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Motivation: Enumerating discrete structures...

Counting walks in N with steps in {+1, —2}

d Cn—1,d + 2
cn := #{n steps walks starting at 0 and
ending at height 0} \
i \\ ,%Cn,d
fove) N // n
— n H 1
G(t) = ngo Cnt generating function Chot.d 1
Enumeration refinement DDE of order 2
Cn,d = # {n steps walks starting at 0 Cn,d = Cn—1,d—1 + Cp—1,d+2
and ending at height d} 1
>~ n ! p F(t,u)=1 +t-u-F(t,u)
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Motivation: Enumerating discrete structures...

Counting walks in N with steps in {+1, —2}

cn := #{n steps walks starting at 0 and

ending at height 0}
!
OO
G(t) := > cat”
n=0

Enumeration refinement

Cn,d = # {n steps walks starting at 0
and ending at height d}

oo &
F(t,u):= 3 > cpqudt”

n=0 d=0
complete generating function

Cn,0 = Cn
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generating function

d Cn—1,d + 2
,:ywcn,(l
Cn—1,d — 1

DDE of order 2

€n,d = €n—1,d—1 T Cn—1,d+2
i
F(t,u)=1 +t-u-F(t,u)
F(t,u) — F(t,0) — u-9,F(t,0)

+t
LI2

= F(t,0) = G(t)



... yields challenging computational problems

K effective field of characteristic 0. K=Q,Q(),.--

Starting point: F € K[u][[t]], solution of the discrete differential equation of order 2
F(t,u)=1+t-u-F(t,u)+t- AL F(t u),

where AF(t, u) := FEAZF0) 5ng AQ)F(t, u) = FHLU=FEY -0, F(L0)

u
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K effective field of characteristic 0. K=Q,Q(),.--

Starting point: F € K[u][[t]], solution of the discrete differential equation of order 2
F(t,u)=1+t-u-F(t,u)+t- APF(t,0),

where AF(t, u) := FED)=F(0) 5ng APF(t, ) = F(e, )_F(t’ol_ BuF(t0)
Interest: Nature of F(t,0).
Classical: F, F(t,0) and 9,F(t,0) are . [Bousquet-Mélou, Jehanne 06|
Goals:
e Compute a polynomial R € K[t, zp] \ {0} such that R(t, F(t,0)) = 0.

e Estimate the size of R for such DDEs.

e Complexity estimates (ops. in K) for the computation of R.



State of the art

Let k > 1, f € K[u] and Q € K[x,y1,...,yk, t,u]. For F € K[u][[t]], define
A(F) == (F — F(t,0))/u € K[][[t] and AD(F) := Ao AU=D(F).

Theorem [Bousquet-Mélou, Jehanne '06]
There exists a unique solution F € K[u][[t]] to

F(t,u) = f(u) + t- Q(F,A(F),...,AW(F), t,u), (DDE)

and moreover F(t,u) is over K(t, u).
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State of the art

Let k > 1, f € K[u] and Q € K[x,y1,...,yk, t,u]. For F € K[u][[t]], define
A(F) == (F — F(t,0))/u € K[][[t] and AD(F) := Ao AU=D(F).

Theorem [Bousquet-Mélou, Jehanne '06]
There exists a unique solution F € K[u][[t]] to

F(t,u) = f(u) + t- Q(F, A(F),..., A1(F), t, u), (DDE)
and moreover F(t,u) is over K(t, u).
[Tutte, Brown 60's], [Zeilberger '92]: Guess-and-prove
[Gessel, Zeilberger '14]: Guess-and-prove
[Brown '65], [Bender, Canfield '94]: Quadratic method
[Knuth '68], [Banderier, Flajolet '02], Kernel method (linear case)

[Bousquet-Mélou, Petkovsek '00]:

[Bousquet-Mélou, Jehanne '06]: Polynomial elimination
[Bostan, Chyzak, Polynomial elimination,
Notarantonio, Safey El Din '22]: Hybrid guess-and-prove
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Modelization: from (DDE) of order k to

We write P(u) = P(F(, u), F(£,0), ..., 05 "F(t,0),t,u) and K[[t+]] = Uy, Kl[t7]]

s N

[Bousquet-Mélou, Jehanne '06]:

Discrete Differential Equation
(DDE)

4 numer

P(u)=0

4 oy
OuF(t,u) - 01P(u) + 9,P(u) =0
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General idea:

u(t) € K[[t%]] \ K solution in u of & P(u) =0
4
(x, u) = (F(t,U),U) is a solution of

P(x, F(t,0),...,8* *F(t,0),t,u) =0,
01 P(x, F(t,0),...,0*1F(t,0),t,u) =0,
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Modelization: from (DDE) of order k to

We write P(u) = P(F(, u), F(£,0), ..., 05 "F(t,0),t,u) and K[[t+]] = Uy, Kl[t7]]

-

7

[Bousquet-Mélou, Jehanne '06]: General idea:

=L = L
Discrete Differential Equation U(t) € K[[t*]] \ K solution in u of &;P(u) =0

(DDE)
{
U« numer . .
(x, u) = (F(t,U),U) is a solution of
P(u)=0
P(x, F(t,0),...,8* *F(t,0),t,u) =0,
U ay 01 P(x, F(t,0),...,0*1F(t,0),t,u) =0,
8,P(x, F(t,0),...,8 1F(t,0), t,u) = 0.

OuF(t,u) - 01P(u) + 9,P(u) =0

The points

=L
(a,u) = (F(£,U1), Un), ..., (xe, ue) = (F(£,Up), Up) € R[[% 117
Ui(t),...,Ug(t) € are solutions of the conditions:

— 1 —
K[[t*]] \ K distinct -~ P(xi, F(t,0),...,0" 'F(t,0), t,u;) = 0,
solutions in u of V1<i<4e, S aP(x,F(t,0),...,05 F(t,0),t,u) =0,
01P(u) = 0 8,P(x:, F(£,0), ..., 8K 1F(£,0), t,u5) = 0.

and JT,_; (ui —u;) # 0.
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= Uys, K[[9]]

[Bousquet-Mélou, Jehanne '06]:
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General idea:

u(t) € K[[t%]] \ K solution in u of & P(u) =0
4
(x, u) = (F(t,U),U) is a solution of
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Ui(t),...,Ug(t) €
Rl[¢+]) \ K distinct
solutions in u of
nP(u) =0

(Xl, u1) = (F(t, U]), U])7 e

vi<i<e,

and T, (u;

01 P(x, F(t,0),...,0*1F(t,0),t,u) =0,
8,P(x, F(t,0),...,8 1F(t,0), t,u) = 0.
The points

(xe ug) = (F(£,Up), Up) € K[t ]P
are solutions of the conditions:
P(xi, F(t,0),...,0" 'F(t,0), t,u;) = 0,
91 P(x;, F(t,0),...,0 1 F(t,0), t,u;) = 0,
AuP(xi, F(t,0),...,0* 1F(t,0), t,u;) = 0.

—uj) #0. £ = k => 3k equations and 3k unknowns!




Our contributions

Flt,0) = F() + £ QF A(F), ..., AN(F), £, ) (DDE)
where A(F) := F(t,u)—F(,0)

u

Input: P := numerator(DDE),
Goal: Compute R € K[t, ] \ {0} s.t. R(t, F(t,0)) =0.
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Our contributions

F(t,u) = F(u) + t- Q(F, A(F), ... AW(F) 1, ), (DDE)
where A(F) := F(t,u)—F(,0)

u

Input: P := numerator(DDE),
Goal: Compute R € K[t, ] \ {0} s.t. R(t, F(t,0)) =0.

1. of Bousquet-Mélou and Jehanne's algorithm yielding:

e Theoretical estimate for the degree of R € K[t, z] s.t. R(t, F(t,0)) =0,
e Arithmetic complexity.

2. based on algebraic elimination + Grobner bases,

3. yielding practical improvements.
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An experimental observation... (Contribution 1)

Example: (walks in N with steps in {+1,—2})
We consider P(F(t, u), F(t,0),0,F(t,0),t,u) =0
? — (® —t(1 4 u®) - F(t,u) —t- F(t,0) — t - u-8,F(t,0) =0
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Hence (x1, u1, x2, up) = (F(t, Ur), Ui, F(t, U2), Us) is a solution of the constraints 7

P(xi, F(t,0),0,F(t,0),t,u;) =0,
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(x1, u1) and (x2, u2) does not change the solution set
= & on V(T) and the {zo, z1, t}-coordinate space.
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(x1, u1) and (x2, u2) does not change the solution set
= & on V(T) and the {zo, z1, t}-coordinate space.

of this group action?
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. yielding theoretical improvements (Contribution 1)

Denote by 7 the ideal generated by the k duplications of (P, 91 P, 8,P) and m - [](ui—u;j)—1 = 0.

i#j
Assume that:
o there exist k distinct solutions u = Ui,..., Ui € K[[t%]] of 81P(u) =0,
e T is radical and of dimension 0 over K(t). (3k equations and 3k unknowns)
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. yielding theoretical improvements (Contribution 1)

Denote by 7 the ideal generated by the k duplications of (P, 91 P, 8,P) and m - [](ui—u;j)—1 = 0.

i#j
Assume that:
o there exist k distinct solutions u = Ui,..., Ui € K[[t%]] of 81P(u) =0,
e T is radical and of dimension 0 over K(t). (3k equations and 3k unknowns)

Theorem [Bostan, N., Safey El Din '23]

e Let § := deg(P). There exists a nonzero polynomial R € K|[t, zg] whose partial
degrees are bounded by and such that R(t, F(t,0)) = 0.

e There exists an algorithm computing R in ops. in K.

Ideas of the proof:
— Bézout bound + & acts on V(Zgyp) and preserves the zp-coordinate space.

— Parametric geometric resolution [Schost '03], [Giusti, Lecerf, Salvy '01]
20 = V(t7 )‘)/8>\ W(tv )‘)7 W(t7 A) =0
— Change of monomial ordering:
Stickelberger’s theorem [Cox '21] R = Sqfree(Resy(zp - AW — V, W))
+ bivariate resultants [Villard '18], [van der Hoeven, Lecerf '21]
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of the problem (

Summary of the initial problem: zZ=1z,...,2—1; P = “numer“(DDE) € K(t)[x, u, z]

There exist k solutions (x,u) € K(t)2 with distinct u-coordinates to
P(x,u, F(t,0),...,05 'F(t,0)) =0,

O P(x,u, F(t,0),...,051F(t,0)) =0, u#0,
duP(x,u, F(t,0),...,0Kk"1F(t,0)) =o0.
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of the problem (

Summary of the initial problem: zZ=1z,...,2—1; P = “numer“(DDE) € K(t)[x, u, z]
There exist k solutions (x,u) € K(t)2 with distinct u-coordinates to
P(x,u, F(t,0),..., 8,7 F(t,0)) =0,
O P(x,u, F(t,0),...,051F(t,0)) =0, u#0,
duP(x,u, F(t,0),...,0Kk"1F(t,0)) =o0.
Define
i (ou,z) €D (u,2) €R(E) T
——k+1 ——k
m:(uz) K@) = (2) €K(D),
and consider W := 7, (V/(P, 91 P, 8,P) \ V(u)).

Objective:
Characterize with polynomial constraints

Fio = {az € K()"| # w5 (az)NW > k}




Getting some through our toy example...

Example: (Walks in N with steps in {+1, —2})
P :=(1—x)u?®+ tudx + t(x — 20 — uz1) € K(t)[x, u, 20, 1], k=2.

G, Grébner basis of (P,01P,8,P, mu — 1) NK[u, t, z9, z1] for {u} >=jex {t, 20, 21}:
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Getting some through our toy example...

Example: (Walks in N with steps in {+1, —2})
P :=(1—x)u?®+ tudx + t(x — 20 — uz1) € K(t)[x, u, 20, 1], k=2
G, Grébner basis of (P,01P,8,P, mu — 1) NK[u, t, z9, z1] for {u} >=jex {t, 20, 21}:
By : 70
31 - U+ 71

. . N
B;: : ,%i, B € K[t, 29, 1] “At (20, z1) fixed in K(t)",
there exist two distinct roots in u'

3 - u+ Yy
By: g := U2+/8r+1'u+7r+1

Necessary condition: Extension theorem:
At a € V(G, NK[t, zg, z1]) fixed, The pre-image of « by 7, is well-defined
there exist two roots in u —> LeadingCoeff,(g») # 0
= Bi,7 =0 (equations) Distinct roots in u = disc,(g2) # 0 (inequations)

After adding these constraints to G, and eliminating v and z;:
R(t,z9) = t323 — zg + 1 satisfies R(t, F(t,0)) =0

10/13



... yields an algorithm based on elimination theory (Contribution 2)

e Projecting:

David A. Cox

o Lifting points of the projections: Do e
Ideals,
Cardinality conditions on the fibers: Varletles, and
) ) Algorithms
° (Grobner bases version) Annoductionto Gmputtorsl

Algebraic Geometry and Commutative
—_— Algebra

o g(u,az) € K(t)[u] of degree k + j has at least k distinct roots
<= One of the (k x k)-minors of the
associated with g does not vanish at o

Q springer
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e Projecting:

David A. Cox

o Lifting points of the projections: Do e
Ideals,
Cardinality conditions on the fibers: Varletles, and
) ) Algorithms
° (Grobner bases version) It o gt
o g(u,az) € K(t)[u] of degree k + j has at least k distinct roots o
<= One of the (k x k)-minors of the .
associated with g does not vanish at o

[Bostan, N., Safey El Din /23] :
Conjunctions of and whose zero set is Fy
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yielding practical improvements

3-Tamari, k = 3 5-constellations, kK = 4
A T de [ dyy A T di | dyy
D 2d2h 5 16 D oo — —
DE 2m 5 16 DE [e] 26 e 53 e
HGP + DE 1h40m 5 16 HGP + DE 6h7m 2 B

e: data obtained after a computation mod p = 65521.
Intel@® Xeon@® Gold CPU 6246R v4 @
e A: Algorithm used (D: duplication, DE: direct elimination, HGP: Hybrid  3.40GHz and 1.5TB of RAM with a
Guess-and-Prove [Bostan, Chyzak, N., Safey El Din '22]), Sl Glirerd
Grébner bases computations are
performed using the C library msolve,
and all guessing computations are

e dz: degree in Z € {t,z} of output R € Q[t, z] s.t. R(t, F(t,a)) =0, performed using the gfun Maple package.

e T: total timing needed to obtain an output in Q[t, z],
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https://msolve.lip6.fr/
http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/

Conclusion and future works

Conclusion
° of the problem “solving a DDE",
° based on algebraic elimination and Grobner bases,
e Some practical results,
e (In the preprint) based on Stickelberger’s theorem.

Future works

Study the minimality and the genericity of the introduced assumptions,

for solving DDEs, together with a
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Hybrid Guess-and-prove

Input: P(F(t,u), F(t,0),...,05  F(£,0),t,u) = 0, § := deg(P).
Output: R € K]t, 2] \ {0} annihilating Fo = F(t,0), i.e. R(t, Fy) =0.
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Guess-and-prove

Input: P(F(t,u), F(t,0),...,05  F(£,0),t,u) = 0, § := deg(P).
Output: R € K]t, 2] \ {0} annihilating Fo = F(t,0), i.e. R(t, Fy) =0.

geometry

(1) Functional
equation

1

(2) Polynomial
system

1

(3) Bounds
e deg,(R) < b,
o deg, (R) < b:.
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Guess-and-prove

Input: P(F(t,u), F(t,0),...,05  F(£,0),t,u) = 0, § := deg(P).
Output: R € K]t, 2] \ {0} annihilating Fo = F(t,0), i.e. R(t, Fy) =0.

guess-and-prove

geometry
( 5
(1) Functional (4) Expand Fo
equation
s {
{ g .
( ~
5)C te R € K[t,
(2) Polynomial (5) ompuset [t, 2]
system R(t, ,_—0) _ O(thrbz)
\
1
f L
(3) Bounds
e deg,(R) < b,
o deg, (R) < b.. (6) Certify that R(t, Fo) = 0
\
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Guess-and-prove

Input: P(F(t,u), F(t,0),...,05  F(£,0),t,u) = 0, § := deg(P).
Output: R € K]t, 2] \ {0} annihilating Fo = F(t,0), i.e. R(t, Fy) =0.

guess-and-prove

geometry tools
i 4) E d F
(1) Func'tlonal ( ) xpand fo o Newton iteration
equation )
i '
' _ .
(2) Polynomial (®) ComputsetR € K[t, 2] o Algebraic approximants
system R(t, Fo) : b(thsz) “seriestoalgeq”
4 4
1 N
(3) Bounds e Multiplicity lemma:
o deg,(R) < br, R(t, F) = O(t™~2tb2)
implies R(t, Fp) =0
o deg, (R) < b.. (6) Certify that R(t, Fo) = 0 implies R(z, Fo)
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Solving our toy example using the strategy

Counting walks in N with steps in {+1, -2}

F(t,u) — F(t,0) — u- 8,F(t,0)
’ A
u

F(t,u)=1 +t-u-F(t,u)+t

e Draw a random ¢ = 1341, and a prime number p = 19541,

e Using the new algorithm based on elimination theory, we obtain:
e R(t,c) mod p = t3+ 15794,
e R(c,zp) mod p = z3 + 18182z + 1319.

e Set by =3, by =3,

e Compute
F(t,0) =1+ t3 + 3t + 1219 + 55¢12 4 273¢1% 4 1428t18 + O(¢2br b F1)

e Guess A:= 323 — z0 + 1 such that A(t, F(t,0)) = O(¢{br+1) (b +1)=1)
e Check that A(t, F(t,0)) = O(t>br b2 +1)

The output A is certified.

16 /13



