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Take home message

Monodromy computed numerically give access to
an exact geometric information,
even in situations not likely of approximation
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Overview

1. Algebraic functions
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The square root function
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The square root has two determinations...

x

y
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... so there is a monodromy phenomenon

• It is possible to extend the square root function holomorphically at any
point in ℂ×...
• ... but not in a consistent way.
• As we go around 0,

√
z becomes −

√
z.

• This phenomenon is called monodromy.
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µονόδροµος?

• coined by Cauchy with the meaning of “in a single way”
• now refers to the presence of multiple determinations
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Analytic continuation of algebraic functions

a polynomial equation Pz(T) ∈ ℂ[z] [T]
a base point b ∈ ℂ such that disc(Pb) ≠ 0

an initial value yb ∈ ℂ such that Pb(yb) = 0
a open set U ⊆ ℂ \ {z ∈ ℂ | disc(Pz) = 0} simply connected

theorem there exists a unique holomorphic
function Y : U → ℂ such that P(Y) = 0
and Y (b) = yb.

proof Apply the global Picard-Lindelöf theorem to

Y′(z) =
(
𝜕P
𝜕T

)
(Y)−1 · 𝜕P

𝜕z
(Y)
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Analytic continuation of algebraic functions: algorithm

input P ∈ ℂ[z] [T], base point b, initial value yb, target point c
output Y (c) where Y is the analytic continuation as above along the line

segment [b, c].
t← 0
y← yb
while t < 1 do

t← t + 𝛿t (many different ways to choose 𝛿t)
y← y −

(
𝜕P
𝜕z
)
(y)−1 · 𝜕P

𝜕T (y) |z←(1−t)b+tc
end
return y
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Monodromy action

polynomial equation P ∈ ℂ[z] [T], squarefree
critical values Σ = {z ∈ ℂ | disc(P) = 0}

base point b ∈ ℂ \ Σ
monodromy action Continuation along a path induces the morphism

𝜙 : 𝜋1 (ℂ \ Σ, b) → Bij ({y ∈ ℂ | Pb(y) = 0}) .

monodromy group M = im𝜙

Theorem
• The orbits of this action are in one-to-one correspondance with the

irreducible factors of P in ℂ(z) [T].
• If P is irreducible, the monodromy group is isomorphic to the Galois group

of P over the field ℂ(z).
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Counting irreducible factors

Given P ∈ ℂ[z] [T], how many irreducible factors does it have?
Easy reduction to the following case:
• the coefficients of P (as a polynomial in T) do not have common factors;
• P does not have a multiple factor.

b← generic point in ℂ

y1, . . . , yr ← roots of Pb(T)
G← graph with r nodes and no edge
repeat (how many times?)

u, v← random points in ℂ

for i from 1 to r do
yj ← continuation of yi along the loop [b, u, v, b]
insert an edge (i, j) in G

return the number of connected components of G
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Halting condition: the trace test

(Sommese, Verschelde, & Wampler, 2002)
Assume generic coordinates

input S ⊆ {y ∈ ℂ | Pb(y) = 0}
problem Is S closed under the monodromy action?

u, v← random points in ℂ

𝜎b ←
∑

y∈S y
𝜎u ←

∑
y∈S continuation of y along [b, u]

𝜎v ←
∑

y∈S continuation of y along [b, v]

return (b − u) (𝜎b − 𝜎v) == (b − v) (𝜎b − 𝜎u)

in words Check that 𝜎u − 𝜎b depends linearly on u.
proof If it does, then it has no monodromy, so S is closed.

For the converse: the sum of roots of a monic polynomial P is
minus the coefficient of Td−1.

12/28



Halting condition: the trace test

(Sommese, Verschelde, & Wampler, 2002)
Assume generic coordinates

input S ⊆ {y ∈ ℂ | Pb(y) = 0}
problem Is S closed under the monodromy action?

u, v← random points in ℂ

𝜎b ←
∑

y∈S y

𝜎u ←
∑

y∈S continuation of y along [b, u]
𝜎v ←

∑
y∈S continuation of y along [b, v]

return (b − u) (𝜎b − 𝜎v) == (b − v) (𝜎b − 𝜎u)

in words Check that 𝜎u − 𝜎b depends linearly on u.
proof If it does, then it has no monodromy, so S is closed.

For the converse: the sum of roots of a monic polynomial P is
minus the coefficient of Td−1.

12/28



Halting condition: the trace test

(Sommese, Verschelde, & Wampler, 2002)
Assume generic coordinates

input S ⊆ {y ∈ ℂ | Pb(y) = 0}
problem Is S closed under the monodromy action?

u, v← random points in ℂ

𝜎b ←
∑

y∈S y
𝜎u ←

∑
y∈S continuation of y along [b, u]

𝜎v ←
∑

y∈S continuation of y along [b, v]

return (b − u) (𝜎b − 𝜎v) == (b − v) (𝜎b − 𝜎u)

in words Check that 𝜎u − 𝜎b depends linearly on u.
proof If it does, then it has no monodromy, so S is closed.

For the converse: the sum of roots of a monic polynomial P is
minus the coefficient of Td−1.

12/28



Halting condition: the trace test

(Sommese, Verschelde, & Wampler, 2002)
Assume generic coordinates

input S ⊆ {y ∈ ℂ | Pb(y) = 0}
problem Is S closed under the monodromy action?

u, v← random points in ℂ

𝜎b ←
∑

y∈S y
𝜎u ←

∑
y∈S continuation of y along [b, u]

𝜎v ←
∑

y∈S continuation of y along [b, v]

return (b − u) (𝜎b − 𝜎v) == (b − v) (𝜎b − 𝜎u)

in words Check that 𝜎u − 𝜎b depends linearly on u.
proof If it does, then it has no monodromy, so S is closed.

For the converse: the sum of roots of a monic polynomial P is
minus the coefficient of Td−1.

12/28



Halting condition: the trace test

(Sommese, Verschelde, & Wampler, 2002)
Assume generic coordinates

input S ⊆ {y ∈ ℂ | Pb(y) = 0}
problem Is S closed under the monodromy action?

u, v← random points in ℂ

𝜎b ←
∑

y∈S y
𝜎u ←

∑
y∈S continuation of y along [b, u]

𝜎v ←
∑

y∈S continuation of y along [b, v]

return (b − u) (𝜎b − 𝜎v) == (b − v) (𝜎b − 𝜎u)

in words Check that 𝜎u − 𝜎b depends linearly on u.
proof If it does, then it has no monodromy, so S is closed.

For the converse: the sum of roots of a monic polynomial P is
minus the coefficient of Td−1.

12/28



Overview

1. Algebraic functions

1.1 Monodromy action

1.2 Irreducible decomposition

2. Holonomic functions

2.1 Factorization of differential operator

2.2 Testing algebraicity

3. Homology of complex varieties



Linear differential operators

open set U ⊆ ℂ

function space O(U), holomorphic functions on U
differential ops ℂ(z)⟨𝜕⟩ is the subalgebra of Endℂ(O(U)) generated by

multiplications by rational functions and 𝜕 = d
dz .

For L ∈ ℂ[z]⟨𝜕⟩ nonzero, we can always write

L = ar(z)𝜕r + ar−1(z)𝜕r−1 + · · · + a1(z)𝜕 + a0(z),

for some r ≥ 0 and ar ≠ 0.

L(y) = 0 is the linear differential equation

ar(z)y(r) + ar−1(z)y(r−1) + · · · + a1y′ + a0y = 0.
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Two problems for Fuchsian operators

Fuchsian operator L ∈ ℂ(z)⟨𝜕⟩ is Fuchsian if the solutions grow at most
polynomially near singularities (including near∞)
Naturally happens in many contexts

Problem #1 Given L, find a nontrivial fractorization L = AB, or
prove that there is none.

Problem #2 Given L, prove or disprove that all solutions of L are
algebraic.

14/28



Two problems for Fuchsian operators

Fuchsian operator L ∈ ℂ(z)⟨𝜕⟩ is Fuchsian if the solutions grow at most
polynomially near singularities (including near∞)
Naturally happens in many contexts

Problem #1 Given L, find a nontrivial fractorization L = AB, or
prove that there is none.

Problem #2 Given L, prove or disprove that all solutions of L are
algebraic.

14/28



Two problems for Fuchsian operators

Fuchsian operator L ∈ ℂ(z)⟨𝜕⟩ is Fuchsian if the solutions grow at most
polynomially near singularities (including near∞)
Naturally happens in many contexts

Problem #1 Given L, find a nontrivial fractorization L = AB, or
prove that there is none.

Problem #2 Given L, prove or disprove that all solutions of L are
algebraic.

14/28



Analytic continution of holonomic functions

a differential operator L ∈ ℂ[z]⟨𝜕⟩ or order r
a base point b ∈ ℂ such that lc(L) |z=b ≠ 0

initial conditions y0, . . . , yr−1 ∈ ℂ
a open set U ⊆ ℂ \ {lc(L) = 0} simply connected

theorem there exists a unique holomorphic
function Y : U → ℂ such that L(Y) = 0
and Y (b) = y0, Y′(b) = y1, ..., Y (r−1) (b) = yr−1.

proof Apply the global Picard-Lindelöf theorem

{y ∈ O(U) | L(y) = 0} ∼→ ℂr−1

y ↦→
(
y(b), y′(b), . . . , y(r−1) (b)

)
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Monodromy action

differential op L ∈∈ ℂ(z)⟨𝜕⟩ Fuchsian
singular points Σ = {z ∈ ℂ | lc(L) = 0}

base point b ∈ ℂ \ Σ
local solutions Vb = {y ∈ O(D(b, 𝜖)) | L(y) = 0}

monodromy action Continuation along a path induces the morphism

𝜙 : 𝜋1 (ℂ \ Σ, b) → Autℂ(Vb).

monodromy group M = im𝜙

Theorem
• The right-factors of L are in one-to-one correspondance with the stable

subspaces of Vb under the monodromy action.
• A solution of L is rational if and only if monodromy acts trivially.
• A solution of L is algebraic if and only if it has a finite orbit under

monodromy.
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Monodromy of the logarithm

Re(z)

Im(z)

A

B

UV

L = 𝜕z𝜕 = z𝜕2 − 1

Basis of solutions on A:
1, LogA(z) = log |z| + argA(z)i,

with argA(z) ∈ [−𝜋
2 ,

3𝜋
2 )

Basis of solutions on B:
1, LogB(z) = log |z| + argB(z)i,

with argB(z) ∈ [−3𝜋
2 , 𝜋2 )

On U: LogA(z) = LogB(z)
On V : LogA(z) = LogB(z) + 2𝜋i

monodromy around 0:
(
1 2𝜋i
0 1

)
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Monodromy of a power

Re(z)

Im(z)

A

B

UV

L = z𝜕 − 𝜆, 𝜆 ∈ ℂ

Basis of solutions on A:
1, z𝜆 = exp(𝜆 LogA(z))
Basis of solutions on B:
1, z̃𝜆 = exp(𝜆 LogB(z))

On U: z𝜆 = z̃𝜆
On V : z𝜆 = z̃𝜆 · exp(2𝜋𝜆i)

monodromy around 0:
(
exp(2𝜋𝜆i)

)
(this is a 1 × 1 matrix)
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Fuchsian holonomic functions with trivial or finite orbits

Let f be a Fuchsian holonomic function, such that monodromy acts trivially.
• Locally, we can expand f in ℂ((z)) [z𝜆 , log z] for some 𝜆 ∈ ℂ.
• No monodromy, so f must be in ℂ((z)), so it is a meromorphic function

on ℙ1. To it is rational.

Let f be a Fuchsian holonomic function, with a finite orbit {f1, . . . , fn} under
monodromy.
• Form the polynomial P(T) = ∏

i(T − fi). Note that P(f ) = 0.
• The coefficients of P have no monodromy, so they are rational functions.
• So f is algebraic.
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Stable subspaces under monodromy

Let L be a Fuchsian differential operator.
• If L = AB, then {y ∈ Vb | B(y) = 0} is a subspace of Vb stable under

monodromy action.

• Conversely, let S ⊆ Vb be subspace stable under the monodromy action.
Pick a basis y1, . . . , yr of S and let

B =

���������
y1 · · · yr
y′1 · · · y′r
...

...

y(r−1)
1 · · · y(r−1)

r

���������
−1 ���������

y1 · · · yr 𝜕
y′1 · · · y′r 𝜕
...

...
...

y(r)1 · · · y(r)r 𝜕r

��������� ∈ ℂ(z)⟨𝜕⟩
The coefficients of this operator are monodromy-invariant, so rational.

Every solution of B is a solution of L, so B right-divides L.
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Factorization of Fuchsian differential operators

(van der Hoeven, 2007; Chyzak, Goyer, & Mezzarobba, 2022)

input L ∈ ℂ(z)⟨𝜕⟩ Fuchsian
output A right factor of L, or nothing if L is irreducible

b← a random point in ℂ

numerically compute generators M1, . . . ,Ms
of the monodromy group, with base point b

find a nontrivial stable space ℂy1 + · · · + ℂyr ⊆ Vb
if impossible then return ∅

return

���������
y1 · · · yr
y′1 · · · y′r
...

...

y(r−1)
1 · · · y(r−1)

r

���������
−1 ���������

y1 · · · yr 𝜕
y′1 · · · y′r 𝜕
...

...
...

y(r)1 · · · y(r)r 𝜕r

��������� ∈ ℂ(z)⟨𝜕⟩
(reconstruct the coefficients by evaluation-interpolation)
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Factorization of Fuchsian differential operators: comments

• Implemented in Sagemath (by Goyer)
• Relies on very high precision evaluation of the monodromy matrices

(typically 1000 decimal digits)
• This is possible with quasilinear complexity! (algorithms and

implementation by Mezzarobba)
• Performs very well
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A famous hypergeometric function

𝜙(z) =
∑︁
n≥0

(30n)!n!
(15n)!(10n)!(6n)!z

n ∈ ℤ[[z]]

Theorem (Beukers and Heckman, 1989; Rodriguez-Villegas, 2005)
There is a polynomial P ∈ ℂ[z] [T] of degree 483,840 such that P(𝜙(z)) = 0.

• Follows from a result of Beukers and Heckman (1989) on the monodromy
of generalized hypergeometric functions.
• Relies on an enormous classification work in finite group theory,

especially (Shephard & Todd, 1954).
• Can we confirm this result computationally?

Can we check that the orbit of 𝜙 under the monodromy action is finite?
DEMO
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The matrix of periods

X smooth compact complex algebraic manifold of dimension n∫
𝛾i

𝛼j
Basis of cohomology

Basis of homology

Matrix of periods = matrix of the pairing Hn(X,ℂ) × Hn
DR(X,ℂ) → ℂ.

• describe fine algebraic invariants of X, related to the Hodge structure
• How to compute it?
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The long road to periods

(joint work with Eric Pichon-Pharabod and Pierre Vanhove)
• How to compute

∫
𝛾
𝛼 given 𝛾 and 𝛼?

• what does it mean to give 𝛾?
• the description of 𝛼 seems less of an issue
• this is a problem of numerical integration

• How to compute a basis of De Rham cohomology?
• For smooth hypersurfaces in a projective space: Griffiths–Dwork reduction

• How to compute a basis of the singular homology?
• By Lefschetz, reduction to the case of a one-parameter family (Xt)t∈ℙ1 We need:
• the homology of one fiber Xt (induction on dimension)
• the monodromy action
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Monodromy acting on homology

a family (Xt)t∈ℂ, such that Xt is compact and smooth for generic t
critical values Σ = {t ∈ ℂ | Xt singular}

base point b ∈ ℂ \ Σ
a loop 𝛾 : [0, 1] → ℂ \ Σ, 𝛾(0) = 𝛾(1) = b

• By Ehresmann’s theorem, X𝛾(u) deforms continously as u goes from 0 to 1
• Induces diffeomorphism X𝛾(0) ≃ X𝛾(1) , determined up to homotopy.
• Induces Xb ≃ Xb and in particular, an automorphism of H∗(Xb,ℤ)

monodromy action This induces

𝜙 : 𝜋1(ℂ \ Σ, b) → Autℤ(H∗(Xb,ℤ)).

How to compute it?
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A family of elliptic curves

Xt =
{
[x : y : z] ∈ ℙ2 �� (x + y) (y + z) (z + x) + txyz = 0

}
• Given a basis 𝛾1, 𝛾2 of H2(Xb), there is a unique way to extend it

continously to a basis 𝛾1(t), 𝛾2(t) of H2(Xt).
• We want to compute the monodromy of this basis.
• Fix a basis 𝛼(t), 𝛼(t) of H2

DR(Xt), where 𝛼 depends rationally on t.
• 𝜔1(t) =

∫
𝛾1 (t)

𝛼(t) and 𝜔2(t) =
∫
𝛾2 (t)

𝛼(t) are a basis of solution of the
Picard-Fuchs differential equation

t(t + 8) (t − 1)y′′ + (3t2 + 14t − 8)y′ + (t + 2)y = 0
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Monodromy

Consider the continuation along a loop 𝜂 in ℂ.
on the one hand 𝜂𝜔i(t) = ai1𝜔i(t) + ai2𝜔2(t), as the monodromy acts on

the solution space of the Picard-Fuchs equation.
on the other hand 𝛼(t) has no monodromy, so

𝜂𝜔i(t) =
∫
𝜂𝛾i (t)

𝛼(t).

conclusion The monodromy on H2(X,ℤ) is given that of the PF
equation:

𝜂𝛾i(t) (b) = ai1𝛾1(b) + ai2𝛾2(b)

DEMO
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