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Section 1

Picard-Fuchs equations
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Periods

(04 :/F(Xl,...,Xn)d.Xl"'an
Y

« F is a rational function
* Y is a complex n-cycle on which F is continuous

contains information about the geometry of the denominator of F
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Periods

(04 :/F(Xl,...,Xn)d.Xl"'an
Y

« F is a rational function
* Y is a complex n-cycle on which F is continuous

contains information about the geometry of the denominator of F
A often not computable exactly, need hundreds or thousands of digits
A in this regime, direct numerical recipes do not work well
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Relative periods

O((l') :/Ft(Xl,...,Xn)d.X]_"'d.Xn
Y

x F¢ is a rational function of t and x4, ..., Xp
* Y is a complex n-cycle on which F; is continuous (t € U)

contains information about the geometry of the denominator of F,
as a familiy depending on t

computable exactly up to finitely many constants
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Relative periods

O((l') :/Ft(X]_,...,Xn)d.X]_"'d.Xn
Y

x F¢ is a rational function of t and x4, ..., Xp
* Y is a complex n-cycle on which F; is continuous (t € U)

contains information about the geometry of the denominator of F,
as a familiy depending on t

computable exactly up to finitely many constants

There are polynomials py(t), ..., pr(t) # 0 such that

pr()a () + - - + p1 (D (£) + po(t)a(t) = 0.
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Differential equations as a data structure

What can we compute using diff. eq. to represent functions?

* addition, multiplication, composition with algebraic functions
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Differential equations as a data structure

What can we compute using diff. eq. to represent functions?

%

addition, multiplication, composition with algebraic functions

power series expansion

equality testing, given differential equations and initial condtions

numerical analytic continuation with certified precision
(Chudnovsky & Chudnovsky, 1990; Mezzarobba, 2010;
van der Hoeven, 1999)

sage:
sage:
sage:

sage:

from ore_algebra import *
dop = (2z72+1)*Dz"2 + 2xz*Dz
dop.numerical_solution(ini=[0,1], path=[0,1])

dop.numerical_solution(ini=[0,1], path=[0,i+1,2%i,i-1,0,1])
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* numerical integration
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Computation of Picard-Fuchs equations

F(txy)
/ —t2x2 1
E(t) = j[ Zm PO dxdy
(1-x*)y?

Theorem (Euler, 1733)

t-)E"+(1-t3)E +tE=0

4/24



Computation of Picard-Fuchs equations

F(txy)
1- tzx2 1
E(t) = j]{ \/ = o PO dxdy
(1-x2)y

(t-tHE' +(1-t2)E'+tE=0
Proof. Observe that

(t— t)f’ +(1-tH)ZL 1+ tF=

t(—1-x+x?+x3)y? (=3+2x+y2+x? (- 2432 —y?)) L0 2t(=1+t2)x(14x3)y®
ax (~10y202 (2—y2))* (~10y24x2(£2-y?))”

(Chyzak, 2000; Koutschan, 2010; Lairez, 2016)
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Section 2

Computing volume of semi-algebraic sets

joint work with Marc Mezzarobba and Mohab Safey El Din
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The semiring of volumes

V £ {vol(A) | A c R" compact semialgebraic defined over Q}

% VOl(A) + vol(B) =vol (A x [0,1] UB X [1,2])
% VOl(A) vol(B) = vol(A X B)
= Vis a semiring.
& Kontsevich-Zagier periods 2 (V-V) + (V- V)i

OninputA={f; >0,...,f; >0}andp > 0,
we can compute vol(A) + 277 in time f(A)p log(p)>*€.
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Case of one equation, smooth boundary

* feR[xy,...,Xn]
* X 2 {xeC"|f(x)=0}
£ Assumption: X is smooth.
x* A2 {xeR"|f(x) >0}
x* 0A={xeR"|f(x) =0} =XNR"
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Case of one equation, smooth boundary

* feR[xy,...,Xn]
* X 2 {xeC"|f(x)=0}
£ Assumption: X is smooth.
x* A2 {xeR"|f(x) >0}
x* 0A={xeR"|f(x) =0} =XNR"

Stc&(es

mmp/mw~m._/mmmwn
A 0A

Cauchy / ( 1 '7{ x1 of dv) By - - - dx
= — —_ ceodxp
0A 271 J circle around p f 0x1

1 X1 9
= 5= —1—de1 -+ dx,. ¥ Thisis a period!
2711 Jrupe(sa) f 0X1
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Volume of a slice

* e R[Xg,...,Xn]
x Ay 2 AN {x, =t} c R*1

% t +— vol(A;) is continuous and piecewise analytic

* VOl(A) = /wvol(At)dt

1 X1 Oflx =
* Vol(A;) = —jlf 1 by Cdxy - - dXng
2711 Jrube(aa,) fla=t X1

¥ satisfies a Picard-Fuchs equation!
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Algorithm (single equation, compact case)

def volume({f > 0}):
[symbolic integration]

compute a differential equation (E) for f fIXl taj;l)x('; tdxy - - -

[real algebraic geometry]
compute £ C R such that vol(4,) is analyticon R \ £
ve—0
for each I bounded component of R \ X:
[induction on dimension]
evaluate vol(A,) at sufficiently many points in I
deduce initial conditions for vol(A,)
v — v+ [vol(4,)dt
return v
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Several inequalities
*fl,...,frEQ[Xl,...,Xn]

vol{fy >0,...,fr >0} = lir(r)l vol (some c.c. of {f;---f; > €})
e—0*
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Section 3

Periods of quartic surfaces

joint work with Emre Sertoz
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Periods of a quartic surface

Letf € C[w, x,y, z]s ~ C®
such that X = V(f) € P?3 is smooth.

Let y1,..., Y22 be a basis of Hy(X, Z),
and let wy € Q%(X) be the unique holomorphic 2-form on X.

The periods of X are the complex numbers «;, . . ., oy, defined — up to
scaling and choice of basis — by

def f 1 dxdydz
Yi

l' =

Wx = -—
21 Tube(y;) flw:l
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Periods determine the Néron-Severi group

The Néron-Severi group of X (a smooth quartic surface) is the sublattice
of Hy(X, Z) generated by the classes of algebraic curves on X.

fored

In coordinates, NS(X) =~ {u € Z% | ujoty + - - - + Uz = 0}.
This is the lattice of integer relations between the periods.

NS(X) = {y € Hy(X,2)

The NS group determine the possible degree and genus of all the
algebraic curves lying on X.
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The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Letf € C[w, x,y,z]4 \ (countable union of algebraic hypersurfaces).
Then NS(Xf) = Z - (hyperplane section).
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Noether-Lefschetz theorem (Lefschetz, 1924)

Letf € C[w, x,y,z]4 \ (countable union of algebraic hypersurfaces).
Then NS(Xf) = Z - (hyperplane section).

Theorem (Terasoma, 1985)
There is a smooth f € Q[w, X, y, z]4 such that NS(Xf) = Z - h.

Theorem (van Luijk, 2007)

Let f = 2w* + w3z + w?x% + 2w?xy + 2w?xz — w?y? + w?z% + - -
Then NS(Xf) = Z - h.
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The very generic case

Noether-Lefschetz theorem (Lefschetz, 1924)

Letf € C[w, x,y,z]4 \ (countable union of algebraic hypersurfaces).
Then NS(Xf) = Z - (hyperplane section).

Theorem (Terasoma, 1985)
There is a smooth f € Q[w, X, y, z]4 such that NS(Xf) = Z - h.

Theorem (van Luijk, 2007)
Let f = 2w* + w3z + w?x% + 2w?xy + 2w?xz — w?y? + w?z% + - -
Then NS(Xf) = Z - h.

Theorem (Lairez & Sertoz, 2019)
Letf = wx® + w3y + xz3 +y* + z%. Then NS(Xf) = Z - h.
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The Fermat hypersurface

Letf = w +x* + y* + 2%,
The vector of periods is

(liiii—l—1—1—1—1—1—1—1—1—1—i—i—i—i—i—io)

rank NS(Xy) = 22 — dim Vectg {periods} = 20.

Indeed there are 48 lines on Xy spanning a sublattice of H, (X, Z) of
rank 20.
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Numerical computation of periods (Sertdz, 2019)

Letf € Clw,x,y,z]4
andletf; = (1 - t)f + t(w* + x* +y* + z%) € C(t) [w, X, y, Z]4.
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Numerical computation of periods (Sertdz, 2019)

Letf € Clw,x,y,z]4
andletf; = (1 - t)f + t(w* + x* +y* + z%) € C(t) [w, X, y, Z]4.

1. The periods of X; satisfy a Picard-Fuchs linear differential equation
(Picard, 1902).

2. The initial conditions are (generalized) periods of the Fermat
quartic, studied by Pham (1965).

3. Numerical analytic continuation provide quasilinear-time
algorithms for computing the periods.

A Afflicted by the size of the PF equation (generically order 21 and
degree > 1000), the algorithm does not always terminate in reasonnable
time.
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Computation of the lattice of integer relations

We have the periods aq, . . ., oz with high precision (hundreds of digits);
we want a basis of

A:{116ZZZ|M1O(1+'--+U22(122:0}.
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Computation of the lattice of integer relations

We have the periods aq, . . ., oz with high precision (hundreds of digits);
we want a basis of
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Computation of the lattice of integer relations

We have the periods aq, . . ., oz with high precision (hundreds of digits);
we want a basis of

A:{116ZZZ|LL1O(1+'--+L1226(22:0}.

It is an application of the Lenstra-Lenstra-Lovasz algorithm:
1. For 1 < i < 22, compute the Gaussian integer [1019%¢].
2. LetL = {(u, X,y) € 7%%+2 ‘ 3 ui[10190¢;] = x+y\/—_1},
this is a rank 22 lattice. Short vectors are expected to come from
integer relations between the periods.
3. Compute a LLL-reduced basis of L
4. Output the short vectors
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What is a short vector?
Let f = 3x3z — 2x%y? + xz3 — 8y* — 8w
With 100 digits of precision on the periods, here is a LLL-reduced basis
of the lattice L (last 5 columns omitted).

4

-1669083212117905913652734 0 1937019641160560221317687
01669083212117905913652734 1937019641160560221317687

0

0

0 -146511829901195443671789 84478429044587822467823 -365980228690630104919296
0 -337167720252678310258177 224110151973403946221421 -743116955936487279910552
-1 357031479253522311483650 768066337666351099432748 940525994719391079998435
0 -552756671828854153114905 -126018248279583585486071  535095811953165917210863
0
-1
0
0
1

OCOFRPROO0OO0OO0CO0OOCOOCOOCODOOODODOOOORRr OO

D000 O0O0OOO0OOROOOOROOOO OO

104335431129908645825133 -231616284585318363570849  502730408585962411025306
-649159586430203173692632 770784867967071100945665 -2152014469737999315531272
277747983934797690835205 -28625739873061372966384 -638732179408358479990097
146511829901195443671790 -84478429044587822467823 365980228690630104919296
250899146775406645936761 575615030011256031395007 -114830012426104078247291

0 104335431129908645825133 -231616284585318363570849  502730408585962411025307
-1 -140644950443454586919439 -393058206212350140614235 429933080833930208291557
0 594933070600140950961561 273156103820314126589096 -671845991848498223316874
0 337167720252678310258177 -224110151973403946221421  743116955936487279910552
1 -824317154838996681984621 177119763197465887754938 -236792300924643740702432
0 379344119023965108104833 -76972296432673405118395 606366776041154973804541
0 552756671828854153114905 126018248279583585486070 -535095811953165917210864
-1 -140644950443454586919440 -393058206212350140614234  429933080833930208291557
0 -104335431129908645825133 231616284585318363570849 -502730408585962411025307
0 -467285675585474370500971 -950623161465256990213520 -1255629063127217210042702
0 -146511829901195443671790 84478429044587822467823 -365980228690630104919296
0 -277747983934797690835206  28625739873061372966384  638732179408358479990097
0 -69025235930677842745100 457102914343586863258366 660652346877586707848817

OO0 OROO0OO0OOROODOODOODOOOO OO

CO0O0000O0O0OOROO0OOO0O0OO0O0OO0ORD OO
CO0OO0O0O0OOHROO0OO0OO0OO0OOOOOOOROOOD OO
CO0O00O0O0OROROOROODOOOOOO R OO
OR 000000000000 OROODOOOO OO
|
|
HFRPROO0O0000OO0O0O0OORRPOOFROOOO OO

0
0
0
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
1
0
0
0

CO0O00O00O0O0O0O0O0OOOOROOOOOO R OO
COO0OHROO0OO0O0O0O0O0O0O0OOOROOOO OO
OO0 O0O0O0OO0O0OO0COROOOOOOR,POOR OO
OO0 0O0OO0OROO0OOROOHROOROOO OO
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A triple alternative

b Certified error bounds!
+ assume that the periods are known +f~!

Lemma

If the heuristic algorithm succeeds then one of the following holds:
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A triple alternative

b Certified error bounds!
+ assume that the periods are known =5}

Lemma

If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.
2 The NS group is not generated by curves of degree ~ 2.
3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS
group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.
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Separation of periods

Letf € Q[w, x,y,2]4
and let aq, . .., a2 be the periods.

There exist a computable constant ¢ > 0 depending only on f and the
choice of the homology basis, such that for any u € 7?2,

max; |ui|9

[ugoq + -+ - + Ugpna| < 27°€ = U0q + -+ Uy = 0.
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Section 4

How to compute periods faster?
Effective homology computation

joint work with Eric Pichon-Pharabod and Pierre Vanhove
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Double integrals via Fubini

x f e C[w,X,y,z]4 (generic coordinates)

* X 2 V(f) cP3(C)

+ X; 2 X N {% =t} (hyperplane section)
Consider the surface as a family of curves
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Double integrals via Fubini

x f e C[w,X,y,z]4 (generic coordinates)

* X 2 V(f) C P3(C)

+ X; 2 X N {% =t} (hyperplane section)

¢ Consider the surface as a family of curves

Mainidea

w
Jox=¢ af o
y loopin C ¢ cycle in X; dt
N— ————

¥ satisfies a Picard-Fuchs equation!

£ To be implemented, requires a concrete description of y.
We need to compute Hy(X, Z)
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The homology of curves (Tretkoff & Tretkoff, 1984)

* X a complex algebraic curve
+ p: X — P1(C) nonconstant map
x ¥ = {critical values}

* Given a loop in P1(C) \ L, starting from a base point b, and a point
in the fiber p~1(b), the loop lifts in X uniquely.

£ Compute loops in P!(C) that lift in a basis of H; (X, Z)

(Costa et al., 2019; Deconinck & van Hoeij, 2001)
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Principle of the method

(D) f\

1. compute pieces of paths in X by lifting loops
2. connect them to form loops
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Homology of surfaces

dimension 1 dimension 2
monodromy action permute the fiber linear action on Hj (X)
lift in X path hosepipe
computable with path tracking numerical ODE solving
p7(b)
p(b)

@) ®)

b b
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Monodromy computation in higher dimension

De Rham duality

The monodromy action on H; (X;) is dual to the monodromy action on
the solution of the Picard-Fuchs equation of the periods of X;.

¥ We can connect hosepipes by integrating a Picard-Fuchs
differential equation.
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We can compute periods of a quartic surface with hundreds of digits in
about 1 hour.
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Monodromy computation in higher dimension

De Rham duality

The monodromy action on H; (X;) is dual to the monodromy action on
the solution of the Picard-Fuchs equation of the periods of X;.

¥ We can connect hosepipes by integrating a Picard-Fuchs
differential equation.

We can compute periods of a quartic surface with hundreds of digits in
about 1 hour.

Thank you!
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