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Motivation: A non linear equation coming from combinatorics...

K effective field of characteristic 0. K=Q,Q(),.--

Starting point: F, solution in K[u][[t]] of the fixed point equation (FPE) of order 1
F(t,u) =1+ tu(uF(t, u)? + F(t, u) + AF(t, ),

where A is the divided difference operator AF(t, u) := w
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K effective field of characteristic 0. K=Q,Q(),.--

Starting point: F, solution in K[u][[t]] of the fixed point equation (FPE) of order 1
F(t,u) =1+ tu(uF(t, 0)? + F(t, u) + AF(t, 1)),
where A is the divided difference operator AF(t, u) := w

Interest: Nature of F(t,1).
Classical: F and F(t,1) are algebraic.
Goals:
e Compute a polynomial R € K|[t, z] \ {0} such that R(t, F(t,1)) = 0.

e Estimate the size of R for any (FPE).

e Complexity estimates (ops. in K) for the computation of R.
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...associated to planar maps enumeration

Count
cn = # {planar maps with n edges}
} refinement

Cn,d := # {planar maps with n edges,
d of them on the external face}
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Deletion-contraction of edges

(FPE) of order 1 [Tutte '68]

uF(t,u) — F(t,1)
e B ) — TG 2)

F(t,u) = 1+ tu?F(t, u)? + ti .

uF(t,u)—F(t,1)

1 tu?F(t, u)? tu —
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State of the art

Theorem [Bousquet-Mélou, Jehanne '06] see also [Popescu '86]
Let f € K[u] and Q € K[x, y, t,u]. Let F(t,u) be the unique solution in K[u][[t]] of

F(t,u) = f(u) + tQ(F(t, u), AF(t, u), t, u), (FPE)
where A is the divided difference operator AF := w

Then F is algebraic over K(t, u).
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Theorem [Bousquet-Mélou, Jehanne '06] see also [Popescu '86]
Let f € K[u] and Q € K[x, y, t,u]. Let F(t,u) be the unique solution in K[u][[t]] of

F(t,u) = f(u) + tQ(F(t, u), AF(t, u), t, u), (FPE)
where A is the divided difference operator AF := w

Then F is algebraic over K(t, u).

[Tutte, Brown 60's], [Zeilberger '92]: Guess-and-prove
[Gessel, Zeilberger '14]: Guess-and-prove
[Brown '65]: Quadratic method
[Knuth '68], [Banderier, Flajolet '02]: Kernel method (linear case)
[Bousquet-Mélou, Jehanne '06]: Polynomial elimination
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Modelization: from (FPE) of order 1 to polynomial systems

[Bousquet-Mélou, Jehanne '06]:

Fixed Point Equation (FPE)
U nomer
P(F(t,u), F(t,1),t,u) =0
4 oy

AuF(t,u) - O«P(F(t,u), F(t,1),t,u)
+ 0, P(F(t,u), F(t,1),t,u) =0
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U nomer
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4 oy

AuF(t,u) - O«P(F(t,u), F(t,1),t,u)
+ 0, P(F(t,u), F(t,1),t,u) =0

Example: planar maps
uF(t,u) — F(t, 1)

F(t,u) = 1+ t”F(t, u)* + tu I

(FPE)

0=(1—F(t,u))(u— 1)+ tu*(u — 1)F(t, u)?
+tu(uF(t, u) — F(t, 1))

0=9,F(t,u)- (1 —u+ 2tu2(u — 1)F(t, u)2 + tuz)
+ (1 = F(t, u) + tu(3u — 2)F(t, u)” + 2t F(t, u) — tF(t, 1))

J
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Modelization: from (FPE) of order 1 to polynomial systems

( A\ Ya 3
[Bousquet-Mélou, Jehanne '06]: Example: planar maps
Fixed Point Equation (FPE) F(t,u) = 1+ tF(t, u)? + T ) —lF(t, Y (rpE)
U nomer
2 2
P(F(t, u)7 F(l’, 1)7 t, u) -0 0= (1 — F(t, u))(u — 1) + tu (u — l)F(t, u)
+tu(uF(t, u) — F(t, 1))
4 oy
2 2 2
BuF(t, u) - OxP(F(t, u), F(t,1), t, u) 0=0,F(t,u) - (1 —u+2tu (u—1)F(t,u)” +tu”)
+ 0,P(F(t, u), F(t,1), t,u) = 0 + (L= F(t, u) + tu(Bu — 2)F(t, u)* + 2tu* F(t, u) — tF(¢, 1))
. PAS v

solution u = U(t) € K[[t]] of
OxP(F(t,u), F(t,1),t,u) = 0

—
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Modelization: from (FPE) of order 1 to polynomial systems

[Bousquet-Mélou, Jehanne '06]: Example: planar maps
Fixed Point Equation (FPE) F(t,u) = 1+ tF(t, u)? + T ) —lF(t, Y (rpE)
U nomer
2 2
P(F(t,u), F(t,1),t,u) =0 0=(1— F(t,u))(u—1)+ tu"(u— 1)F(t,u)
+tu(uF(t, u) — F(t, 1))
4 oy
2 2 2
BuF(t, u) - OxP(F(t, u), F(t,1), t, u) 0=0,F(t,u) - (1 —u+2tu (u—1)F(t,u)” +tu”)
+ 0,P(F(t, u), F(t,1), t,u) = 0 + (L= F(t, u) + tu(Bu — 2)F(t, u)* + 2tu* F(t, u) — tF(¢, 1))
uti U K ¢ P(x,z,t,u) =0,
solution u = U(t) € K[[t]] o o 0.P(x, 2, t, u) = 0, (F(t, U(6)), F(t,1), U(t))

OxP(F(t,u), F(t,1),t,u) = 0
3uP(x,z,t,u) = 0. zero in K[[¢]]?
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Our contributions

Inspired by [Bousquet-Mélou, Jehanne '06]

1. Geometric refinements of a method based on discriminants,
2. A new guess-and-prove method based on geometry,

3. A complexity result on the resolution of (FPE) of order 1.

Attention is paid to

e assumptions,
Input: P := numerator(FPE),

e degree bounds on the output,
Goal: (P,0xP,0,P)N K¢, z].

e complexity estimates,

e potential for generalization.
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Algebraic elimination via iterated discriminants

discx(P) = Resx(P, 9xP) the discriminant of P in x.
Theorem [Bousquet-Mélou, Jehanne '06]
Suppose deg, (P) > 2 and u = U(t) € K][[t]] is a root of
OxP(F(t,u), F(t,1),t,u).
Then u = U(t) is a double root of discx(P)(F(t,1),t, u).
Hence, F(t,1) is a root of disc,(discx(P)).
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s N\
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Algebraic elimination via iterated discriminants

discx(P) = Resx(P, 9xP) the discriminant of P in x.
Theorem [Bousquet-Mélou, Jehanne '06]
Suppose deg, (P) > 2 and u = U(t) € K][[t]] is a root of
OxP(F(t,u), F(t,1),t,u).
Then u = U(t) is a double root of discx(P)(F(t,1),t, u).
Hence, F(t,1) is a root of disc,(discx(P)).

P = 97t3u® + (—73u* — 56u°x® + 87u’x —
Pi=(1—x)(u—1)+ tP(u—1)x* 62x% 4 124xz — 622°)t — xu® + u?
+ tu(ux — z)
gives disc, P equal to
gives disc,(discx P) equal to — 16352t°1°

+ (21728t4 — 10535t% + 50t + 1) %
—256t" - (27t°z° — tz + 16t + z —
256t* - (27t222 — 18 16 1

4 248¢ (97t3 _56t2° + 87tz — z + 1) of
(tz — 1)?

which has a double root at v = 0.
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Contribution 1: ensuring non-nullity of double discriminant

Theorem [Bostan, Chyzak, N., Safey El Din '22]

Suppose 5 = deg(P)
o (HO) deg, (P) > 2,
e (H1) deg,(0xP(x,z,0,u)) > 1 and OxP(F(t,c), F(t,1),t,c) # 0 for all c € K,
¢ (R) the zero set V(P) C K" is smooth outside V(u—1) C K"

Set Dy := discx P, D; := SqFreePart(Dg) and D, := disc,D;.

Then
e R := SqFreePart(D;) is non-zero in K[z, t] and satisfies R(F(t,1),t) = 0.
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o (HO) deg, (P) > 2,
e (H1) deg,(0xP(x,z,0,u)) > 1 and OxP(F(t,c), F(t,1),t,c) # 0 for all c € K,
¢ (R) the zero set V(P) C K" is smooth outside V(u—1) C K"

Set Dy := discx P, D; := SqFreePart(Dg) and D, := disc,D;.

Then
e R := SqFreePart(D;) is non-zero in K[z, t] and satisfies R(F(t,1),t) = 0.
e R has total size 1658 with degree in each variable at most 454,

e R can be computed in Ojo4(6'°) ops. in K.

D, := SqFreePart(disc,(P)) satisfies
0uD1(U(t), F(t,1),t) = 0.

= {(auDl 8,D; 8;Dy) - (uzt)T =0,

(8.D1 8:Dy1) - (z t)T =0
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Contribution 1 (cont’d): using geometry arguments to refine the complexity

P € K[x, z, t, u] and ¢ := deg(P).

Theorem [Bostan, Chyzak, N., Safey El Din '22]
Suppose
o (H1) deg,(0xP(x,z,0,u)) > 1 and OxP(F(t,c), F(t,1),t,c) # 0 for all c € K,
o (P,0xP,0,P) : (u— 1) C K(t)[x, z, u] is radical and 0-dimensional over K(t).
Then one can compute R € K|[t, z] \ {0} annihilating F(t, 1)
o with degree in each variable at most §° and total size §°,

o in Oiog(L3® + 6789) C Opg(6%°) ops. in K,

where L = cost of evaluating P at (x, z, t, u) € K*.

e Geometric resolution: [Giusti, Lecerf, Salvy '01]
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Contribution 2: Guess-and-prove based on geometry

Input: P(F(t,u), F(t,1),t,u) =0, ¢ := deg(P).
Output: R € K[t, z] \ {0} annihilating /1 = F(t,1), i.e. R(t,F1)=0.
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geometry

(1) Functional
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1

(2) Polynomial
system
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Input: P(F(t,u), F(t,1),t,u) =0, ¢ := deg(P).
Output: R € K[t, z] \ {0} annihilating /1 = F(t,1), i.e. R(t,F1)=0.

geometry guess-and-prove
-, ~
(1) Functional (4) Expand F;
equation
\ 4
1
-
(2) Polynomial (5) Compute R € K[t, 2] s.t.
system R(t, F1) = O(t™"*)
. 7
1
- 4
(3) Bounds
e deg,(R) < b,
o deg,(R) < b.. (6) Certify that R(t, F1) =0
\
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Contribution 2: Guess-and-prove based on geometry

Input: P(F(t,u), F(t,1),t,u) =0, ¢ := deg(P).
Output: R € K[t, z] \ {0} annihilating /1 = F(t,1), i.e. R(t,F1)=0.

geometry guess-and-prove tools
(1) Functional (4) Expand F; o Newton iteration
equation )
1 4
1
(2) Polynomial (5) Compute R € K[t, ] s.t. o Algebraic approximants
system R(t, F1) = O(t™"") ‘seriestoalgeq”
1 4
{ N
(3) Bounds o Multiplicity lemma:
o deg,(R) < br, R(t, F1) = O(t™?"t>2)
. deg.(R) < b. (6) Certity that R(t, F1) = 0 implies R(t, F1) = 0
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Complexity result / degree bounds for geometry-driven guess-and-prove

0 € [2, 3] a feasible exponent of matrix multiplication

Theorem [Bostan, Chyzak, N., Safey El Din '22]
Define A, := (F(t, u), F(t,1),u) and assume that
o there exists u = U(t) € K[[t]] \ {1} solution of OxP(F(t, u), F(t,1),t,u) =0,
e the Jacobian of (P,0xP,0uP) w.r.t {x,z, u} is invertible at Ay € K[[t]]3.
Then, the geometry-driven guess-and-prove computes R € K[t, z] \ {0}
e such that R(t, F(t,1)) =0,
o having its partial degrees bounded by 4% and total size &°,

e in O‘Og(éw‘“) arithmetic operations in K.
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e such that R(t, F(t,1)) =0,
o having its partial degrees bounded by 4% and total size &°,

e in O‘Og(éw‘“) arithmetic operations in K.
O\Qg(Lé6 + 63913) ops. in K, where L = cost for evaluating P at (x, z, t, u) € K*.
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Contribution 3: a polynomial time complexity for solving a (FPE) of order 1

Theorem [Bostan, Chyzak, N., Safey El Din '22]

There exists R € K[t, z] \ {0} annihilating F(t,1) of total arithmetic size §°.
Moreover, one can compute R in O|og(§14) arithmetic operations in K.
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Contribution 3: a polynomial time complexity for solving a (FPE) of order 1

Theorem [Bostan, Chyzak, N., Safey El Din '22]

There exists R € K[t, z] \ {0} annihilating F(t,1) of total arithmetic size &°.
Moreover, one can compute R in O|og(§14) arithmetic operations in K.

Sketch of proof:

e Symbolic homotopy [Bousquet-Mélou, Jehanne '06]
— Je C K(t, €)[x, z, u] radical, O-dimensional
e ‘“Stickelberger's theorem” [Stickelberger 1897], [Cox '20]
— take R char. pol. of a linear map m; defined over K(t, ¢)[x, z, u] /T«

e Parametric geometric resolution [Schost '03]

Otog(Led?) ops. in K, with Le = O(5L) — z = 54220 W(t e, 3) = 0.

e Bivariate resultants [Villard '18], [Hyun, Neiger, Schost '19]
Oiog(62989) ops. in K — R = Resy(z — E(t, ¢, A), W(t,¢,N)).
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Conclusion and future works

Conclusion
o Refinement of an existing method based on discriminants
e Design of a new guess-and-prove algorithm based on geometric bounds

o A general complexity result for solving (FPE) of order 1

Future works
Improve the previous complexity estimates
Implement and compare the algorithms

Study the case of higher order equations
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Contribution 1: ensuring non-nullity of double discriminant

Theorem [Bostan, Chyzak, N., Safey El Din '22]

Suppose 5 = deg(P)
o (HO) deg, (P) > 2,
e (H1) deg,(0xP(x,z,0,u)) > 1 and 0xP(F(t,c), F(t,1),t,c) # 0 for all c € K,
¢ (R) the zero set V(P) C K" is smooth outside V(u—1) C K"

Set Dy := discx P, D; := SqFreePart(Dg) and D, := disc,D;.

Then
e R := SqFreePart(D,) is non-zero in K[z, t] and satisfies R(F(t,1),t) = 0.
e R has total size 1658 with degree in each variable at most 454,

e R can be computed in O|°g(61°) ops. in K.

D, := SqFreePart(disc,(P)) satisfies
0uD1(U(t), F(t,1),t) = 0.

= {(auDl 8,D; 8;Dy) - (uzt)T =0,

(8.D1 8:Dy1) - (z t)T =0
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Example where (H1) is not satisfied

Example

Consider the functional equation
F(t,u) = 1+ t((u — 1)F(t, u)’ + F(t,u) = F(t,1)). (1)

Here P=1— x+ t((u— 1)x?® + x — 2).
Therefore, 0xP(x,z,0,u) = 1, hence assumption (H1) is not satisfied.

Algorithm DD of page 16:
1. discxP = 4t%uz — 4t2z + 2 — 4tu + 2t + 1,

2. discy(discx(P)) = 1.

The output is R = 1, which is obviously wrong.

In fact, the unique solution F(t, u) of (1) in Q[u][[t]] satisfies F(t,1) =1, and is a
root of R:=t(u—1)x>+ (t —1)x+1—t.



Recap

Generic case

Page  Contribution Hypothesis

Total size Complexity Relative exponent
16 DD (HO), (H1), (R) 58 Olog(510) W_12
9 Geom (H1), radical, 0-dim 50 Olog (L% + 57-89) L -6
1 G&P (H1), Jac# 0 56 Olog (L8O + 630+3) 10.14 _ 1 g9
13 General None 56 Olog(81) L ~os3

Sparse case

Page Contribution Hypothesis Total size Complexity Relative exponent

16 DD (HO), (H1), (R) 58 ? ?

9 Geom (H1), radical, 0-dim 56 o‘og(57-89) -639 =1.315

11 G&P (H1), Jac# 0 50 Olog(63973) 0L w160 — 4 ~ 110

13 General None 50 o (G 10:89 1815
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