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Motivation: Enumerating discrete structures...

Counting walks in N with steps in {+1,—2}
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ending at height 0}
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Motivation: Enumerating discrete structures...

Counting walks in N with steps in {+1, —2}

d Cn—1,d + 2
cn := #{n steps walks starting at 0 and
ending at height 0} \
i \\ ,%Cn,d
fove) N // n
— n H H
G(t) = ,EO Cnt generating function Chot.d 1
Enumeration refinement DDE of order 2
Cn,d = # {n steps walks starting at 0 Cn,d = Cn—1,d—1 + Cp—1,d+2
and ending at height d} 1
>~ n ! p F(t,u)=1 +t-u-F(t,u)
F(t = t"
(BN By B o L, Flt0) = F(8,0) = u- 9,F(2,0)
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Motivation: Enumerating discrete structures...

Counting walks in N with steps in {+1, —2}

cn := #{n steps walks starting at 0 and

ending at height 0}
!
OO
G(t) := > cat”
n=0

Enumeration refinement

Cn,d = # {n steps walks starting at 0
and ending at height d}

oo &
F(t,u):= 3 > cpqudt”

n=0 d=0
complete generating function

Cn,0 = Cn
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generating function

d Cn—1,d + 2

-‘4 Cn,d

Cn—1,d — 1

DDE of order 2

€n,d = €n—1,d—1 T Cn—1,d+2
i
F(t,u)=1 +t-u-F(t,u)
F(t,u) — F(t,0) — u-9,F(t,0)

+t
LI2

= F(t,0) = G(t)



... yields challenging computational problems

K effective field of characteristic 0. K=Q,Q(),.--

Starting point: F € K[u][[t]], solution of the discrete differential equation of order 2
F(t,u)=1+t-u-F(t,u)+t- AL F(t u),

where AF(t, u) := FEAZF0) 5ng AQ)F(t, u) = FHLU=FEY -0, F(L0)

u
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K effective field of characteristic 0. K=Q,Q(),.--

Starting point: F € K[u][[t]], solution of the discrete differential equation of order 2
F(t,u)=1+t-u-F(t,u)+t- APF(t,0),

where AF(t, u) := FED)=F(0) 5ng APF(t, ) = F(e, )_F(t’ol_ BuF(t0)
Interest: Nature of F(t,0).
Classical: F, F(t,0) and 9,F(t,0) are . [Bousquet-Mélou, Jehanne 06|
Goals:
e Compute a polynomial R € K[t, zp] \ {0} such that R(t, F(t,0)) = 0.

e Estimate the size of R for such DDEs.

e Complexity estimates (ops. in K) for the computation of R.



4/13

Let k > 1, f € K[u] and Q € K[x,y1,..., ¥k, t,u]. For F € K[u][[t]], define
A(F) == (F — F(t,0))/u € K[][[t] and AD(F) := Ao AU=D(F).

Theorem [Bousquet-Mélou, Jehanne '06]
There exists a unique solution F € K[u][[t]] to
F(t,u) = f(u) + t- Q(F,A(F),...,AN(F), t,u), (DDE)

and moreover F(t,u) is over K(t, u).



Let k > 1, f € K[u] and Q € K[x,y1,..., ¥k, t,u]. For F € K[u][[t]], define
A(F) == (F — F(t,0))/u € K[][[t] and AD(F) := Ao AU=D(F).

Theorem [Bousquet-Mélou, Jehanne '06]
There exists a unique solution F € K[u][[t]] to

F(t,u) = f(u) + t- Q(F,A(F),...,AN(F), t,u), (DDE)
and moreover F(t,u) is over K(t, u).
Guess-and-prove [Tutte, Brown 60's], k=1
[Zeilberger '92], [Gessel, Zeilberger '14] ~ algorithm
Quadratic method [Brown '65], deg,(Q) =2, k=1
[Bender, Canfield '94] deg, (Q) =2,k > 1,
~+ ad-hoc method
Kernel method [Knuth '68], [Banderier, Flajolet '02], deg, y .y (@) =1
[Bousquet-Mélou, Petkovsek '00]
Polynomial elimination [Bousquet-Mélou, Jehanne '06]: k > 1 ~ algorithm
[Bostan, Chyzak, N., Safey El Din '22]: k = 1 ~ algorithm
Hybrid guess-and-prove [Bostan, Chyzak, N., Safey El Din '22]: k = 1 ~ algorithm
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: from (DDE) of order k to

We write P(u) = P(F(t, u), u, F(¢,0),..., 0" F(t,0),1) and K[[t+]] = Uy, Kl[t7]]

s N

[Bousquet-Mélou, Jehanne '06]:

Discrete Differential Equation
(DDE)

4 numer

P(u)=0

4 oy
OuF(t,u) - 01P(u) 4+ 0-P(u) =0
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General idea:

u(t) € K[[t%]] \ K solution in u of & P(u) =0
4
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The “points”

—. L
(xa,u1) = (F(£,U1), Un), . -, (%, uk) = (F(t, Uk), Uk) € K[[£]]?
are solutions of the constraints:

P(xi,ui, F(t,0),..., 067 F(t,0), 1)

=0,
V1<i<k, {0P(xi,u,F(t,0),...,0 F(t,0),t) =0,
3, P(x;, ui, F(t,0),...,0% 1F(¢,0),t) = 0.
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Ul(t), R Uk(t) €
Rl[¢+]) \ K distinct
solutions in u of
nP(u) =0

and [,_; (ui —u;) #0.

The “points”

—. L
(xa,u1) = (F(£,U1), Un), . -, (%, uk) = (F(t, Uk), Uk) € K[[£]]?
are solutions of the constraints:

P(xi, ui, F(t,0), ..., 05 "F(t,0),t) =0,
V1<i<k, {0P(xi,u,F(t,0),...,0 F(t,0),t) =0,
3, P(x;, ui, F(t,0),...,0% 1F(¢,0),t) = 0.

~~+ 3k equations and 3k unknowns!



Our contributions

Flt,0) = F() + £ QF A(F), ..., AN(F), £, ) (DDE)
where A(F) := F(t,u)—F(,0)

u

Input: P := numerator(DDE),
Goal: Compute R € K[t, ] \ {0} s.t. R(t, F(t,0)) =0.
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Our contributions

F(t,u) = F(u) + t- Q(F, A(F), ... AW(F) 1, ), (DDE)
where A(F) := F(t,u)—F(,0)

u

Input: P := numerator(DDE),
Goal: Compute R € K[t, ] \ {0} s.t. R(t, F(t,0)) =0.

1. on Bousquet-Mélou and Jehanne’s algorithm yielding:

e Upper bounds on the degrees of R € K¢, ] s.t. R(t, F(t,0)) =0,
e Arithmetic complexity.

2. based on algebraic elimination + Grobner bases,

3. ~~ solving problems previously out of reach.
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An experimental observation...

Example: (walks in N with steps in {+1,—2})
We consider P(F(t, u), u, F(t,0),8,F(t,0)) =0
if and only if  u? — (v® — t(1 4 u®))- F(t,u) —t- F(£,0) — t - u- 8,F(t,0) =0
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of this group action?



. yielding theoretical improvements (Contribution 1)

Denote by 7 the ideal generated by the k duplications of (P, 91 P, &,P) and m - [[(uj—uj)—1 = 0.
i#j

Assume that:
o there exist k distinct solutions u = Ui, ..., Ui € K[[t%]] of 81P(u) =0,

e 7 is radical and of dimension 0 over K(t).
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. yielding theoretical improvements (Contribution 1)

Denote by 7 the ideal generated by the k duplications of (P, 91 P, &,P) and m - [[(uj—uj)—1 = 0.
i

Assume that:

o there exist k distinct solutions u = Ui, ..., Ui € K[[t%]] of 81P(u) =0,

e 7 is radical and of dimension 0 over K(t).

Theorem [Bostan, N., Safey El Din '23]

o Let ¢ := deg(P). There exists a nonzero polynomial R € K][t, zg] whose partial
degrees are bounded by and such that R(t, F(t,0)) = 0.

e There exists an algorithm computing R in ops. in K.
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of the problem (

Summary of the initial problem: zZ=12z,...,2—1;, P = “numer“(DDE) € K(t)[x, u, z]
There exist k solutions (x,u) € K(t)2 with distinct u-coordinates to
P(x,u,F(t,0),...,85 'F(t,0)) =0,
O1P(x,u, F(t,0),..., 85 1F(t,0)) =0, u#0,

),
9P (x,u, F(t,0),..., 05 1F(t,0)) =0.
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Summary of the initial problem: zZ=12z,...,2—1;, P = “numer“(DDE) € K(t)[x, u, z]

7 o —2 . A q
There exist k solutions (x,u) € K(t)" with distinct u-coordinates to

P(x,u,F(t,0),...,0"1F(t,0)) =0,

O1P(x,u, F(t,0),..., 85 1F(t,0)) =0, u#0,
9P (x,u, F(t,0),...,05 'F(t,0)) =0.
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mx : (x,u,z) € K(t) — (u,z) € K(t) -, W = 1 (V(P,01P,3:P) \ V(u))

mo: (u,2) €K o (2) €R(),

Objective:

Characterize with polynomial constraints

Fie i= {az € K(8)"| # 73 H(az)NW > k}

# Ty (0 )NW =2
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Getting some through our toy example...

Example: (Walks in N with steps in {+1, —2})
P :=(1—x)u?®+ tudx + t(x — 20 — uz1) € K(t)[x, u, 20, 1], k=2.

G, Grébner basis of (P,01P, 0P, mu — 1) NK[u, t, zg, z1] for {u} >jex {t, 20, 21}:
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, there exist two distinct solutions in u”
S U4
By: g i=u?~+Br1- U+ Y1

Necessary condition: Extension theorem:
At a € V(G, NK[t, zg, z1]) fixed, The pre-image of « by 7, is well-defined
there exist two solutions in u —> LeadingCoeff,(g») # 0
= Bi,7 =0 (equations)  Distinct solutions in u = discy(g2) # 0 (inequations)

After adding these constraints to G, and eliminating v and z;:
R(t,z9) = t323 — zg + 1 satisfies R(t, F(t,0)) =0
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... yields an algorithm based on (

e Projecting: Elimination theorem
David A. Cox
o Lifting points of the projections: Extension theorems e
[deals,
Cardinality conditions on the fibers: Varletles, and
_ ) ) Algorithms
o Extension theorem (Grébner bases version) oot ot
—_— Algebra
o g(u,az) € K(t)[u] of degree k + j has at least k distinct roots :

<= One of the (k X k)-minors of the Hermite quadratic
form associated with g does not vanish at o

) Springer

11/13



... yields an algorithm based on elimination theory (Contribution 2)

o Projecting:
David A. Cox
o Lifting points of the projections: o s
Ideals,
Cardinality conditions on the fibers: Varlet_les, and
) Algorithms
° (Grobner bases version) oot ot
»«:gl o Geometry and Commutative
o g(u,az) € K(t)[u] of degree k + j has at least k distinct roots l
<= One of the (k X k)-minors of the Ospringr
associated with g does not vanish at o
[Bostan, N., Safey El Din 23] :
of of polynomial and whose zero set is F
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yielding practical

NEW !

3-greedy Tamari, k=3 5-constellations, k=4

A T de | dy A T de [ dy
D >5d | 2e | 4e D >5d | — | -
DE Im10s | 2 | 4 DE 2d21h | 3 | 9
HGP + DE | 34s 2 | 4 HGP + DE | 2hd4lm | 2 | 5

e: data obtained after a computation mod p = 65521.
Intel® Xeon@® Gold CPU 6246R v4 @

e A: Algorithm used (D: duplication, DE: direct elimination, HGP: Hybrid 3.40GHz and 1.5TB of RAM with a
Guess-and-Prove [Bostan, Chyzak, N., Safey El Din '22]), Sinslclthiced
Grobner bases computations are
performed using the C library msolve,
and all guessing computations are
performed using the gfun Maple package.

e T: total timing needed to obtain an output in Q[t, z],

e dz: degree in Z € {t,z} of output R € Q[t, z] s.t. R(t, F(t,a)) =0,

12/13


https://msolve.lip6.fr/
http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/

Conclusion and future works

Conclusion
° of the problem “solving a DDE",
° based on algebraic elimination and Grobner bases,
e Some practical results,
o (In the article) based on Stickelberger's theorem.

Future works

Study the minimality and the genericity of the introduced assumptions,

for solving DDEs, together with a
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Hybrid Guess-and-prove

Input: P(F(t,u), F(t,0),...,0Kk " F(t,0),t,u) = 0, § := deg(P).
Output: R € K|[t, z] \ {0} annihilating Fo = F(t,0), i.e. R(t,Fy) =0.
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Guess-and-prove

Input: P(F(t,u), F(t,0),...,0Kk " F(t,0),t,u) = 0, § := deg(P).
Output: R € K|[t, z] \ {0} annihilating Fo = F(t,0), i.e. R(t,Fy) =0.

geometry

(1) Functional
equation

1

(2) Polynomial
system

1

(3) Bounds
degz(R) S btg
deg, (R) < bz
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Guess-and-prove

Input: P(F(t,u), F(t,0),...,0Kk " F(t,0),t,u) = 0, § := deg(P).
Output: R € K|[t, z] \ {0} annihilating Fo = F(t,0), i.e. R(t,Fy) =0.

SIS guess-and-prove
r 2
(1) Funfﬂonal (4) Expand Fo
equation
) !
1
r \
(2) Polynomial (5) Compute R € K]t, z0]
system SAES
. R(t, Fo) = O(t™"t*0)
4 - J
,
(3) Bounds 1
degz(R) S btg
deg,, (R) < bz (6) Certify that R(t, Fo) =0
\
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Guess-and-prove

Input: P(F(t,u), F(t,0),...,0Kk " F(t,0),t,u) = 0, § := deg(P).
Output: R € K|[t, z] \ {0} annihilating Fo = F(t,0), i.e. R(t,Fy) =0.

SIS guess-and-prove ool
(1) Func'tional (4) Expand Fo e Newton iteration
equation )
4 4
N
(2) Polynomial (5) Compute R € K]t, z0] o Algebraic approximants
system s.t. “seriestoalgeq”
R(t, Fo) = O(t™"t"0)
d - J 1
1 \
(3) Bounds e Multiplicity lemma:
deg,(R) < b, R(t, Fo) = O(t™?tb=)
deg, (R) < bs. (6) Certify that R(t, Fo) =0 implies R(t, Fp) =0
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Solving our toy example using the strategy

Counting walks in N with steps in {+1, -2}

F(t,u) — F(t,0) — u- 8,F(t,0)
’ A
u

F(t,u)=1 +t-u-F(t,u)+t

e Draw a random ¢ = 1341, and a prime number p = 19541,

e Using the new algorithm based on elimination theory, we obtain:
e R(t,c) mod p = t3+ 15794,
e R(c,zp) mod p = z3 + 18182z + 1319.

e Set by =3, by =3,

e Compute
F(t,0) =1+ t3 + 3t + 1219 + 55¢12 4 273¢1% 4 1428t18 + O(¢2br b F1)

e Guess A:= 323 — z0 + 1 such that A(t, F(t,0)) = O(¢{br+1) (b +1)=1)
e Check that A(t, F(t,0)) = O(t>br b2 +1)

The output A is certified.
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... yielding (

Denote by 7 the ideal generated by the k duplications of (P, 81 P, &,P) and m - [[(uj—uj)—1 = 0.

i#j
Assume that:
e there exist k distinct solutions u = Ui,..., Uy € K[[t%]] of 81 P(u) =0,
e 7 is radical and of dimension 0 over K(t). (3k equations and 3k unknowns)
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i#j
Assume that:
e there exist k distinct solutions u = Ui,..., Uy € K[[t%]] of 81 P(u) =0,
e 7 is radical and of dimension 0 over K(t). (3k equations and 3k unknowns)

Theorem [Bostan, N., Safey El Din '23]

o Let § := deg(P). There exists a nonzero polynomial R € K[t, z)] whose partial
degrees are bounded by and such that R(t, F(t,0)) = 0.

e There exists an algorithm computing R in ops. in K.
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... yielding theoretical improvements (Contribution 1)

Denote by 7 the ideal generated by the k duplications of (P, 81 P, &,P) and m - [[(uj—uj)—1 = 0.

i#j
Assume that:
e there exist k distinct solutions u = Ui,..., Uy € K[[t%]] of 81 P(u) =0,
e 7 is radical and of dimension 0 over K(t). (3k equations and 3k unknowns)

Theorem [Bostan, N., Safey El Din '23]

o Let § := deg(P). There exists a nonzero polynomial R € K[t, z)] whose partial
degrees are bounded by and such that R(t, F(t,0)) = 0.

e There exists an algorithm computing R in ops. in K.
Ideas of the proof:
— Bézout bound + & acts on V/(Zgyp) and preserves the zp-coordinate space.

— Parametric geometric resolution [Schost '03], [Giusti, Lecerf, Salvy '01]
20 = V(t, \)/O\W(t, X), W(t,\) =0

— Change of monomial ordering:
Stickelberger’s theorem [Cox '21] R = Sqfree(Resy(zp - O\ W — V, W))
+ bivariate resultants [Villard '18], [van der Hoeven, Lecerf '21], [Villard '23]
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with respect to t ?

uF(t,u) — F(t,1)

F(t,u) =1+ tu’F(t,u)? + tu g
=

&)

The numerator of (1) is

0=(1—-F(t,u))(u— 1)+ tu?(u— 1)F(t, u)? + tu(uF(t,u) — F(t,1)).

Differentiating with respect to t yields
0 =8:F(t, u)(1 + 2tu?(u — 1)F(t, u) + tu?)
+ u?(u — 1)F(t, u)? + u(uF(t,u) — F(t,1)) — tud:F(t, 1)

e Specializing u to 1 yields the “0 = 0" equality,
e And we just introduced a new series 0:F(t,1)...
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Also new this year!

Theorem: [N., Yurkevich /23] see also [Popescu '86, Swan 98]
Let n,k > 1 be integers and fi,...,f, € K[u], @1,...,@n € K[y1, ..., ¥n(ks1), t, U] be
polynomials. For a € K, set VKF := F,AF,...,AKF. Then the of DDEs

(EFl): F1:f]_(U)+t'Ql(kalwwakamt’“)’
; : (SDDEs)
(Eg,): Fn=fo(u) +t- Qu(V¥Fi,...,V¥Fy, t,u).

admits a vector of solutions (Fi, ..., Fy) € K[u][[t]]", and all its components
are over K(t, u).
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Also new this year!

Theorem: [N., Yurkevich /23] see also [Popescu '86, Swan 98]
Let n,k > 1 be integers and fi,...,f, € K[u], @1,...,@n € K[y1, ..., ¥n(ks1), t, U] be
polynomials. For a € K, set VKF := F,AF,...,AKF. Then the of DDEs

(Eg,): Fi=h(u)+t Qu(VFFL,...,V¥F, t,u),

: : (SDDEs)
(Eg,): Fo=fa(u) +t- Qu(V¥F, ..., VKFs t,u).
admits a vector of solutions (Fi, ..., Fy) € K[u][[t]]", and all its components
are over K(t, u).
proof — computing a polynomial annihilating Fy(t,a)
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