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Section 1

Picard–Fuchs equations
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Periods

𝛼 =

∫
𝛾

F (x1, . . . , xn)dx1 · · · dxn

∗ F is a rational function
∗ 𝛾 is a complex n-cycle on which F is continuous

� contains information about the geometry of the denominator of F

� often not computable exactly, need hundreds or thousands of digits
� in this regime, direct numerical recipes do not work well
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Relative periods

𝛼(t) =
∫
𝛾

Ft(x1, . . . , xn)dx1 · · · dxn

∗ Ft is a rational function of t and x1, . . . , xn
∗ 𝛾 is a complex n-cycle on which Ft is continuous (t ∈ U)

� contains information about the geometry of the denominator of Ft,
as a familiy depending on t

� computable exactly up to finitely many constants

Picard–Fuchs equations

There are polynomials p0(t), . . . , pr(t) ≠ 0 such that

pr(t)𝛼(r) (t) + · · · + p1(t)𝛼′(t) + p0(t)𝛼(t) = 0.
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Differential equations as a data structure

What can we compute using diff. eq. to represent functions?

∗ addition, multiplication, composition with algebraic functions

∗ power series expansion
∗ equality testing, given differential equations and initial condtions
∗ numerical analytic continuation with certified precision

(Chudnovsky & Chudnovsky, 1990; Mezzarobba, 2010;
van der Hoeven, 1999)
sage: from ore_algebra import *
sage: dop = (zˆ2+1)*Dzˆ2 + 2*z*Dz
sage: dop.numerical_solution(ini=[0,1], path=[0,1])

[0.78539816339744831 +/- 1.08e-18]
sage: dop.numerical_solution(ini=[0,1], path=[0,i+1,2*i,i-1,0,1])

[3.9269908169872415 +/- 4.81e-17] + [+/- 4.63e-21]*I

∗ numerical integration
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Computation of Picard–Fuchs equations

E(t) ≜
∮ √︂

1 − t2x2

1 − x2 dx =
1

2𝜋i

∮ F(t,x,y)︷         ︸︸         ︷
1

1 − 1−t2x2

(1−x2)y2

dxdy

Theorem (Euler, 1733)

(t − t3)E′′ + (1 − t2)E′ + tE = 0

Proof. Observe that

(t − t3) 𝜕2F
𝜕t2 + (1 − t2) 𝜕F

𝜕t + tF =

𝜕
𝜕x

(
− t(−1−x+x2+x3)y2(−3+2x+y2+x2(−2+3t2−y2))

(−1+y2+x2(t2−y2))2
)
+ 𝜕

𝜕y

(
2t(−1+t2)x(1+x3)y3

(−1+y2+x2(t2−y2))2
)
□

(Chyzak, 2000; Koutschan, 2010; Lairez, 2016)
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Section 2

Computing volume of semi-algebraic sets

joint work with Marc Mezzarobba and Mohab Safey El Din
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The semiring of volumes

𝕍 ≜
{
vol(A)

�� A ⊂ ℝn compact semialgebraic defined over ℚ
}

∗ vol(A) + vol(B) = vol (A × [0, 1] ∪ B × [1, 2])
∗ vol(A) vol(B) = vol(A × B)
⇒ 𝕍 is a semiring.
� Kontsevich–Zagier periods ≜ (𝕍 − 𝕍) + (𝕍 − 𝕍)i

Theorem (Lairez, Mezzarobba, & Safey El Din, 2019)

On input A = {f1 ≥ 0, . . . , fr ≥ 0} and p > 0,
we can compute vol(A) ± 2−p in time f (A)p log(p)3+𝜖.
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Case of one equation, smooth boundary
∗ f ∈ ℝ[x1, . . . , xn]
∗ X ≜ {x ∈ ℂn | f (x) = 0}

3 Assumption: X is smooth.
∗ A ≜ {x ∈ ℝn | f (x) ≥ 0}
∗ 𝜕A = {x ∈ ℝn | f (x) = 0} = X ∩ℝn

vol(A) =
∫

A
1dx1 · · · dxn

Stokes
=

∫
𝜕A

x1dx2 · · · dxn

Cauchy
=

∫
𝜕A

(
1

2𝜋i

∮
circle around p

x1

f
𝜕f
𝜕x1

d𝜈
)

dx2 · · · dxn

=
1

2𝜋i

∮
Tube(𝜕A)

x1

f
𝜕f
𝜕x1

dx1 · · · dxn. � This is a period!
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Volume of a slice

∗ f ∈ ℝ[x1, . . . , xn]
∗ At ≜ A ∩ {xn = t} ⊂ ℝn−1

∗ t ↦→ vol(At) is continuous and piecewise analytic

∗ vol(A) =
∫ ∞

−∞
vol(At)dt

∗ vol(At) =
1

2𝜋i

∮
Tube(𝜕At)

x1

f |xn=t

𝜕f |xn=t

𝜕x1
dx1 · · · dxn−1︸                                                ︷︷                                                ︸

� satisfies a Picard-Fuchs equation!
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Algorithm (single equation, compact case)

1 def volume({f ≥ 0}):
2 [symbolic integration]
3 compute a differential equation (E) for

∮ x1
f |xn=t

𝜕f |xn=t
𝜕x1

dx1 · · · dxn−1

4 [real algebraic geometry]
5 compute Σ ⊂ ℝ such that vol(A•) is analytic on ℝ \ Σ
6 v← 0
7 for each I bounded component of ℝ \ Σ:
8 [induction on dimension]
9 evaluate vol(A•) at sufficiently many points in I

10 deduce initial conditions for vol(A•)
11 v← v +

∫
I vol(At)dt

12 return v
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Several inequalities

∗ f1, . . . , fr ∈ ℚ[x1, . . . , xn]

vol {f1 ≥ 0, . . . , fr ≥ 0} = lim
𝜖→0+

vol (some c.c. of {f1 · · · fr ≥ 𝜖})
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Section 3

Periods of quartic surfaces

joint work with Emre Sertöz
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Periods of a quartic surface

Let f ∈ ℂ[w, x, y, z]4 ≃ ℂ35

such that X = V (f ) ⊆ ℙ3 is smooth.

Let 𝛾1, . . . , 𝛾22 be a basis of H2(X,ℤ),
and let 𝜔X ∈ Ω2(X) be the unique holomorphic 2-form on X.

The periods of X are the complex numbers 𝛼1, . . . , 𝛼22 defined – up to
scaling and choice of basis – by

𝛼i
def
=

∮
𝛾i

𝜔X =
1

2𝜋i

∮
Tube(𝛾i)

dxdydz
f |w=1
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Periods determine the Néron-Severi group

The Néron-Severi group of X (a smooth quartic surface) is the sublattice
of H2(X,ℤ) generated by the classes of algebraic curves on X.

Theorem (Lefschetz, 1924)

NS(X) =
{
𝛾 ∈ H2(X,ℤ)

���� ∫
𝛾
𝜔X = 0

}

In coordinates, NS(X) ≃
{
u ∈ ℤ22

�� u1𝛼1 + · · · + u22𝛼22 = 0
}

.
This is the lattice of integer relations between the periods.

The NS group determine the possible degree and genus of all the
algebraic curves lying on X.
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The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Let f ∈ ℂ[w, x, y, z]4 \ (countable union of algebraic hypersurfaces).
Then NS(Xf ) = ℤ · (hyperplane section).

Theorem (Terasoma, 1985)

There is a smooth f ∈ ℚ[w, x, y, z]4 such that NS(Xf ) = ℤ · h.

Theorem (van Luijk, 2007)

Let f = 2w4 + w3z + w2x2 + 2w2xy + 2w2xz − w2y2 + w2z2 + · · ·
Then NS(Xf ) = ℤ · h.

Theorem (Lairez & Sertöz, 2019)

Let f = wx3 + w3y + xz3 + y4 + z4. Then NS(Xf ) = ℤ · h.
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The Fermat hypersurface

Let f = w4 + x4 + y4 + z4.
The vector of periods is(

1 i i i i −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −i −i −i −i −i −i 0
)

rankNS(Xf ) = 22 − dimVectℚ {periods} = 20.

Indeed there are 48 lines on Xf spanning a sublattice of H2(X,ℤ) of
rank 20.
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Numerical computation of periods (Sertöz, 2019)

Let f ∈ ℂ[w, x, y, z]4
and let ft = (1 − t)f + t(w4 + x4 + y4 + z4) ∈ ℂ(t) [w, x, y, z]4.

1. The periods of Xt satisfy a Picard–Fuchs linear differential equation
(Picard, 1902).

2. The initial conditions are (generalized) periods of the Fermat
quartic, studied by Pham (1965).

3. Numerical analytic continuation provide quasilinear-time
algorithms for computing the periods.

� Afflicted by the size of the PF equation (generically order 21 and
degree ≥ 1000), the algorithm does not always terminate in reasonnable
time.
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Computation of the lattice of integer relations

We have the periods 𝛼1, . . . , 𝛼22 with high precision (hundreds of digits);
we want a basis of

Λ =
{
u ∈ ℤ22 �� u1𝛼1 + · · · + u22𝛼22 = 0

}
.

It is an application of the Lenstra–Lenstra–Lovász algorithm:

1. For 1 ≤ i ≤ 22, compute the Gaussian integer [101000𝛼i].
2. Let L =

{
(u, x, y) ∈ ℤ22+2

��� ∑i ui [101000𝛼i] = x + y
√
−1

}
,

this is a rank 22 lattice. Short vectors are expected to come from
integer relations between the periods.

3. Compute a LLL-reduced basis of L
4. Output the short vectors
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integer relations between the periods.

3. Compute a LLL-reduced basis of L
4. Output the short vectors
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What is a short vector?
Let f = 3x3z − 2x2y2 + xz3 − 8y4 − 8w4.
With 100 digits of precision on the periods, here is a LLL-reduced basis
of the lattice L (last 5 columns omitted).



0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1669083212117905913652734 0 1937019641160560221317687 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1669083212117905913652734 1937019641160560221317687 . . .

1 0 0 −1 0 0 0 1 1 0 0 0 0 0 −146511829901195443671789 84478429044587822467823 −365980228690630104919296 . . .
0 0 0 0 1 0 0 0 0 0 0 0 0 0 −337167720252678310258177 224110151973403946221421 −743116955936487279910552 . . .
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 357031479253522311483650 768066337666351099432748 940525994719391079998435 . . .
0 0 0 0 0 1 0 0 1 0 1 0 0 0 −552756671828854153114905 −126018248279583585486071 535095811953165917210863 . . .
0 −1 1 0 0 0 0 0 1 0 0 −1 0 0 104335431129908645825133 −231616284585318363570849 502730408585962411025306 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −649159586430203173692632 770784867967071100945665 −2152014469737999315531272 . . .
0 0 0 0 0 0 0 0 0 1 1 0 0 0 277747983934797690835205 −28625739873061372966384 −638732179408358479990097 . . .
1 0 0 0 0 0 0 0 0 0 0 1 0 0 146511829901195443671790 −84478429044587822467823 365980228690630104919296 . . .
0 0 0 0 0 0 0 0 0 0 0 −1 1 1 250899146775406645936761 575615030011256031395007 −114830012426104078247291 . . .
0 1 0 0 0 0 0 1 0 0 −1 0 0 0 104335431129908645825133 −231616284585318363570849 502730408585962411025307 . . .
0 0 0 0 0 0 −1 0 0 0 0 0 1 −1 −140644950443454586919439 −393058206212350140614235 429933080833930208291557 . . .
0 0 0 0 0 0 0 0 1 0 0 0 0 0 594933070600140950961561 273156103820314126589096 −671845991848498223316874 . . .
0 0 0 0 1 0 0 −1 0 0 0 0 0 0 337167720252678310258177 −224110151973403946221421 743116955936487279910552 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −824317154838996681984621 177119763197465887754938 −236792300924643740702432 . . .
0 0 0 0 0 0 0 1 0 0 1 0 0 0 379344119023965108104833 −76972296432673405118395 606366776041154973804541 . . .
0 0 0 0 0 1 0 0 0 0 0 0 0 0 552756671828854153114905 126018248279583585486070 −535095811953165917210864 . . .
0 0 0 0 0 0 1 0 0 0 0 0 0 −1 −140644950443454586919440 −393058206212350140614234 429933080833930208291557 . . .
0 0 1 0 0 0 0 0 0 0 0 0 0 0 −104335431129908645825133 231616284585318363570849 −502730408585962411025307 . . .
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −467285675585474370500971 −950623161465256990213520 −1255629063127217210042702 . . .
0 0 0 1 0 0 0 0 0 0 0 0 0 0 −146511829901195443671790 84478429044587822467823 −365980228690630104919296 . . .
0 0 0 0 0 0 0 0 0 1 0 −1 0 0 −277747983934797690835206 28625739873061372966384 638732179408358479990097 . . .
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −69025235930677842745100 457102914343586863258366 660652346877586707848817 . . .


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A triple alternative

� Certified error bounds!
∗ assume that the periods are known ±𝛽−1

Lemma
If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.
2 The NS group is not generated by curves of degree ∼ 𝛽O(1) .
3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS
group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.

18/24



A triple alternative

� Certified error bounds!
∗ assume that the periods are known ±𝛽−1

Lemma
If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.

2 The NS group is not generated by curves of degree ∼ 𝛽O(1) .
3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS
group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.

18/24



A triple alternative

� Certified error bounds!
∗ assume that the periods are known ±𝛽−1

Lemma
If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.
2 The NS group is not generated by curves of degree ∼ 𝛽O(1) .

3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS
group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.

18/24



A triple alternative

� Certified error bounds!
∗ assume that the periods are known ±𝛽−1

Lemma
If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.
2 The NS group is not generated by curves of degree ∼ 𝛽O(1) .
3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS
group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.

18/24



A triple alternative

� Certified error bounds!
∗ assume that the periods are known ±𝛽−1

Lemma
If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.
2 The NS group is not generated by curves of degree ∼ 𝛽O(1) .
3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS
group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.

18/24



A triple alternative

� Certified error bounds!
∗ assume that the periods are known ±𝛽−1

Lemma
If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.
2 The NS group is not generated by curves of degree ∼ 𝛽O(1) .
3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS
group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.

18/24



Separation of periods

Let f ∈ ℚ[w, x, y, z]4
and let 𝛼1, . . . , 𝛼22 be the periods.

Theorem (Lairez & Sertöz, 2022)

There exist a computable constant c > 0 depending only on f and the
choice of the homology basis, such that for any u ∈ ℤ22,

|u1𝛼1 + · · · + u22𝛼22 | < 2−cmaxi |ui |9 ⇒ u1𝛼1 + · · · + u22𝛼22 = 0.
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Section 4

How to compute periods faster?
Effective homology computation

joint work with Eric Pichon-Pharabod and Pierre Vanhove
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Double integrals via Fubini
∗ f ∈ ℂ[w, x, y, z]4 (generic coordinates)
∗ X ≜ V (f ) ⊆ ℙ3(ℂ)
∗ Xt ≜ X ∩

{w
x = t

}
(hyperplane section)

� Consider the surface as a family of curves

Main idea ∫
𝛾
𝜔X =

∮
loop in ℂ

dt
∮

cycle in Xt

𝜔X

dt︸           ︷︷           ︸
� satisfies a Picard–Fuchs equation!

.

3 To be implemented, requires a concrete description of 𝛾.
We need to compute H2(X,ℤ)
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The homology of curves (Tretkoff & Tretkoff, 1984)

∗ X a complex algebraic curve
∗ p : X → ℙ1(ℂ) nonconstant map
∗ Σ ≜ {critical values}

∗ Given a loop in ℙ1(ℂ) \ Σ, starting from a base point b, and a point
in the fiber p−1(b), the loop lifts in X uniquely.

3 Compute loops in ℙ1(ℂ) that lift in a basis of H1(X,ℤ)

(Costa et al., 2019; Deconinck & van Hoeij, 2001)
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Principle of the method

b
ℂ

p⁻¹(b)

ℂb

p⁻¹(b)

Δ₃

l₁
l₂

l₃

Δ₂

Δ₁

1. compute pieces of paths in X by lifting loops
2. connect them to form loops
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Homology of surfaces
dimension 1 dimension 2

monodromy action permute the fiber linear action on H1(X)
lift in X path hosepipe
computable with path tracking numerical ODE solving

b
ℂ

p⁻¹(b)

ℂ

b

p⁻¹(b)

γ

γ'
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Monodromy computation in higher dimension

De Rham duality

The monodromy action on H1(Xt) is dual to the monodromy action on
the solution of the Picard–Fuchs equation of the periods of Xt.

� We can connect hosepipes by integrating a Picard–Fuchs
differential equation.

���

We can compute periods of a quartic surface with hundreds of digits in
about 1 hour.

Thank you!
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