Numerical periods and effective algebraic geometry

Pierre Lairez

MATHEXP, Université Paris-Saclay, Inria, France

joint work with Marc Mezzarobba, Eric Pichon-Pharabod, Mohab Safey El Din, Emre Sertöz, and Pierre Vanhove

March 28, 2023 RTCA / Effective aspects in Diophantine approximation

Section 1

Picard–Fuchs equations

Periods

$$\alpha = \int_{\gamma} F(x_1, \dots, x_n) dx_1 \cdots dx_n$$

- * F is a rational function
- * *y* is a complex *n*-cycle on which *F* is continuous
- $\mathbf{\hat{v}}$ contains information about the geometry of the denominator of F

Periods

$$\alpha = \int_{\gamma} F(x_1, \dots, x_n) dx_1 \cdots dx_n$$

- * *F* is a rational function
- * *y* is a complex *n*-cycle on which *F* is continuous
- $\widehat{\mathbf{v}}$ contains information about the geometry of the denominator of F
- ▲ often not computable exactly, need hundreds or thousands of digits

Periods

$$\alpha = \int_{\gamma} F(x_1, \dots, x_n) dx_1 \cdots dx_n$$

- * F is a rational function
- * *y* is a complex *n*-cycle on which *F* is continuous
- $\mathbf{\hat{V}}$ contains information about the geometry of the denominator of F
- 🛕 often not computable exactly, need hundreds or thousands of digits
- 🛕 in this regime, direct numerical recipes do not work well

Relative periods

$$\alpha(t) = \int_{\gamma} F_t(x_1, \dots, x_n) dx_1 \cdots dx_n$$

- * F_t is a rational function of t and x_1, \ldots, x_n
- * γ is a complex n-cycle on which F_t is continuous ($t \in U$)
- \bigcirc contains information about the geometry of the denominator of F_t , as a family depending on t
- computable exactly up to finitely many constants

Relative periods

$$\alpha(t) = \int_{\gamma} F_t(x_1, \dots, x_n) dx_1 \cdots dx_n$$

- * F_t is a rational function of t and x_1, \ldots, x_n
- * γ is a complex n-cycle on which F_t is continuous ($t \in U$)
- \bigcirc contains information about the geometry of the denominator of F_t , as a family depending on t
- computable exactly up to finitely many constants

Picard-Fuchs equations

There are polynomials $p_0(t), \ldots, p_r(t) \neq 0$ such that

$$p_r(t)\alpha^{(r)}(t) + \cdots + p_1(t)\alpha'(t) + p_0(t)\alpha(t) = 0.$$

What can we compute using diff. eq. to represent functions?

* addition, multiplication, composition with algebraic functions

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- * power series expansion

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- * power series expansion
- * equality testing, given differential equations and initial condtions

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- power series expansion
- * equality testing, given differential equations and initial condtions
- * **numerical analytic continuation** with certified precision (Chudnovsky & Chudnovsky, 1990; Mezzarobba, 2010; van der Hoeven, 1999)

What can we compute using diff. eq. to represent functions?

- * addition, multiplication, composition with algebraic functions
- power series expansion
- * equality testing, given differential equations and initial condtions
- * **numerical analytic continuation** with certified precision (Chudnovsky & Chudnovsky, 1990; Mezzarobba, 2010; van der Hoeven, 1999)

* numerical integration

Computation of Picard–Fuchs equations

$$E(t) \triangleq \oint \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} dx = \frac{1}{2\pi i} \oint \underbrace{\frac{F(t, x, y)}{1}}_{1 - \frac{1 - t^2 x^2}{(1 - x^2)y^2}} dx dy$$

Theorem (Euler, 1733)

$$(t - t^3)E'' + (1 - t^2)E' + tE = 0$$

Computation of Picard–Fuchs equations

$$E(t) \triangleq \oint \sqrt{\frac{1 - t^2 x^2}{1 - x^2}} dx = \frac{1}{2\pi i} \oint \underbrace{\frac{F(t, x, y)}{1}}_{F(t, x, y)} dx dy$$

Theorem (Euler, 1733)

$$(t - t^3)E'' + (1 - t^2)E' + tE = 0$$

Proof. Observe that

$$(t - t^{3}) \frac{\partial^{2} F}{\partial t^{2}} + (1 - t^{2}) \frac{\partial F}{\partial t} + tF =$$

$$\frac{\partial}{\partial x} \left(-\frac{t(-1 - x + x^{2} + x^{3})y^{2}(-3 + 2x + y^{2} + x^{2}(-2 + 3t^{2} - y^{2}))}{(-1 + y^{2} + x^{2}(t^{2} - y^{2}))^{2}} \right) + \frac{\partial}{\partial y} \left(\frac{2t(-1 + t^{2})x(1 + x^{3})y^{3}}{(-1 + y^{2} + x^{2}(t^{2} - y^{2}))^{2}} \right)$$

(Chyzak, 2000; Koutschan, 2010; Lairez, 2016)

Section 2

Computing volume of semi-algebraic sets

joint work with Marc Mezzarobba and Mohab Safey El Din

The semiring of volumes

$$\mathbb{V} \triangleq \left\{ \operatorname{vol}(A) \mid A \subset \mathbb{R}^n \text{ compact semialgebraic defined over } \mathbb{Q} \right\}$$

- * $vol(A) + vol(B) = vol(A \times [0, 1] \cup B \times [1, 2])$
- * $vol(A) vol(B) = vol(A \times B)$
- $\Rightarrow V$ is a semiring.
- **Solution** Kontsevich–Zagier periods $\triangleq (\mathbb{V} \mathbb{V}) + (\mathbb{V} \mathbb{V})i$

Theorem (Lairez, Mezzarobba, & Safey El Din, 2019)

On input $A = \{f_1 \ge 0, \dots, f_r \ge 0\}$ and p > 0, we can compute $\operatorname{vol}(A) \pm 2^{-p}$ in time $f(A)p \log(p)^{3+\epsilon}$.

Case of one equation, smooth boundary

- $* f \in \mathbb{R}[x_1, \dots, x_n]$ $* X \triangleq \{x \in \mathbb{C}^n \mid f(x) = 0\}$
- Assumption: *X* is smooth.
 - $* A \triangleq \{x \in \mathbb{R}^n \mid f(x) \ge 0\}$
 - $* \ \partial A = \{x \in \mathbb{R}^n \mid f(x) = 0\} = X \cap \mathbb{R}^n$

Case of one equation, smooth boundary

- $* f \in \mathbb{R}[x_1, \dots, x_n]$ $* X \triangleq \{x \in \mathbb{C}^n \mid f(x) = 0\}$
- Assumption: *X* is smooth.
 - $*\ A\triangleq \{x\in\mathbb{R}^n\,|\,f(x)\geq 0\}$
 - $* \ \partial A = \{x \in \mathbb{R}^n \mid f(x) = 0\} = X \cap \mathbb{R}^n$

$$\operatorname{vol}(A) = \int_{A} 1 \, \mathrm{d}x_{1} \cdots \, \mathrm{d}x_{n} \overset{\text{Stokes}}{=} \int_{\partial A} x_{1} \, \mathrm{d}x_{2} \cdots \, \mathrm{d}x_{n}$$

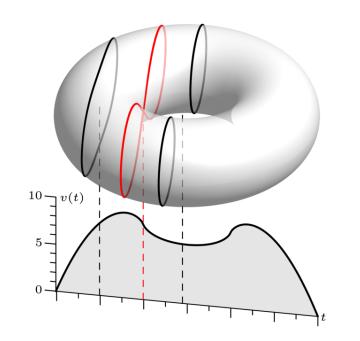
$$\overset{\text{Cauchy}}{=} \int_{\partial A} \left(\frac{1}{2\pi i} \oint_{\text{circle around } p} \frac{x_{1}}{f} \frac{\partial f}{\partial x_{1}} \, \mathrm{d}v \right) \, \mathrm{d}x_{2} \cdots \, \mathrm{d}x_{n}$$

$$= \frac{1}{2\pi i} \oint_{\text{Tube}(\partial A)} \frac{x_{1}}{f} \frac{\partial f}{\partial x_{1}} \, \mathrm{d}x_{1} \cdots \, \mathrm{d}x_{n}. \quad \r$$
 This is a period!

Volume of a slice

*
$$f \in \mathbb{R}[x_1, \dots, x_n]$$

* $A_t \triangleq A \cap \{x_n = t\} \subset \mathbb{R}^{n-1}$
* $t \mapsto \operatorname{vol}(A_t)$ is continuous and piecewise analytic
* $\operatorname{vol}(A) = \int_{-\infty}^{\infty} \operatorname{vol}(A_t) dt$
* $\operatorname{vol}(A_t) = \underbrace{\frac{1}{2\pi i} \oint_{\operatorname{Tube}(\partial A_t)} \frac{x_1}{f|_{x_n = t}} \frac{\partial f|_{x_n = t}}{\partial x_1} dx_1 \cdots dx_{n-1}}_{\text{Satisfies a Picard-Fuchs equation!}}$



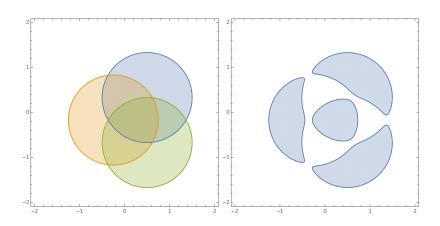
Algorithm (single equation, compact case)

```
def volume(\{f \geq 0\}):
          [symbolic integration]
       compute a differential equation (E) for \oint \frac{x_1}{f|_{x_n=t}} \frac{\partial f|_{x_n=t}}{\partial x_1} dx_1 \cdots dx_{n-1}
          [real algebraic geometry]
       compute \Sigma \subset \mathbb{R} such that vol(A_{\bullet}) is analytic on \mathbb{R} \setminus \Sigma
       v \leftarrow 0
       for each I bounded component of \mathbb{R} \setminus \Sigma:
                  [induction on dimension]
              evaluate vol(A_{\bullet}) at sufficiently many points in I
              deduce initial conditions for vol(A_{\bullet})
              v \leftarrow v + \int_{\tau} \operatorname{vol}(A_t) dt
       return v
```

Several inequalities

*
$$f_1,\ldots,f_r\in\mathbb{Q}[x_1,\ldots,x_n]$$

$$\operatorname{vol}\left\{f_1\geq 0,\ldots,f_r\geq 0\right\}=\lim_{\epsilon\to 0^+}\operatorname{vol}\left(\text{some c.c. of }\left\{f_1\cdots f_r\geq \epsilon\right\}\right)$$



Section 3

Periods of quartic surfaces

joint work with Emre Sertöz

Periods of a quartic surface

Let $f \in \mathbb{C}[w, x, y, z]_4 \simeq \mathbb{C}^{35}$ such that $X = V(f) \subseteq \mathbb{P}^3$ is smooth.

Let $\gamma_1, \ldots, \gamma_{22}$ be a basis of $H_2(X, \mathbb{Z})$, and let $\omega_X \in \Omega^2(X)$ be the unique holomorphic 2-form on X.

The *periods* of X are the complex numbers $\alpha_1, \ldots, \alpha_{22}$ defined – up to scaling and choice of basis – by

$$\alpha_i \stackrel{\text{def}}{=} \oint_{\gamma_i} \omega_X = \frac{1}{2\pi i} \oint_{\text{Tube}(\gamma_i)} \frac{dxdydz}{f|_{w=1}}$$

Periods determine the Néron-Severi group

The Néron-Severi group of X (a smooth quartic surface) is the sublattice of $H_2(X, \mathbb{Z})$ generated by the classes of algebraic curves on X.

Theorem (Lefschetz, 1924)

$$NS(X) = \left\{ \gamma \in H_2(X, \mathbb{Z}) \mid \int_{\gamma} \omega_X = 0 \right\}$$

In coordinates, $NS(X) \simeq \{\mathbf{u} \in \mathbb{Z}^{22} \mid u_1\alpha_1 + \cdots + u_{22}\alpha_{22} = 0\}$. This is the lattice of *integer relations between the periods*.

The NS group determine the possible degree and genus of all the algebraic curves lying on *X*.

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus$ (countable union of algebraic hypersurfaces). Then NS $(X_f) = \mathbb{Z} \cdot$ (hyperplane section).

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus$ (countable union of algebraic hypersurfaces). Then NS(X_f) = $\mathbb{Z} \cdot$ (hyperplane section).

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_4$ such that $NS(X_f) = \mathbb{Z} \cdot h$.

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus$ (countable union of algebraic hypersurfaces). Then $NS(X_f) = \mathbb{Z} \cdot$ (hyperplane section).

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_4$ such that $NS(X_f) = \mathbb{Z} \cdot h$.

Theorem (van Luijk, 2007)

Let
$$f = 2w^4 + w^3z + w^2x^2 + 2w^2xy + 2w^2xz - w^2y^2 + w^2z^2 + \cdots$$

Then NS $(X_f) = \mathbb{Z} \cdot h$.

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_4 \setminus$ (countable union of algebraic hypersurfaces). Then NS $(X_f) = \mathbb{Z} \cdot$ (hyperplane section).

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_4$ such that $NS(X_f) = \mathbb{Z} \cdot h$.

Theorem (van Luijk, 2007)

Let
$$f = 2w^4 + w^3z + w^2x^2 + 2w^2xy + 2w^2xz - w^2y^2 + w^2z^2 + \cdots$$

Then NS $(X_f) = \mathbb{Z} \cdot h$.

Theorem (Lairez & Sertöz, 2019)

Let
$$f = wx^3 + w^3y + xz^3 + y^4 + z^4$$
. Then $NS(X_f) = \mathbb{Z} \cdot h$.

The Fermat hypersurface

Indeed there are 48 lines on X_f spanning a sublattice of $H_2(X, \mathbb{Z})$ of rank 20.

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
- 3. Numerical analytic continuation provide quasilinear-time algorithms for computing the periods.

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
- 3. Numerical analytic continuation provide quasilinear-time algorithms for computing the periods.

Let
$$f \in \mathbb{C}[w, x, y, z]_4$$

and let $f_t = (1 - t)f + t(w^4 + x^4 + y^4 + z^4) \in \mathbb{C}(t)[w, x, y, z]_4$.

- 1. The periods of X_t satisfy a Picard–Fuchs linear differential equation (Picard, 1902).
- 2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
- 3. Numerical analytic continuation provide quasilinear-time algorithms for computing the periods.

 \triangle Afflicted by the size of the PF equation (generically order 21 and degree \geq 1000), the algorithm does not always terminate in reasonnable time.

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \cdots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \dots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

- 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.
- 2. Let $L = \left\{ (\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \ \middle| \ \sum_i u_i [10^{1000} \alpha_i] = x + y \sqrt{-1} \right\}$, this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \dots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

- 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.
- 2. Let $L = \left\{ (\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \ \middle| \ \sum_i u_i [10^{1000} \alpha_i] = x + y \sqrt{-1} \right\}$, this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.
- 3. Compute a LLL-reduced basis of L

We have the periods $\alpha_1, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$\Lambda = \left\{ \mathbf{u} \in \mathbb{Z}^{22} \mid u_1 \alpha_1 + \dots + u_{22} \alpha_{22} = 0 \right\}.$$

It is an application of the Lenstra–Lenstra–Lovász algorithm:

- 1. For $1 \le i \le 22$, compute the Gaussian integer $[10^{1000}\alpha_i]$.
- 2. Let $L = \left\{ (\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \ \middle| \ \sum_i u_i [10^{1000} \alpha_i] = x + y \sqrt{-1} \right\}$, this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.
- 3. Compute a LLL-reduced basis of L
- 4. Output the *short* vectors

What is a short vector?

Let
$$f = 3x^3z - 2x^2y^2 + xz^3 - 8y^4 - 8w^4$$
.

With 100 digits of precision on the periods, here is a LLL-reduced basis of the lattice L (last 5 columns omitted).

ſ	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -	-166908	3212	1179	90591	3652	734						() 1	9370196	11160	56022	21317687	٠	٠,
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0						0	16690	0832	1211	7905	9136	52734	1 1	9370196	11160	56022	21317687	٠	٠١
I	1	0	۸-	1	n	٥	n	1	1	٥	٥	٥	٥	0	-14651	1829	9011	19544	3671	789	84/	1784	2904	4587	78224	67823	₹ -	-36598023	28690	63010	14919296		- [
- 1	,	^	0	^	1	^	^	'n	^	۸	n	٥	n	n	-33716											21421	-	-7431169					١.
ı	0	0	0	0	1	0	0	0	0	0	0	0	0	0													_						· I
ı	U	U	U	U	U	U	U	U	U	U	U	U	1	-	35703	11,0			100	000	, 000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	0003		32748	_	94052599	, ,, ,,	0010	0000100		٠١
ł	0	0	0	0	0	1	0	0	1	0	1	0	0	0	-55275	6671	8288	35415	3114	905 -	-1260)1824	1827	9583	35854	86071	Ļ	53509583	11953	16591	7210863		٠ ا
ł	0	-1	1	0	0	0	0	0	1	0	0 -	-1	0	0	10433	5431	1299	90864	5825	133 -	-2316	51628	3458	5318	33635	70849)	50273040	08585	96241	1025306	·	٠ ا
- 1	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-64915	9586	4302	20317	3692	632	7707	78486	3796	7071	1009	45665	5 - 2	215201440	69737	99931	5531272		١.
-	0	0	0	0	0	0	0	0	0	1	1	0	0	0	27774	7983	9347	79769	0835	205	-286	32573	3987	3061	13729	66384	1 -	6387321	79408	35847	9990097	٠	١.
- [1	0	0	0	0	0	0	0	0	0	0	1	0	0	14651	1829	9011	19544	3671	790	-844	17842	2904	4587	78224	67823	3	36598023	28690	63010	4919296		١.
I	0	0	0	0	0	0	0	0	0	0	0 -	-1	1	1	25089	9146	7754	10664	5936	761	5756	31503	3001	1256	60313	95007	7 -	-1148300	12426	10407	8247291		- 1
- [0	1	0	0	0	ō	0	1	0	0 -	-1	0	0	0	10433	5431	1299	0864	5825	133 -	-2316	31628	3458	5318	33635	70849	9	50273040	18585	96241	1025307		- 1
ı	n	ñ	n	n	n	ñ-	1	ñ	n	n	ñ	n	1.	-1	-14064	4950	443	15458	6919	<u> 139</u> .	-3930	15820	1621	2350	11406	14235	Š	42993308	รถผวว	93020	8291557		١.
1	n	n	n	n	n	n	n	n	1	n	n	n	0	n	59493													-6718459					١.
ı	٥	٥	0	٨	1	^	^	1	ņ	n	٥	0	0	0	33716												-	7431169					٠,
ł	U	U	0	0	1	0	0-	1	0	0	0	0	•	0																			٠ ا
ł	0	0	0	U	U	U	U	U	U	U	U	U	0	1	-82431	, 10 1	000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					0010	, 100		0 1000	•	-23679230		010,	.0,02102		٠١
- 1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	37934	4119	0239	96510	8104	833	-769	97229	96432	2673	34051	18395	5	6063667	76041	15497	3804541		٠١
- 1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	55275	6671	8288	35415	3114	905	1260)1824	1827	9583	35854	86070) -	-5350958:	11953	16591	7210864	٠	٠I
- 1	0	0	0	0	0	0	1	0	0	0	0	0	0	-1	-14064	4950	4434	15458	6919	440 -	-3930	05820	0621	2350	1406	14234	1	42993308	30833	93020	8291557	٠	١.
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	-10433	5431	1299	90864	5825	133	2316	61628	3458	5318	33635	70849) -	50273040	08585	96241	1025307	٠	١.
1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-46728	5675	5854	17437	0500	971 -	-9506	62316	6146	5256	59902	13520) – 1	2556290	3127	21721	0042702		١.
1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	-14651	1829	9011	19544	3671	790	844	17842	2904	4587	78224	67823	3 -	3659802	28690	63010	4919296		. 1
1	0	0	0	0	0	0	0	0	0	1	0 -	-1	0	0	-27774	7983	9347	79769	0835	206	286	32573	3987	3061	13729	66384	1	6387321	79408	35847	9990097		. 1
ı	0	0	0	0	0	0	0	0	0	0	0	1	0	0	-6902	5235	9306	37784	2745	100	4571	1029	1434	3586	8632	58366	3	66065234	16877	58670	7848817		1
		-	_	-	-	-	-	-	_	-	-	•	-	_	3502						-5											• • •	. 7

- Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:

1 The lattice computed is correct.

- Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.

- Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.
- 3 There is a rare numerical coincidence.

- Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.
- 3 There is a rare numerical coincidence.

- Certified error bounds!
- * assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:

- 1 The lattice computed is correct.
- 2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.
- 3 There is a rare numerical coincidence.

I do not know how to deal with 2, there are quartic surfaces with NS group minimaly generated by arbitrary large elements (Mori, 1984).

But we can do something about 3.

Separation of periods

Let $f \in \mathbb{Q}[w, x, y, z]_4$ and let $\alpha_1, \dots, \alpha_{22}$ be the periods.

Theorem (Lairez & Sertöz, 2022)

There exist a computable constant c > 0 depending only on f and the choice of the homology basis, such that for any $\mathbf{u} \in \mathbb{Z}^{22}$,

$$|u_1\alpha_1+\cdots+u_{22}\alpha_{22}|<2^{-c^{\max_i|u_i|^9}}\Rightarrow u_1\alpha_1+\cdots+u_{22}\alpha_{22}=0.$$

Section 4

How to compute periods faster? Effective homology computation

joint work with Eric Pichon-Pharabod and Pierre Vanhove

Double integrals *via* Fubini

- $* f \in \mathbb{C}[w, x, y, z]_4$ (generic coordinates)
- $* X \triangleq V(f) \subseteq \mathbb{P}^3(\mathbb{C})$
- * $X_t \triangleq X \cap \left\{ \frac{w}{x} = t \right\}$ (hyperplane section)
- Consider the surface as a family of curves

Double integrals via Fubini

- $* f \in \mathbb{C}[w, x, y, z]_4$ (generic coordinates)
- $* X \triangleq V(f) \subseteq \mathbb{P}^3(\mathbb{C})$
- * $X_t \triangleq X \cap \left\{ \frac{w}{x} = t \right\}$ (hyperplane section)
- Consider the surface as a family of curves

Main idea

$$\int_{\gamma} \omega_X = \oint_{\text{loop in } \mathbb{C}} \det \oint_{\text{cycle in } X_t} \frac{\omega_X}{\mathrm{d}t}.$$

f satisfies a Picard–Fuchs equation!

Double integrals via Fubini

- $* f \in \mathbb{C}[w, x, y, z]_4$ (generic coordinates)
- $* X \triangleq V(f) \subseteq \mathbb{P}^3(\mathbb{C})$
- * $X_t \triangleq X \cap \left\{ \frac{w}{x} = t \right\}$ (hyperplane section)
- Consider the surface as a family of curves

Main idea

$$\int_{\gamma} \omega_X = \oint_{\text{loop in } \mathbb{C}} dt \oint_{\text{cycle in } X_t} \frac{\omega_X}{dt}.$$

5 satisfies a Picard–Fuchs equation!

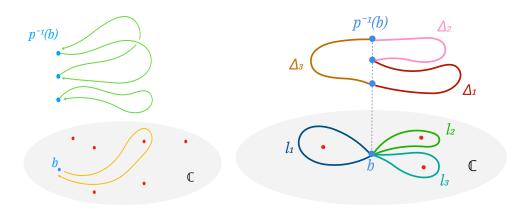
To be implemented, requires a concrete description of γ . We need to *compute* $H_2(X, \mathbb{Z})$

The homology of curves (Tretkoff & Tretkoff, 1984)

- * X a complex algebraic curve
- $* p: X \to \mathbb{P}^1(\mathbb{C})$ nonconstant map
- * $\Sigma \triangleq \{\text{critical values}\}$
- * Given a loop in $\mathbb{P}^1(\mathbb{C}) \setminus \Sigma$, starting from a base point b, and a point in the fiber $p^{-1}(b)$, the loop lifts in X uniquely.
- Compute loops in $\mathbb{P}^1(\mathbb{C})$ that lift in a basis of $H_1(X,\mathbb{Z})$

(Costa et al., 2019; Deconinck & van Hoeij, 2001)

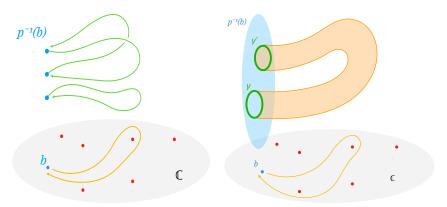
Principle of the method



- 1. compute pieces of paths in *X* by lifting loops
- 2. connect them to form loops

Homology of surfaces

	dimension 1	dimension 2
monodromy action lift in <i>X</i> computable with	permute the fiber path path tracking	linear action on $H_1(X)$ hosepipe numerical ODE solving



Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_1(X_t)$ is dual to the monodromy action on the solution of the Picard–Fuchs equation of the periods of X_t .

We can connect hosepipes by integrating a Picard–Fuchs differential equation.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_1(X_t)$ is dual to the monodromy action on the solution of the Picard–Fuchs equation of the periods of X_t .

We can connect hosepipes by integrating a Picard–Fuchs differential equation.

XXX

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_1(X_t)$ is dual to the monodromy action on the solution of the Picard–Fuchs equation of the periods of X_t .

We can connect hosepipes by integrating a Picard–Fuchs differential equation.

ZZZ

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Thank you!

References I

- Chudnovsky, D. V., & Chudnovsky, G. V. (1990). Computer algebra in the service of mathematical physics and number theory. In *Computers in mathematics (Stanford, CA, 1986)* (pp. 109–232). Dekker, New York.
- Chyzak, F. (2000). An extension of Zeilberger's fast algorithm to general holonomic functions. *Discrete Math.*, 217(1-3), 115–134. https://doi.org/10/drkkn6
- Costa, E., Mascot, N., Sijsling, J., & Voight, J. (2019). Rigorous computation of the endomorphism ring of a Jacobian. *Math. Comput.*, 88(317), 1303–1339. https://doi.org/10/ggck8g
- Deconinck, B., & van Hoeij, M. (2001). Computing Riemann matrices of algebraic curves. *Physica D: Nonlinear Phenomena*, 152–153, 28–46. https://doi.org/10/c95vnb

References II

- Euler, L. (1733). Specimen de constructione aequationum differentialium sine indeterminatarum separatione. *Comment. Acad. Sci. Petropolitanae*, *6*, 168–174.
- Koutschan, C. (2010). A fast approach to creative telescoping. *Math. Comput. Sci.*, 4(2-3), 259–266. https://doi.org/10/bhb6sv
- Lairez, P. (2016). Computing periods of rational integrals. *Math. Comput.*, 85(300), 1719–1752. https://doi.org/10/ggck95
- Lairez, P., Mezzarobba, M., & Safey El Din, M. (2019). Computing the volume of compact semi-algebraic sets. *Proc. ISSAC 2019*, 259–266. https://doi.org/10/ggck7w
- Lairez, P., & Sertöz, E. C. (2019). A numerical transcendental method in algebraic geometry: Computation of Picard groups and related invariants. *SIAM J. Appl. Algebra Geom.*, *3*(4), 559–584. https://doi.org/10/ggck6n

References III

- Lairez, P., & Sertöz, E. C. (2022). Separation of periods of quartic surfaces. *Algebra Number Theory*To appear.
- Lefschetz, S. (1924). *L'analysis situs et la géométrie algébrique*. Gauthier-Villars.
- Mezzarobba, M. (2010). NumGFun: A package for numerical and analytic computation with D-finite functions. *Proc. ISSAC 2010*, 139–146. https://doi.org/10/cg7w72
- Mori, S. (1984). On degrees and genera of curves on smooth quartic surfaces in \mathbb{P}^3 . *Nagoya Math. J.*, 96, 127–132. https://doi.org/10/grk9rj
- Pham, F. (1965). Formules de Picard-Lefschetz généralisées et ramification des intégrales. *B. Soc. Math. Fr.*, 79, 333–367. https://doi.org/10/ggck9f

References IV

- Picard, É. (1902). Sur les périodes des intégrales doubles et sur une classe d'équations différentielles linéaires. *Comptes Rendus Hebd. Séances Académie Sci.*, 134, 69–71.
- Sertöz, E. C. (2019). Computing periods of hypersurfaces. *Math. Comp.*, 88(320), 2987–3022. https://doi.org/10/ggck7t
- Terasoma, T. (1985). Complete intersections with middle Picard number 1 defined over \mathbb{Q} . *Math. Z.*, 189(2), 289–296. https://doi.org/10/bhf8gv
- Tretkoff, C. L., & Tretkoff, M. D. (1984). Combinatorial group theory, Riemann surfaces and differential equations. In *Contributions to group theory* (pp. 467–519). Amer. Math. Soc., Providence, RI. https://doi.org/10.1090/conm/033/767125
- van der Hoeven, J. (1999). Fast evaluation of holonomic functions. *Theoret. Comput. Sci.*, 210(1), 199–215. https://doi.org/10/b95scc

References V

van Luijk, R. (2007). K3 surfaces with Picard number one and infinitely many rational points. *Algebra Number Theory*, 1(1), 1–15. https://doi.org/10/dx3cmr