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A binomial identities
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A binomial identities

AW
= k n
How would you prove it?

Proof. Let [n] = {1, ..., n}. Thereis a bijection

{A,BC [n] |#A+#B=n} —> {SC [2n] |#S = n}
(A,B) —> AU (B+n).
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A slightly trickier one

S ()= ()

How would you prove it?
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A slightly trickier one

2 ) -[3)
. 2k)\ k n
How would you prove it?

Proof. There is a bijection between

{A,B,C C [n] disjoint | #A + #B+ 2#C = n} — {S C [2n] | #s = n}
(A,B,C) > AU(B+n)UCU(C+n).
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A computer-aided proof (creative telescoping)

Let u,(k) = 2"%%(})) (zkk) and v, = 37 un(k).
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Let u,(k) = 2"%%(})) (2kk) and v, = X7, un(k).
We look for p, € Q(n) and R,(k) € Q(n, k) such that

un+1(k) +Pnun(k) = Rn(k + 1)un(k+ 1) - Rn(k)un(k)-
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A computer-aided proof (creative telescoping)

Let u,(k) = 2"%%(})) (zkk) and v, = X7, un(k).
We look for p, € Q(n) and R,(k) € Q(n, k) such that

un+1(k) +Pnun(k) = Rn(k + 1)un(k+ 1) - Rn(k)un(k)'

Divide by u, (k) and we obtain

(n—-2k)(n-2k-1)
4(k+1)2

2(n+1) N
n+1-2k Pn-

R,(k+1) = Ry(k) =
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A computer-aided proof (creative telescoping)

Let u,(k) = 2"%%(})) (2kk) and v, = X7, un(k).
We look for p, € Q(n) and R,(k) € Q(n, k) such that

un+1(k) +Pnun(k) = Rn(k + 1)un(k+ 1) - Rn(k)un(k)

Divide by u, (k) and we obtain

(n—-2k)(n-2k-1) _ 2(n+1)
4(k +1)2 Ru(k +1) = Ru(k) = n+1—2k Im
There is a solution!
8k? 2(2n+1)
R, (k) = - dp,= ——.
K = Dmr 12k 9P S

(Abramov, 1989; Gosper, 1978; Zeilberger, 1990b)
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A computer-aided proof (creative telescoping)

Summing the relation
(n+ Dupe1(k) — 2(2n+ V) uy(k) = Ry(k+ D uy(k+ 1) — Ry(k)uy(k)
we get

(n+1)vp —22n+1)v, = 0.
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The pole of R simplifies gracefully.

A\ Major theoretical issue in general.
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More identities
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A complicated one (Le Borgne)

1+ F 2 4 2F%0 — 01 4 FLO _3pbl L pL2 _ p31 4 3p32

n (n+2) ( n+2) ( n+2)
_ F;’;’S _ ZF,‘f’z n Fi’S _ 52— Z m ) \m+1) \m+2

=N CEICO

n—1 d-a
ab _ d a— c n+d+1-2a-2c+2b\ _ (n+d+1-2a-2c+2b
Whel’an - Z d a—c (( n—a—c+b ) ( n+l—a—c+b ))
d=0 c=0

Automation is nice to have...
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Motivation from computer science

[50] Develop computer programs for simplifying sums

that involve binomial coefficients.
Exercise 1.2.6.63
The Art of Computer Programming
Knuth (1968)
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Motivation from number theory

Let §(3) = ZnZl %
Can you prove that {(3) ¢ Q7 (Apéry, 1979)
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Motivation from number theory

Let§(3) = anl %
Can you prove that {(3) ¢ Q7 (Apéry, 1979)

Forn > 0, let

an—Z( ) (n+k) and [, =lem(1,2,..

. n)3.
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Motivation from number theory

Let §(3) = anl %
Can you prove that {(3) ¢ Q? (Apéry, 1979)

Forn > 0, let

”_Z( ) (n+k) and I, =lem(1,2,...,n)%.

There is some integer sequence (by,) such that b, — 21,a,{(3) — 0.
Itimplies that {(3) ¢ Q.
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Desired algorithms for binomial sums

Simplification
. i+j\ 2 (4n—2i-2j
input 37, Jr'I:O (l?) ( r;n—lm‘])

output (2n+ 1)(2;’)2
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Desired algorithms for binomial sums

Simplification
input Xy 2o (7) ()
output (2n+ 1)(n)2
Deciding equality

input S ()7 (") = S, (1) (") 5L, (4)

output true

3
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Desired algorithms for binomial sums

Simplification
input Xy 2o (7) ()
output (2n+ 1)(n)2
Deciding equality

input S ()7 (") = S, (1) (") 5L, (4)

output true

3

Computation of a recurrence relation
ky 2
input Zk L () ()

output n3u, — (34n® = 51n® + 27n— 5 up—1 — (n— 1)Uy = 0
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1. Introduction

2. The algebra of binomial sums

3. Coefficients of rational functions

4. Computing residues
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The algebra of binomial sums

The formal grammar of binomial sums

— integer linear combination of variables

—
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The algebra of binomial sums

Let S be the algebra of functions z™N) — C.
The algebra of binomial sums, denoted B, is the smallest subalgebra of S such
that

(a) The Kronecker delta sequencen, ... — d,,
definedby dp = 1and 6, = 0if n # 0,isin B.

(b) The geometric sequencesn, ...+ C" forallC € C )\ {0}, arein B.
(c) The binomial sequence n, k, ... — (Z) isin B.

(d) IfA: Z% — Z¢%is an affine map andifu € B,
then ny, ng, ... = Uy(n,,...ny)0.. 1IN B.

.....

(e) If u € B, then the following directed indefinite sumis in B:
m
ny,...,g, m, ... — Z unl,...,nd,k-
k=0
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Main result

Let u be a binomial sum. Then (uy) ez is P-recursive.
In other words, there are polynomials py, . . ., p,, not all zero, such that

po(m)un + pr(n) s + -+ - + pr(n) uper = 0.

Moreover, this result is effective: there is an algorithm to compute a recurrence
relation as above.

Corollary

Equality of binomial sums is decidable.
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Deciding equality for P-recursive sequences

input Two sequences (u,) and (v,) defined by linear recurrence relations
with polynomial coefficients and initial conditions

output trueifandonlyif u, = v,foralln € Z.

1. Compute a common recurrence relation R.
2. Compute u, and v, for all n such that R does not impose the value at n.
3. Checkthat u,, = v, for all these critical indices.
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3. Coefficients of rational functions
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Laurent series

For afield K, let K((x)) = Unsox VK[ x]), the field of Laurent series over K.
Itisafield.
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Laurent series

For afield K, let K((x)) = Unsox VK[ x]), the field of Laurent series over K.
Itisafield.

We will work in the field of iterated Laurent series

CCx1, .., %)) = C(x) ((tn-1)) - -~ (x1)-

It means: expand first with respect to x1, then x,, etc.
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Laurent series

For afield K, let K((x)) = Unsox VK[ x]), the field of Laurent series over K.
Itisafield.

We will work in the field of iterated Laurent series
C(xts - -5 %) = C(x) ((xn-1) - - (1)
It means: expand first with respect to x1, then x,, etc.

Foramonomialx* = x™ --- x{" and R € C((xy, . . ., x,)) we denote [x*] R the

1
coefficient of x;" in the coefficient of x/" 1" of [...] the coefficient of x;" in R.
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Laurent series

For afield K, let K((x)) = Unsox VK[ x]), the field of Laurent series over K.
Itis afield.

We will work in the field of jiterated Laurent series

C(xts -+ %)) = COe) (1)) -+ - (1)
It means: expand first with respect to x1, then x,, etc.

Foramonomialx* = x™ --- x{" and R € C((xy, . . ., x,)) we denote [x*] R the

1
coefficient of x7" in the coefficient of x"-! of [...] the coefficient of xf“ inR.

r—1

k coefficient of a monomial

C(x1,...,x) € C((x,...,x)),s0we now know what is the coefficient of a
monomial in a rational function!
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Exercise

What is the coefficient of 1 in xl’ilxz?
2
1 X = i X = [ (ﬂ — ﬁ ) =0
X1 + X x21+§—; X2 X2
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Exercise

What is the coefficient of 1in —=—?
xX1+Xx2

2
X1 1 x X1 X1
[1] =[]|l=—=]|=0]|=—-=5+|=0
X1+ X X2 1+ o X9 X,
What is the coefficient of 1 in xl’fxz ?

LYY e DRTY PO R S
mxlw—m( ﬁ)_m(l-_+_2+ -1
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An intermediary representation

Every binomial sum is a linear combination of sequences of the form
ni, ny,... = [1]RR}" ---RZ”, forsomeRy,...,R; € C(x1,...,%,...).
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An intermediary representation

Every binomial sum is a linear combination of sequences of the form
ni, ny,... = [1]RR}" ---RZ”, forsomeRy,...,Rg € C(x1,...,Xp...).

-] v
: 5 ( ) () = [1]xP(1 + 27
— Cst CP =[1]CP

A_>[ ][ ] ([11RoRD)([118687) = [1]RoSolx—y (RiSilxey)”

19/24



An intermediary representation

Every binomial sum is a linear combination of sequences of the form
ni, ny,... = [1]RR}" ---RZ", forsomeRy,...,Rg € C(x1,...,Xp...).

B
]S ( ) () = [1]xP(1 + 27
— Cst CP =[1]CP

A_>[ ][ ] ([11RoRD)([118687) = [1]RoSolx—y (RiSilxey)”

) Ra_Rb+1
s> SRR = RS
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Residues
ForRe C((t, x1,...,x)), letresy, R = Z ([xl_1 ‘. xr_ltk]R) tk.

kez
For any binomial sum (u,) x>0, there is a rational function R € C(¢, x1, . . ., x;)
such that
Z untn = T€Sx,, . . x (R)
n>0

Proof. We may assume that u, = [1] RS" for some rational functions Rand S.

Then
Z Upt" = Z([l]RS”) £ = Z [x71¢"] (xIR(£S)") £

n>0 n

-1 -1
_ Z [X—ltn] ( x R) 1 = res, (H)
1-1tS 1-1tS

20/24



Characterisation of binomial sums

Let (un)n>0 be a sequence and let f(t) = 3, u,t" be its generating function.
The following are equivalent:

1. (uy) is abinomial sum;
2. f(t) =resy,,. x R forsomeR € C(t,xy,...,x%);

Example.

2n 3
INIZAE (1-x)(1 = x1)x1%
z(y (%) ) e

n>0 \ k=0
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4. Computing residues
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The only thing we need to know about residues

Residues of derivatives
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The only thing we need to know about residues

Forany Ay, ..., A, € C(t, x1,...,Xp),

0A; 0A,
IeSy, . x, E +-- 4 ox =0.
i n

Corollary (creative telescoping)

LetR € C(t,xy,...,%,) and f(t) = resy,  x, R
Letpo,...,pr € C(t) and A, ..., A, € C(t,xl,...,x,,).

Zm )atk = Z Zpkmf“"(t) =0.

i=1
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Residues of rational functions are D-finite

Let K be a characteristic-zero field (for example K = C(t)).
LetP € K[xy,...,x] andletOp = K[xy, ..., x, P71].
Then the quotient space

Op / iOP

9X;
i=1 !

is finite dimensional over K.
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Residues of rational functions are D-finite

Let K be a characteristic-zero field (for example K = C(t)).
LetP € K[xy,...,x] andletOp = K[xy, ..., x, P71].
Then the quotient space

Op / iOP

= 9%i
is finite dimensional over K.

In particular, the image of resy : Op — C((1)) is finite dimensional over C(t).
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Residues of rational functions are D-finite

Let K be a characteristic-zero field (for example K = C(t)).
LetP € K[xy,...,x] andletOp = K[xy, ..., x, P71].
Then the quotient space

Op / iOP

= 9%i
is finite dimensional over K.

In particular, the image of resy : Op — C((1)) is finite dimensional over C(t).

Let R € Opand f(t) = resx(R).
The derivatives (ZCT{S form an infinite family in Op with residues f(t), f’(t), etc., so
there is a linear dependency relation

Pr(OFD(E) + -+ pi(OF (1) + po(f () = 0.
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