0).

Lemma [DeMillo-Lipton, Zippel, Schwartz (1978-80)]

Let F € F4[Xo,...,Xn] be nonzero, of degree d. If Ag,...,Apn
are chosen independently at random in Fy, then

P[F(Ao,...,An) =0] < —
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Build an extension L/F, with at least 32 elements; [Shoup’90]

Choose the oj's independently at random in L;

Define, for 0 <i<n, g; = Z (Bl
j

fj(a) —0— gi(a) =)

If the f; have no common root,

P [the g; have a common root] = P [F(x) = 0] <



Build an extension L/F, with at least 32 elements; [Shoup’90]

Choose the oj's independently at random in L;

Define, for 0 <i<n, g; = Z (Bl
j

fj((l) —0— gi(a) =)

If the f; have no common root,

P [the g; have a common root] = P [F(x) = 0] <

Theorem [G.-Koiran-Portier'10-13]

Let p be a prime number. RESULTANT(IFy ) is NP-hard for degree-2
polynomials for some q = p®, under randomized reductions.
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HomPoLSys(IF,) is NP-hard:
# homogeneous polynomials > # variables

Two strategies:

Reduce the number of polynomials
Increase the number of variables

HomPoLSys
> Variables Xy and Xy, ..., X;, over [,
» Polynomials X% — X% for every i > 0 and fiyeunyfn
® Xo - (Xi +Xo)
o Xo-(Xi+Xj) fattyeeoyfs

o (Xi+Xo)? = (Xj + Xo) - (Xi +Xo)
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Reduction

New system

(unchanged)

+AY?

—Y}  +AY3
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Reduction

New system

(unchanged)

+AY?
—Y7  +AY3

fs—1(X) — Ys%—n—l + 7\Y§_n_1
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Reduction

New system

(unchanged)

+AY?
—Y7  +AY3

1(X) = YZ_ o +AYE
Y2
s—n—1
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Reduction

New system

(unchanged)

+AY?
—Y7  +AY3

1(X) = Yo o +AYE
Y2
s—n—1
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fn(a)
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N
(a,b) non trivial root of g = a non trivial root of f

€1 +AB
€2 —B1 +AB»

€s—n-2 —Bs—n2+tABs_n_
€ n it Bein g

(@ =0 ==} =10
apo=1and a; = %1
€i = fryila)

B b

det=+ (€1 +€2A+ -

+ 657n}\sfn71 )




N
(a,b) non trivial root of g = a non trivial root of f

(@ =0 ==} =10
apo=1and a; = %1

€i = fryila)
€1 +AB] B = bf
€2 —B1 +AB»

€s—n-2 —Bs—n2+tABs_n_
€ n it Bein g

det=+ (e +e2A+-- +es_nAS )

det=0==Vi, ;=0 = f1(a)=---=fs(a) =0




Last step

det=:|:(€1 +€2?\+"'+€N?\N_1)
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Last step

det ==+ (e1 + €A+ - +enANTT)

Theorem [G.-Koiran-Portier’10-13]
Let p be a prime number.
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[Shoup’90]
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det =% (e7 + €A+ +enAN)

Compute an irreducible polynomial P € F, [€] of degree N;
[Shoup’90]

Let L =F,[€]/(P)and A=E € L.

In the extension I, det =0 <= ¢; = 0 for all i.

For coefficients in I, instead of IL: “put P inside the system”

Theorem [G.-Koiran-Portier'10-13]

Let p be a prime number.

» REsSULTANT(IF,) is NP-hard for linear-degree polynomials.

> ResuLTANT(IFy) is NP-hard for degree-2 polynomials for some
q=p°.
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Evaluation of the resultant:

Computable in polynomial space;
Evidences for PSPACE-hardness;
Similar results in Valiant's algebraic model.

Checking the satisfiability of a polynomial system:

In characteristic 0, in AM (“almost NP");

In positive characteristic, in PSPACE;

NP-hard in any characteristic;

No known difference between square and non-square systems.

Some open problems:

NP-hardness for degree-2 polynomial systems in [,?
Improve the PSPACE upper bound in positive characteristics...
. or the NP lower bound.
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