Complexity of the resultant

Bruno Grenet

joint work with Pascal Koiran & Natacha Portier

LIX – École Polytechnique

Is there a (nonzero) solution?

$$X^{2} + Y^{2} - Z^{2} = 0$$

 $XZ + 3XY + YZ + Y^{2} = 0$
 $XZ - Y^{2} = 0$

Is there a (nonzero) solution?

$$X^{2} + Y^{2} - Z^{2} = 0$$

$$XZ + 3XY + YZ + Y^{2} = 0$$

$$XZ - Y^{2} = 0$$

$\mathsf{PolSys}(\mathbb{K})$

Input: $f_1, \ldots, f_s \in \mathbb{K}[X_1, \ldots, X_n]$

Question: Is there $\alpha \in \overline{\mathbb{K}}^n$ s.t. $f(\alpha) = 0$?

Is there a (nonzero) solution?

$$X^{2} + Y^{2} - Z^{2} = 0$$

 $XZ + 3XY + YZ + Y^{2} = 0$
 $XZ - Y^{2} = 0$

$\mathsf{PolSys}(\mathbb{K})$

Input: $f_1, \ldots, f_s \in \mathbb{K}[X_1, \ldots, X_n]$

Question: Is there $a \in \overline{\mathbb{K}}^n$ s.t. f(a) = 0?

$\mathsf{HomPolSys}(\mathbb{K})$

Input: $f_1, \ldots, f_s \in \mathbb{K}[X_0, \ldots, X_n]$, homogeneous

Question: Is there a nonzero $\alpha \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(\alpha) = 0$?

Glimpse of Elimination Theory

$$f_1,\dots,f_s\in\mathbb{K}[X_1,\dots,X_n], \qquad f_{\mathfrak{i}}=\sum_{|\alpha|_1\leqslant d_{\mathfrak{i}}}\gamma_{\mathfrak{i},\alpha}X^\alpha$$

For which $\gamma_{i,\alpha}$ is there a root?

Glimpse of Elimination Theory

$$f_1,\dots,f_s\in\mathbb{K}[X_1,\dots,X_n], \qquad f_i=\sum_{|\alpha|_1\leqslant d_i}\gamma_{i,\alpha}X^\alpha$$

For which $\gamma_{i,\alpha}$ is there a root?

There exist $R_1,\ldots,R_h\in\mathbb{K}[\gamma]$ s.t.

$$\begin{cases} R_1(\gamma) &=& 0\\ &\vdots & \Longrightarrow \exists \alpha, \end{cases} \begin{cases} f_1(\alpha) &=& 0\\ &\vdots & \\ f_s(\alpha) &=& 0 \end{cases}$$

Two Univariate Polynomials

$$\label{eq:power_power} P = \sum_{i=0}^m p_i X^i \qquad \text{, } Q = \sum_{j=0}^n q_j X^j \qquad :$$

Two Univariate Polynomials

$$P = \sum_{i=0}^m p_i X^i \qquad , \ Q = \sum_{j=0}^n q_j X^j \qquad :$$

$$R = \det \begin{pmatrix} p_m & \dots & p_0 \\ & \ddots & & \ddots \\ & p_m & \dots & p_0 \\ & q_n & \dots & q_0 \\ & \ddots & & \ddots \\ & & q_n & \dots & q_0 \end{pmatrix}$$

Two Univariate Polynomials

$$P = \sum_{i=0}^m p_i X^i \qquad , \ Q = \sum_{j=0}^n q_j X^j \qquad :$$

$$R = \det \begin{pmatrix} p_m & \dots & p_0 \\ & \ddots & & \ddots \\ & & p_m & \dots & p_0 \\ & & p_m & \dots & p_0 \\ & p_m & \dots & p_0 \\ & & p_m & \dots & p_0 \\ & p_m$$

→ Sylvester Matrix

Two Bivariate Polynomials

$$P = \sum_{i=0}^{m} p_i X^i Y^{m-i}, \ Q = \sum_{j=0}^{n} q_j X^j Y^{n-j}:$$

$$R = \det \begin{pmatrix} p_m & \dots & p_0 \\ & \ddots & & \ddots \\ & & p_m & \dots & p_0 \\ & & p_m & p_0 \\ & & &$$

→ Sylvester Matrix

Non trivial root?

Wlog, homogeneous polynomials, non trivial roots

- ► Wlog, homogeneous polynomials, non trivial roots
- $f_1, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n] \rightsquigarrow \text{a unique resultant polynomial}$

- ► Wlog, homogeneous polynomials, non trivial roots
- $f_1, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n] \rightsquigarrow \text{a unique resultant polynomial}$
 - Sylvester Matrix → Macaulay Matrix (exponential size)

- ► Wlog, homogeneous polynomials, non trivial roots
- $\, \, \vdash \, f_1, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n] \, \rightsquigarrow \text{a unique resultant polynomial}$
 - Sylvester Matrix → Macaulay Matrix (exponential size)
- > s polynomials $\neq n+1$ variables \rightsquigarrow several polynomials needed

- Wlog, homogeneous polynomials, non trivial roots
- ► $f_1, ..., f_{n+1} \in \mathbb{K}[X_0, ..., X_n] \rightsquigarrow$ a unique resultant polynomial

 Sylvester Matrix \rightsquigarrow Macaulay Matrix (exponential size)
- s polynomials $\neq n+1$ variables \rightsquigarrow several polynomials needed

$\mathsf{Resultant}(\mathbb{K})$

Input: $f_1, \dots, f_{n+1} \in \mathbb{K}[X_0, \dots, X_n]$, homogeneous

Question: Is there a nonzero $\alpha \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(\alpha) = 0$?

Macaulay matrices

 $\, \, \vdash \, f_1, \, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n],$ homogeneous, of degrees $d_1, \, \ldots, \, d_n$

$$D = \sum_{i} (d_i - 1), \, \mathcal{M}_D^n = \{ X_0^{\alpha_0} \cdots X_n^{\alpha_n} : \alpha_0 + \ldots + \alpha_n = D \}$$

Macaulay matrices

- $\, \, \vdash \, f_1, \, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n],$ homogeneous, of degrees $d_1, \, \ldots, \, d_n$
- $D = \sum_{i} (d_i 1), \, \mathcal{M}_D^n = \{ X_0^{\alpha_0} \cdots X_n^{\alpha_n} : \alpha_0 + \ldots + \alpha_n = D \}$

Definition

The first Macaulay matrix is defined as follows:

- ▶ Its rows and columns are indexed by M_D^n ;
- ightharpoonup The row indexed by X^{α} represents

$$\frac{X^{\alpha}}{X_{i}^{d_{i}}}f_{i}\text{, where }i=\text{min}\{j:d_{j}\leqslant\alpha_{j}\}.$$

Other Macaulay matrices are defined by reordering the fi's.

Macaulay matrices

- $\, \, \, \, \, \, \, f_1, \, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n],$ homogeneous, of degrees $d_1, \, \ldots, \, d_n$
- $D = \sum_{i} (d_{i} 1), \, \mathcal{M}_{D}^{n} = \{ X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}} : \alpha_{0} + \ldots + \alpha_{n} = D \}$

Definition

The first Macaulay matrix is defined as follows:

- ▶ Its rows and columns are indexed by M_D^n ;
- ightharpoonup The row indexed by X^{α} represents

$$\frac{X^{\alpha}}{X_{i}^{d_{i}}}f_{i}\text{, where }i=\text{min}\{j:d_{j}\leqslant\alpha_{j}\}.$$

Other Macaulay matrices are defined by reordering the fi's.

Resultant : GCD of the determinants of n Macaulay matrices

Canny's upper bound

Theorem [Canny'87]

The resultant is computable in polynomial space.

Canny's upper bound

Theorem [Canny'87]

The resultant is computable in polynomial space.

Proof idea.

- The resultant can be expressed as det(M)/det(N), where M is Macaulay, and N a submatrix of M;
- An entry of M (resp. N) can be computed in polynomial time;
- The determinant can be computed in logarithmic space.

Large determinants

Theorem

[G.-Koiran-Portier'10-13]

- Macaulay matrices can be represented by polynomial-size boolean circuits.
- ▶ Deciding the nullity of the determinant of a matrix represented by a boolean circuit is PSPACE-complete (over any field).

Large determinants

Theorem

[G.-Koiran-Portier'10-13]

- ► Macaulay matrices can be represented by polynomial-size boolean circuits.
- ▶ Deciding the nullity of the determinant of a matrix represented by a boolean circuit is PSPACE-complete (over any field).

Proof idea.

- Let $\mathfrak M$ be a PSPACE Turing Machine;
- Let $\mathfrak{G}_{\mathfrak{M}}^{\mathbf{x}}$ its graph of configurations:
 - initial configuration c_i,
 - accepting configuration c_{lpha} ;
- $horall \ \mathcal{G}^{x}_{\mathfrak{M}}$ can be represented by a boolean circuit;
- There exists a path $c_i \rightsquigarrow c_a$ in $\mathcal{G}^x_{\mathcal{M}}$ iff $x \in \mathcal{L}(\mathcal{M})$;
- Let $A \simeq$ adjacency matrix of $\mathcal{G}_{\mathcal{M}}^{x}$:

$$\det(A) \neq 0 \iff \exists c_i \leadsto c_\alpha.$$

The resultant in Valiant's model of computation

Theorem

In Valiant's algebraic model of computation:

- ► The resultant belongs to VPSPACE, [Koiran-Perifel'07]
- ▶ Determinants of *succinctly represented* matrices is VPSPACE-complete.

[Malod'11]

Upper bounds

▶ $PolSys(\mathbb{F}_p) \in PSPACE$

Upper bounds

▶ $PolSys(\mathbb{F}_p) \in PSPACE$

 $\implies \mathsf{HomPolSys}(\mathbb{F}_p), \mathsf{Resultant}(\mathbb{F}_p) \in \mathsf{PSPACE}$

Proof. Remove the unwanted zero root:

- New variables $Y_0, ..., Y_n$
- New polynomial $\sum_{i} X_{i}Y_{i} 1$ to the system.

Upper bounds

- ▶ $PolSys(\mathbb{F}_p) \in PSPACE$
 - $\Longrightarrow \mathsf{HomPolSys}(\mathbb{F}_p), \mathsf{Resultant}(\mathbb{F}_p) \in \mathsf{PSPACE}$
- ▶ Under GRH, $PolSys(\mathbb{Z}) \in AM$

[Koiran'96]

Upper bounds

- ▶ $PolSys(\mathbb{F}_p) \in PSPACE$
 - $\implies \mathsf{HomPolSys}(\mathbb{F}_p), \mathsf{Resultant}(\mathbb{F}_p) \in \mathsf{PSPACE}$
- ▶ Under GRH, $PolSys(\mathbb{Z}) \in AM$

[Koiran'96]

 \implies HomPolSys(\mathbb{Z}), Resultant(\mathbb{Z}) \in AM

- Let $f = (f_1, \dots, f_s)$, with $f_i \in \mathbb{Z}[X_1, \dots, X_n]$;
- Let $\mathcal{P}(x)$ be the set of prime numbers $\leq x$;
- Let $\mathcal{P}_f(x)$ be the set of prime numbers $\leq x$, s.t. f has a root mod p.

- Let $f = (f_1, \dots, f_s)$, with $f_i \in \mathbb{Z}[X_1, \dots, X_n]$;
- Let $\mathcal{P}(x)$ be the set of prime numbers $\leq x$;
- Let $\mathcal{P}_f(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root mod p.

Theorem [Koiran'96]

There exist polynomial-time computable A and x_0 s.t.

- ▶ If f has no root in \mathbb{C} , then $\#\mathcal{P}_f(x_0) \leqslant A$;
- ▶ If f has a root in \mathbb{C} , then $\#\mathcal{P}_f(x_0) \ge 8A(\log A + 3)$.

- Let $f = (f_1, \dots, f_s)$, with $f_i \in \mathbb{Z}[X_1, \dots, X_n]$;
- Let $\mathcal{P}(x)$ be the set of prime numbers $\leq x$;
- Let $\mathcal{P}_f(x)$ be the set of prime numbers $\leq x$, s.t. f has a root mod p.

Theorem [Koiran'96]

There exist polynomial-time computable A and x_0 s.t.

- ▶ If f has no root in \mathbb{C} , then $\#\mathcal{P}_f(x_0) \leqslant A$;
- ▶ If f has a root in \mathbb{C} , then $\#\mathcal{P}_f(x_0) \geqslant 8A(\log A + 3)$.

Algorithm.

- 1. Compute A, x_0 ;
- 2. Take a random hash function $h: \mathcal{P}(x_0) \to \{0, 1\}^{2+\lceil \log A \rceil}$;
- 3. Check whether there exist $x, y \in \mathcal{P}_f(x_0)$ s.t. h(x) = h(y);

- Let $f = (f_1, \dots, f_s)$, with $f_i \in \mathbb{Z}[X_1, \dots, X_n]$;
- Let $\mathcal{P}(x)$ be the set of prime numbers $\leq x$;
- Let $\mathcal{P}_f(x)$ be the set of prime numbers $\leq x$, s.t. f has a root mod p.

Theorem [Koiran'96]

There exist polynomial-time computable A and x_0 s.t.

- ▶ If f has no root in \mathbb{C} , then $\#\mathcal{P}_f(x_0) \leqslant A$;
- ▶ If f has a root in \mathbb{C} , then $\#\mathcal{P}_f(x_0) \geqslant 8A(\log A + 3)$.

Algorithm.

- 1. Compute A, x_0 ;
- 2. Take a random hash function $h: \mathcal{P}(x_0) \to \{0, 1\}^{2+\lceil \log A \rceil}$;
- 3. Check whether there exist $x, y \in \mathcal{P}_f(x_0)$ s.t. h(x) = h(y); $\leftarrow NP$

- Let $f = (f_1, \dots, f_s)$, with $f_i \in \mathbb{Z}[X_1, \dots, X_n]$;
- ▶ Let $\mathcal{P}(x)$ be the set of prime numbers $\leq x$;
- Let $\mathcal{P}_f(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root mod p.

Theorem [Koiran'96]

There exist polynomial-time computable A and x_0 s.t.

- ▶ If f has no root in \mathbb{C} , then $\#\mathcal{P}_f(x_0) \leqslant A$;
- ▶ If f has a root in \mathbb{C} , then $\#\mathcal{P}_f(x_0) \geqslant 8A(\log A + 3)$.

Algorithm.

- 1. Compute A, x_0 ;
- 2. Take a random hash function $h: \mathcal{P}(x_0) \to \{0,1\}^{2+\lceil \log A \rceil}$;
- 3. Check whether there exist $x,y \in \mathcal{P}_f(x_0)$ s.t. h(x) = h(y); $\leftarrow \mathsf{NP}$
 - \circ proba. 1 if f has a root in \mathbb{C} ;
 - proba. $\leqslant 1/4$ if f has no root in \mathbb{C} .

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition [Folklore]

For p=0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition [Folklore]

For p=0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proof. Case HomPolSys(\mathbb{F}_p), with $p \neq 2$:

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition

[Folklore]

For p=0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proof. Case HomPolSys(\mathbb{F}_p), with $p \neq 2$:

Boolsys

- ▶ Boolean variables $u_1, ..., u_n$
- Equations
 - $u_i = True$
 - $u_i = \neg u_j$
 - $\bullet \ u_i = u_j \vee u_k$

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition

[Folklore]

For p=0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proof. Case HomPolSys(\mathbb{F}_p), with $p \neq 2$:

Boolsys

- ▶ Boolean variables $u_1, ..., u_n$
- Equations
 - $u_i = True$
 - $u_i = \neg u_j$
 - $\bullet \ u_i = u_j \vee u_k$

- ▶ Variables (over \mathbb{F}_p) X_0 and X_1, \dots, X_n
- ▶ Polynomials $X_0^2 X_i^2$ for every i > 0 and

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition

[Folklore]

For p=0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proof. Case HomPolSys(\mathbb{F}_p), with $p \neq 2$:

Boolsys

- ▶ Boolean variables $u_1, ..., u_n$
- Equations
 - $u_i = True$
 - $u_i = \neg u_j$
 - $u_i = u_j \vee u_k$

- ▶ Variables (over \mathbb{F}_p) X_0 and X_1, \dots, X_n
- ▶ Polynomials $X_0^2 X_i^2$ for every i > 0 and
 - $\bullet \ X_0 \cdot (X_\mathfrak{i} + X_0)$

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition

[Folklore]

For p=0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proof. Case HomPolSys(\mathbb{F}_p), with $p \neq 2$:

Boolsys

- ▶ Boolean variables $u_1, ..., u_n$
- Equations
 - $u_i = True$
 - $u_i = \neg u_j$
 - $u_i = u_j \vee u_k$

- ▶ Variables (over \mathbb{F}_p) X_0 and X_1, \dots, X_n
- ▶ Polynomials $X_0^2 X_i^2$ for every i > 0 and
 - $\bullet \ X_0 \cdot (X_\mathfrak{i} + X_0)$
 - $\bullet \ X_0 \cdot (X_i + X_j)$

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition

[Folklore]

For p=0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proof. Case HomPolSys(\mathbb{F}_p), with $p \neq 2$:

Boolsys

- ▶ Boolean variables $u_1, ..., u_n$
- Equations
 - $u_i = True$
 - $u_i = \neg u_j$
 - $\bullet \ u_i = u_j \vee u_k$

- ▶ Variables (over \mathbb{F}_p) X_0 and X_1, \dots, X_n
- ▶ Polynomials $X_0^2 X_i^2$ for every i > 0 and
 - $\bullet \ X_0 \cdot (X_\mathfrak{i} + X_0)$
 - $X_0 \cdot (X_i + X_j)$
 - $(X_i + X_0)^2 (X_j + X_0) \cdot (X_k + X_0)$

Proposition	[Heintz-Morgenstern'93]
RESULTANT(\mathbb{Z}) is NP-hard.	

Proposition

[Heintz-Morgenstern'93]

RESULTANT(\mathbb{Z}) is NP-hard.

Proposition

[Heintz-Morgenstern'93]

RESULTANT(\mathbb{Z}) is NP-hard.

$$\begin{aligned} \text{Proof. Partition: } S = \{u_1, \dots, u_n\} \subseteq \mathbb{Z} \text{, } \exists ? \ S' \subseteq S \text{, } \sum_{i \in S'} u_i = \sum_{j \notin S'} u_j \\ & \qquad \qquad \begin{cases} X_1^2 - X_0^2 & = & 0 \\ & & \vdots \\ X_n^2 - X_0^2 & = & 0 \\ u_1 X_1 + \dots + u_n X_n & = & 0 \end{aligned}$$

Proposition

[Heintz-Morgenstern'93]

RESULTANT(\mathbb{Z}) is NP-hard.

	PolSys	HomPolSys	RESULTANT
\mathbb{Z}	NP-hard	NP-hard	NP-hard
\mathbb{F}_p	NP-hard	NP-hard	Open

 $\begin{tabular}{ll} $ \vdash \mathsf{HomPolSys}(\mathbb{F}_p)$ is $\mathsf{NP-hard}$: \\ & \# \mathsf{homogeneous} \mathsf{\ polynomials} \geqslant \# \mathsf{\ variables} \end{tabular}$

- ▶ Variables X_0 and $X_1, ..., X_n$ over \mathbb{F}_p
- ▶ Polynomials $X_0^2 X_i^2$ for every i > 0 and
 - $\bullet \ X_0 \cdot (X_\mathfrak{i} + X_0)$
 - $X_0 \cdot (X_i + X_j)$
 - $(X_i + X_0)^2 (X_j + X_0) \cdot (X_k + X_0)$

- ► HomPolSys (\mathbb{F}_p) is NP-hard: # homogeneous polynomials \geqslant # variables
- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

- ▶ Variables X_0 and $X_1, ..., X_n$ over \mathbb{F}_p
- ▶ Polynomials $X_0^2 X_i^2$ for every i > 0 and
 - $\bullet \ X_0 \cdot (X_i + X_0)$
 - $X_0 \cdot (X_i + X_j)$
 - $(X_i + X_0)^2 (X_j + X_0) \cdot (X_k + X_0)$

- ► HomPoιSys(\mathbb{F}_p) is NP-hard:
 # homogeneous polynomials \geqslant # variables
- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

- ▶ Variables X_0 and $X_1, ..., X_n$ over \mathbb{F}_p
- ▶ Polynomials $X_0^2 X_i^2$ for every i > 0 and
 - $X_0 \cdot (X_i + X_0)$
 - $X_0 \cdot (X_i + X_i)$
 - $(X_i + X_0)^2 (X_j + X_0) \cdot (X_k + X_0)$

For f_1, \ldots, f_s homogeneous of degree 2,

$$g_i := \sum_{j=1}^s \alpha_{ij} f_j, 0 \leqslant i \leqslant n.$$

For f_1, \ldots, f_s homogeneous of degree 2,

$$g_i := \sum_{j=1}^s \alpha_{ij} f_j, 0 \leqslant i \leqslant n.$$

$$\qquad \forall \alpha \in \overline{\mathbb{F}_p}^{n+1} \Big(\forall j, f_j(\alpha) = 0 \quad \Longrightarrow \quad \forall i, g_i(\alpha) = 0 \Big) \\$$

For f_1, \ldots, f_s homogeneous of degree 2,

$$g_i := \sum_{j=1}^s \alpha_{ij} f_j, 0 \leqslant i \leqslant n.$$

$$\forall \alpha \in \overline{\mathbb{F}_p}^{n+1} \Big(\forall j, f_j(\alpha) = 0 \ \iff \forall i, g_i(\alpha) = 0 \Big)$$
 if α_{ij} algebraically independent

For f_1, \ldots, f_s homogeneous of degree 2,

$$g_i := \sum_{j=1}^s \alpha_{ij} f_j, 0 \leqslant i \leqslant n.$$

$$\forall \alpha \in \overline{\mathbb{F}_p}^{n+1} \left(\forall j, f_j(\alpha) = 0 \right] \iff \forall i, g_i(\alpha) = 0$$
 if α_{ij} algebraically independent

Replace algebraic independence by random choice

Two useful results

Effective Bertini Theorem

Let $f_1, ..., f_s$ and $g_0, ..., g_n$ be as on previous slide. Then there exists a polynomial F of degree at most 3^{n+1} s.t.

$$F(\alpha) \neq 0 \implies \forall \alpha (\forall i, f_i(\alpha) = 0 \iff \forall j, g_j(\alpha) = 0).$$

Two useful results

Effective Bertini Theorem

Let $f_1, ..., f_s$ and $g_0, ..., g_n$ be as on previous slide. Then there exists a polynomial F of degree at most 3^{n+1} s.t.

$$F(\alpha) \neq 0 \implies \forall \alpha (\forall i, f_i(\alpha) = 0 \iff \forall j, g_j(\alpha) = 0).$$

Lemma

[DeMillo-Lipton, Zippel, Schwartz (1978-80)]

Let $F \in \mathbb{F}_q[X_0,\ldots,X_n]$ be nonzero, of degree d. If A_0,\ldots,A_n are chosen independently at random in \mathbb{F}_q , then

$$\mathbb{P}[F(A_0,\ldots,A_n)=0]\leqslant \frac{d}{q}$$

1. Build an extension \mathbb{L}/\mathbb{F}_p with at least 3^{n+2} elements; [Shoup'90]

- 1. Build an extension \mathbb{L}/\mathbb{F}_p with at least 3^{n+2} elements; [Shoup'90]
- 2. Choose the α_{ij} 's independently at random in \mathbb{L} ;

- 1. Build an extension \mathbb{L}/\mathbb{F}_p with at least 3^{n+2} elements; [Shoup'90]
- 2. Choose the α_{ij} 's independently at random in \mathbb{L} ;
- 3. Define, for $0 \leqslant i \leqslant n$, $g_i = \sum_i \alpha_{ij} f_j$.

- 1. Build an extension \mathbb{L}/\mathbb{F}_p with at least 3^{n+2} elements; [Shoup'90]
- 2. Choose the α_{ij} 's independently at random in \mathbb{L} ;
- 3. Define, for $0 \le i \le n$, $g_i = \sum_j \alpha_{ij} f_j$.

- 1. Build an extension \mathbb{L}/\mathbb{F}_p with at least 3^{n+2} elements; [Shoup'90]
- 2. Choose the α_{ij} 's independently at random in \mathbb{L} ;
- 3. Define, for $0 \leqslant i \leqslant n$, $g_i = \sum_j \alpha_{ij} f_j$.
- $f_i(\mathbf{a}) = 0 \implies g_i(\mathbf{a}) = 0$
- If the f_i have no common root,

$$\mathbb{P}\left[\text{the }g_{\mathfrak{i}}\text{ have a common root}\right]=\mathbb{P}\left[\mathsf{F}(\pmb{\alpha})=0\right]\leqslant\frac{1}{3}$$

- 1. Build an extension \mathbb{L}/\mathbb{F}_p with at least 3^{n+2} elements; [Shoup'90]
- 2. Choose the α_{ij} 's independently at random in \mathbb{L} ;
- 3. Define, for $0 \leqslant i \leqslant n$, $g_i = \sum_j \alpha_{ij} f_j$.
- $f_i(\mathbf{a}) = 0 \implies g_i(\mathbf{a}) = 0$
- If the fi have no common root,

$$\mathbb{P}\left[\text{the }g_{\mathfrak{i}}\text{ have a common root}\right]=\mathbb{P}\left[F(\alpha)=0\right]\leqslant\frac{1}{3}$$

Theorem

[G.-Koiran-Portier'10-13]

Let p be a prime number. Resultant(\mathbb{F}_q) is NP-hard for degree-2 polynomials for some $q=p^s$, under randomized reductions.

- ► HomPolSys(\mathbb{F}_p) is NP-hard:
 # homogeneous polynomials \geqslant # variables
- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

- ▶ Variables X_0 and $X_1, ..., X_n$ over \mathbb{F}_p
- ▶ Polynomials $X_0^2 X_i^2$ for every i > 0 and
 - $\bullet \ X_0 \cdot (X_i + X_0)$
 - $X_0 \cdot (X_i + X_i)$
 - $(X_i + X_0)^2 (X_j + X_0) \cdot (X_k + X_0)$

- $\mathsf{HomPolSys}(\mathbb{F}_p)$ is NP-hard:
 - # homogeneous polynomials $\geqslant \#$ variables

- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

- ▶ Variables X_0 and $X_1, ..., X_n$ over \mathbb{F}_p
- ▶ Polynomials $X_0^2 X_i^2$ for every i > 0 and

$$f_1, \ldots, f_n$$

$$\bullet \ X_0 \cdot (X_i + X_0)$$

•
$$X_0 \cdot (X_i + X_j)$$

$$f_{n+1},\dots,f_s$$

•
$$(X_i + X_0)^2 - (X_j + X_0) \cdot (X_k + X_0)$$

New variables: Y_1, \ldots, Y_{s-n-1}

New system				
g(X,Y) =				

New variables: Y_1, \dots, Y_{s-n-1}

New system
$$g(X,Y) = \left(\begin{array}{c} f_1(X) \\ \vdots \\ f_n(X) \end{array} \right)$$
 (unchanged)

New variables: Y_1, \ldots, Y_{s-n-1}

$$g(\textbf{X},\textbf{Y}) = \begin{pmatrix} f_1(\textbf{X}) \\ \vdots & \text{(unchanged)} \\ f_n(\textbf{X}) \\ f_{n+1}(\textbf{X}) \\ \end{pmatrix}$$

New variables: Y_1, \ldots, Y_{s-n-1}

New system

$$g(\mathbf{X}, \mathbf{Y}) = \begin{pmatrix} f_1(\mathbf{X}) \\ \vdots & \text{(unchanged)} \\ f_n(\mathbf{X}) \\ f_{n+1}(\mathbf{X}) & +\lambda Y_1^2 \\ f_{n+2}(\mathbf{X}) & -Y_1^2 & +\lambda Y_2^2 \end{pmatrix}$$

New variables: Y_1, \ldots, Y_{s-n-1}

$$g(\textbf{X},\textbf{Y}) = \left(\begin{array}{c} f_1(\textbf{X}) \\ \vdots \\ f_n(\textbf{X}) \\ f_{n+1}(\textbf{X}) \\ f_{n+2}(\textbf{X}) \\ -Y_1^2 \\ +\lambda Y_2^2 \\ \vdots \\ f_{s-1}(\textbf{X}) -Y_{s-n-2}^2 + \lambda Y_{s-n-1}^2 \\ \end{array} \right)$$

New variables: Y_1, \ldots, Y_{s-n-1}

$$g(X,Y) = \begin{pmatrix} f_1(X) \\ \vdots & \text{(unchanged)} \\ f_n(X) \\ f_{n+1}(X) & + \lambda Y_1^2 \\ f_{n+2}(X) & -Y_1^2 & + \lambda Y_2^2 \\ \vdots \\ f_{s-1}(X) & -Y_{s-n-2}^2 + \lambda Y_{s-n-1}^2 \\ f_s(X) & -Y_{s-n-1}^2 \end{pmatrix}$$

New variables: Y_1, \ldots, Y_{s-n-1}

New system
$$g(X,Y) = \begin{pmatrix} f_1(X) \\ \vdots & \text{(unchanged)} \\ f_n(X) \\ f_{n+1}(X) & + \lambda Y_1^2 \\ f_{n+2}(X) & -Y_1^2 & + \lambda Y_2^2 \\ \vdots \\ f_{s-1}(X) & -Y_{s-n-2}^2 + \lambda Y_{s-n-1}^2 \\ f_s(X) & -Y_{s-n-1}^2 \end{pmatrix}$$

 $a \text{ root of } f \Longrightarrow (a, 0) \text{ root of } g$

(a,b) non trivial root of $g \stackrel{?}{\Longrightarrow} a$ non trivial root of f

$$\begin{pmatrix} f_{1}(\alpha) \\ \vdots \\ f_{n}(\alpha) \\ f_{n+1}(\alpha) & +\lambda b_{1}^{2} \\ f_{n+2}(\alpha) & -b_{1}^{2} & +\lambda b_{2}^{2} \\ \vdots \\ f_{s-1}(\alpha) -b_{s-n-2}^{2} + \lambda b_{s-n-1}^{2} \\ f_{s}(\alpha) & -b_{s-n-1}^{2} \end{pmatrix}$$

(a,b) non trivial root of $g \stackrel{?}{\Longrightarrow} a$ non trivial root of f

```
\begin{pmatrix} f_{1}(a) \\ \vdots \\ f_{n}(a) \\ f_{n+1}(a) & +\lambda b_{1}^{2} \\ f_{n+2}(a) & -b_{1}^{2} & +\lambda b_{2}^{2} \\ \vdots \\ f_{s-1}(a) -b_{s-n-2}^{2} + \lambda b_{s-n-1}^{2} \\ f_{s}(a) & -b_{s-n-1}^{2} \end{pmatrix}
```

$$a = 0 \implies b = 0$$

(a,b) non trivial root of $g \stackrel{?}{\Longrightarrow} a$ non trivial root of f

```
\begin{pmatrix} f_{1}(\mathbf{a}) \\ \vdots \\ f_{n}(\mathbf{a}) \\ f_{n+1}(\mathbf{a}) + \lambda b_{1}^{2} \\ f_{n+2}(\mathbf{a}) - b_{1}^{2} + \lambda b_{2}^{2} \\ \vdots \\ f_{s-1}(\mathbf{a}) - b_{s-n-2}^{2} + \lambda b_{s-n-1}^{2} \\ f_{s}(\mathbf{a}) - b_{s-n-1}^{2} \end{pmatrix}
```

$$a = 0 \implies b = 0$$

$$\alpha_0 = 1$$
 and $\alpha_i = \pm 1$

 $(\mathfrak{a},\mathfrak{b})$ non trivial root of $\mathfrak{g} \stackrel{?}{\Longrightarrow} \mathfrak{a}$ non trivial root of f

$$\begin{pmatrix} f_{1}(\mathbf{a}) \\ \vdots \\ f_{n}(\mathbf{a}) \\ f_{n+1}(\mathbf{a}) + \lambda b_{1}^{2} \\ f_{n+2}(\mathbf{a}) - b_{1}^{2} + \lambda b_{2}^{2} \\ \vdots \\ f_{s-1}(\mathbf{a}) - b_{s-n-2}^{2} + \lambda b_{s-n-1}^{2} \\ f_{s}(\mathbf{a}) - b_{s-n-1}^{2} \end{pmatrix}$$

$$a = 0 \implies b = 0$$

$$\qquad \qquad \alpha_0 = 1 \text{ and } \alpha_i = \pm 1$$

$$ho_i = f_{n+i}(a)$$

$$\begin{pmatrix} \epsilon_{1} & +\lambda b_{1}^{2} \\ \epsilon_{2} & -b_{1}^{2} & +\lambda b_{2}^{2} \\ \vdots \\ \epsilon_{s-n-2} - b_{s-n-2}^{2} + \lambda b_{s-n-1}^{2} \\ \epsilon_{s-n-1} - b_{s-n-1}^{2} \end{pmatrix}$$

$$a = 0 \implies b = 0$$

$$\begin{array}{c} \succ \ \alpha_0 = 1 \ \text{and} \ \alpha_i = \pm 1 \\ \\ \succ \ \varepsilon_i = f_{n+i}(\alpha) \end{array}$$

$$\epsilon_i = f_{n+i}(\mathbf{a})$$

$$\begin{pmatrix} \epsilon_{1} & +\lambda b_{1}^{2} \\ \epsilon_{2} & -b_{1}^{2} & +\lambda b_{2}^{2} \\ \vdots \\ \epsilon_{s-n-2} - b_{s-n-2}^{2} + \lambda b_{s-n-1}^{2} \\ \epsilon_{s-n-1} - b_{s-n-1}^{2} \end{pmatrix}$$

$$a = 0 \implies b = 0$$

$$\alpha_0 = 1$$
 and $\alpha_i = \pm 1$

$$\epsilon_{i} = f_{n+i}(a)$$

$$B_{i} = b_{i}^{2}$$

$$B_i = b_i^2$$

$$\begin{pmatrix} \epsilon_1 & +\lambda B_1 \\ \epsilon_2 & -B_1 & +\lambda B_2 \\ \vdots \\ \epsilon_{s-n-2} - B_{s-n-2} + \lambda B_{s-n-1} \\ \epsilon_{s-n-1} - B_{s-n-1} \end{pmatrix}$$

$$a = 0 \implies b = 0$$

$$\begin{array}{c|c} & \alpha_0=1 \text{ and } \alpha_i=\pm 1 \\ \\ & \varepsilon_i=f_{n+i}(\alpha) \\ \\ & B_i=b_i^2 \end{array}$$

$$\epsilon_i = f_{n+i}(a)$$

$$B_i = b_i^2$$

$$\begin{pmatrix}
\epsilon_1 & +\lambda B_1 \\
\epsilon_2 & -B_1 & +\lambda B_2 \\
\vdots \\
\epsilon_{s-n-2} - B_{s-n-2} + \lambda B_{s-n-1} \\
\epsilon_{s-n-1} - B_{s-n-1}
\end{pmatrix}$$

$$a = 0 \implies b = 0$$

$$\alpha_0 = 1$$
 and $\alpha_i = \pm 1$

$$\begin{array}{c}
\varepsilon_{i} = f_{n+i}(\alpha) \\
> B_{i} = b_{i}^{2}
\end{array}$$

$$B_i = b_i^2$$

$$det = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_{s-n} \lambda^{s-n-1} \right)$$

$$a = 0 \implies b = 0$$

$$\triangleright$$
 $\alpha_0=1$ and $\alpha_i=\pm 1$

$$\begin{array}{l}
\epsilon_i = f_{n+i}(\mathfrak{a}) \\
> B_i = b_i^2
\end{array}$$

$$B_i = b_i^2$$

$$\mathsf{det} = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_{s-n} \lambda^{s-n-1} \right)$$

$$\det = 0 \stackrel{?}{\Longrightarrow} \forall i, \ \epsilon_i = 0 \implies f_1(\alpha) = \cdots = f_s(\alpha) = 0$$

$$\det = \pm \left(\epsilon_1 + \epsilon_2 \lambda + \dots + \epsilon_N \lambda^{N-1} \right)$$

Compute an irreducible polynomial $P \in \mathbb{F}_p[\xi]$ of degree N; [Shoup'90]

$$\det = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_N \lambda^{N-1} \right)$$

- Compute an irreducible polynomial $P \in \mathbb{F}_p[\xi]$ of degree N; [Shoup'90]
- $\qquad \qquad \text{Let } \mathbb{L} = \mathbb{F}_p[\xi]/(P) \text{ and } \lambda = \xi \in \mathbb{L}.$

$$\det = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_N \lambda^{N-1} \right)$$

- Compute an irreducible polynomial $P \in \mathbb{F}_p[\xi]$ of degree N; [Shoup'90]
- $\qquad \qquad \text{Let } \mathbb{L} = \mathbb{F}_p[\xi]/(P) \text{ and } \lambda = \xi \in \mathbb{L}.$
- In the extension \mathbb{L} , $\det = 0 \iff \epsilon_i = 0$ for all i.

$$det = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_N \lambda^{N-1} \right)$$

- Compute an irreducible polynomial $P \in \mathbb{F}_p[\xi]$ of degree N; [Shoup'90]
- ▶ Let $\mathbb{L} = \mathbb{F}_p[\xi]/(P)$ and $\lambda = \xi \in \mathbb{L}$.
- In the extension \mathbb{L} , $det = 0 \iff \epsilon_i = 0$ for all i.
- For coefficients in \mathbb{F}_p instead of \mathbb{L} : "put P inside the system"

$$\mathsf{det} = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_N \lambda^{N-1} \right)$$

- Compute an irreducible polynomial $P \in \mathbb{F}_p[\xi]$ of degree N; [Shoup'90]
- $\qquad \qquad \text{Let } \mathbb{L} = \mathbb{F}_p[\xi]/(P) \text{ and } \lambda = \xi \in \mathbb{L}.$
- In the extension \mathbb{L} , $\det = 0 \iff \epsilon_i = 0$ for all i.
- ${}^{\backprime}$ For coefficients in \mathbb{F}_p instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier'10-13]

Let p be a prime number.

$$\mathsf{det} = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_N \lambda^{N-1} \right)$$

- Compute an irreducible polynomial $P \in \mathbb{F}_p[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L} = \mathbb{F}_p[\xi]/(P)$ and $\lambda = \xi \in \mathbb{L}$.
- In the extension \mathbb{L} , $\det = 0 \iff \epsilon_i = 0$ for all i.
- ${}^{\backprime}$ For coefficients in \mathbb{F}_p instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier' 10-13]

Let p be a prime number.

▶ Resultant(\mathbb{F}_p) is NP-hard for linear-degree polynomials.

$$\mathsf{det} = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_N \lambda^{N-1} \right)$$

- Compute an irreducible polynomial $P \in \mathbb{F}_p[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L} = \mathbb{F}_p[\xi]/(P)$ and $\lambda = \xi \in \mathbb{L}$.
- In the extension L, $det = 0 \iff \epsilon_i = 0$ for all i.
- For coefficients in \mathbb{F}_p instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier'10-13]

Let p be a prime number.

- ightharpoonup Resultant(\mathbb{F}_p) is NP-hard for linear-degree polynomials.
- ▶ RESULTANT(\mathbb{F}_a) is NP-hard for degree-2 polynomials for some $\mathfrak{q}=\mathfrak{p}^{s}$.

Evaluation of the resultant:

- Evaluation of the resultant:
 - Computable in polynomial space;

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
 - In characteristic 0, in AM ("almost NP");

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
 - In characteristic 0, in AM ("almost NP");
 - In positive characteristic, in PSPACE;

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
 - In characteristic 0, in AM ("almost NP");
 - In positive characteristic, in PSPACE;
 - NP-hard in any characteristic;

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
 - In characteristic 0, in AM ("almost NP");
 - In positive characteristic, in PSPACE;
 - NP-hard in any characteristic;
 - No known difference between square and non-square systems.

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
 - In characteristic 0, in AM ("almost NP");
 - In positive characteristic, in PSPACE;
 - NP-hard in any characteristic;
 - No known difference between square and non-square systems.
- Some open problems:

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
 - In characteristic 0, in AM ("almost NP");
 - In positive characteristic, in PSPACE;
 - NP-hard in any characteristic;
 - No known difference between square and non-square systems.
- Some open problems:
 - NP-hardness for degree-2 polynomial systems in \mathbb{F}_p ?

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
 - In characteristic 0, in AM ("almost NP");
 - In positive characteristic, in PSPACE;
 - NP-hard in any characteristic;
 - No known difference between square and non-square systems.
- Some open problems:
 - NP-hardness for degree-2 polynomial systems in \mathbb{F}_p ?
 - Improve the PSPACE upper bound in positive characteristics...

- Evaluation of the resultant:
 - Computable in polynomial space;
 - Evidences for PSPACE-hardness;
 - Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
 - In characteristic 0, in AM ("almost NP");
 - In positive characteristic, in PSPACE;
 - NP-hard in any characteristic;
 - No known difference between square and non-square systems.
- Some open problems:
 - NP-hardness for degree-2 polynomial systems in \mathbb{F}_p ?
 - Improve the PSPACE upper bound in positive characteristics...
 - ... or the NP lower bound.