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Take home message

Monodromy computed numerically give access to
an exact geometric information,
even in situations not likely of approximation
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Overview

1. Algebraic functions
1.1 Monodromy action
1.2 Irreducible decomposition

2. Holonomic functions
2.1 Factorization of differential operator
2.2 Testing algebraicity

3. Homology of complex varieties
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The square root function
y
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Square root, in the complex plane
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The square root has two determinations...
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.. SO there is a monodromy phenomenon

It is possible to extend the square root function holomorphically at any
point in C*...

... but not in a consistent way.
e As we go around 0, vz becomes —/z.
This phenomenon is called monodromy.

6/28



LOVOSpOpOG?

= Google Translate it m

Xp Text B Documents @& Websites

DETECT LANGUAGE ~ GREEK  SPANIE v < SPANISH  GREEK  ENGLISH v
povodpopog X de una sola mano Ve
monédromos

D) 10/5000 €A ~ LD} O % <

¢ coined by Cauchy with the meaning of “in a single way”
® now refers to the presence of multiple determinations
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Analytic continuation of algebraic functions

a polynomial equation P,(T) € C[z][T]
a base point b € C such that disc(Pp) # 0
an initial value yj, € C such that Py(yp) =0
aopenset U C C)\ {z € C|disc(P;) = 0} simply connected
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theorem there exists a unique holomorphic
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Analytic continuation of algebraic functions

a polynomial equation P,(T) € C[z][T]
a base point b € C such that disc(Pp) # 0
an initial value yj, € C such that Py(yp) =0
aopenset U C C)\ {z € C|disc(P;) = 0} simply connected

theorem there exists a unique holomorphic
function Y : U — C such that P(Y) =0
and Y(b) = yp.

proof Apply the global Picard-Lindelof theorem to

v = () o Sw
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Analytic continuation of algebraic functions: algorithm

input P € C[z][T], base point b, initial value y;, target point ¢
output Y(c) where Y is the analytic continuation as above along the line
segment [b, c].
t—0
Y <JYb
while ¢t < 1do
t — t+ 8t (many different ways to choose 6t)

ye<y- (g_lz)) (Y)_l ’ g_IT)(Y)|Z<—(1—t)b+tc
end

return y
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Monodromy action

polynomial equation P € C[z][T], squarefree
critical values X = {z € C | disc(P) = 0}
base point be C\ &
monodromy action Continuation along a path induces the morphism

¢:m (C\L,b) - Bij({y e C|Pp(y) =0}).
monodromy group M =im ¢

Theorem

® The orbits of this action are in one-to-one correspondance with the
irreducible factors of P in C(z)[T].

e IfPisirreducible, the monodromy group is isomorphic to the Galois group
of P over the field C(z).
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Counting irreducible factors

Given P € C[z][T], how many irreducible factors does it have?
Easy reduction to the following case:

¢ the coefficients of P (as a polynomial in T) do not have common factors;
¢ P does not have a multiple factor.

b < generic pointin C
Vi,...,Yr < roots of Py (T)
G « graph with r nodes and no edge
repeat (how many times?)
U, v « random points in C
forifrom1tordo
Yyj < continuation of y; along the loop [b, u, v, b]
insert an edge (i,j) in G

return the number of connected components of G
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Halting condition: the trace test

(Sommese, Verschelde, & Wampler, 2002)
Assume generic coordinates
input SC {y e C|Py(y) =0}
problem Is S closed under the monodromy action?
u,v « random points in C
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Halting condition: the trace test

(Sommese, Verschelde, & Wampler, 2002)
Assume generic coordinates

input SC {y e C|Py(y) =0}
problem Is S closed under the monodromy action?
u,v « random points in C

Op < Zyesy
Oy < 2yes continuation of y along [b, u]
Oy < 2iyes continuation of y along [b, v]

return (b — u)(op — o) == (b —v)(op — 0y)

in words Check that o, — g depends linearly on u.

proof If it does, then it has no monodromy, so S is closed.
For the converse: the sum of roots of a monic polynomial P is
minus the coefficient of 741,
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Overview

2. Holonomic functions
2.1 Factorization of differential operator
2.2 Testing algebraicity



Linear differential operators

openset UCC
function space O(U), holomorphic functions on U

differential ops C(z)(d) is the subalgebra of End¢c (O(U)) generated by
multiplications by rational functions and 4 = %.

For L € C[z](d) nonzero, we can always write
L=a(2)0 +a_1(2)8 1+ +a1(2)d + ap(2),

for somer > 0 and a, # 0.

L(y) = 01is the linear differential equation

a2y + ar1(2)y" ™V + -+ ay +agy = 0.

13/28



Two problems for Fuchsian operators

Fuchsian operator L € C(z)(d) is Fuchsian if the solutions grow at most
polynomially near singularities (including near o)
Naturally happens in many contexts
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Two problems for Fuchsian operators

Fuchsian operator L € C(z)(d) is Fuchsian if the solutions grow at most
polynomially near singularities (including near o)
Naturally happens in many contexts

Problem #1 Given L, find a nontrivial fractorization L = AB, or
prove that there is none.

Problem #2 Given L, prove or disprove that all solutions of L are
algebraic.
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Analytic continution of holonomic functions

a differential operator L € C[z](d) or order r
a base point b € C such thatlc(L)|,=p # 0
initial conditions yog,...,yr-1 € C
aopenset U C C )\ {lc(L) = 0} simply connected
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Analytic continution of holonomic functions

a differential operator L € C[z](d) or order r
a base point b € C such thatlc(L)|,=p # 0
initial conditions yog,...,yr-1 € C
aopenset U C C )\ {lc(L) = 0} simply connected

theorem there exists a unique holomorphic
function Y : U — C such that L(Y) =0
and Y(b) =yo, Y'(b) = y1, .., YD (D) = y,_1.

proof Apply the global Picard-Lindel6f theorem

{yeOU)|L(y)=0} - C!
y e (y0).y ®), ..y V(b))
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Monodromy action

differential op L €€ C(z)(d) Fuchsian
singular points £ ={z € C|1c(L) = 0}
base point be C\ &
local solutions Vi, = {y € O(D(b,¢€)) | L(y) = 0}
monodromy action Continuation along a path induces the morphism

¢ :m (C\ L, b) — Autc(Vp).
monodromy group M =im ¢

Theorem

® The right-factors of L are in one-to-one correspondance with the stable
subspaces of V, under the monodromy action.

® A solution of L is rational if and only if monodromy acts trivially.

® A solution of L is algebraic if and only if it has a finite orbit under
monodromy.
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Monodromy of the logarithm

L=020=28%-1

Im(z) Basis of solutions on A:
1, Log,(z) =log|z| +arg, (2)i,

with arg, (z) € [-%, 3)
Basis of solutions on B:

1, Logg(z) =log|z| + argg(2)i,

Re(z) with argg(z) € [-3, 2

On U: Log,(z) = Logy(z)
On V: Log,(z) = Logg(z) + 27i

monodromy around 0: ((1) Zin)
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Monodromy of a power

Im(z)

Re(z)

L=2z0-A, AeC
Basis of solutions on A:
1, z"=exp(ALog,(z))
Basis of solutions on B:

1, z*=-exp(ALogy(2))

OnU: z* = 7/
On V: z* = z2 - exp(2mAi)

monodromy around 0: (exp(27Ai))
(thisis a 1 X 1 matrix)
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Fuchsian holonomic functions with trivial or finite orbits

Let f be a Fuchsian holonomic function, such that monodromy acts trivially.
e Locally, we can expand f in C((z)) [z, log z] for some A € C.

¢ No monodromy, so f must be in C((z)), so it is a meromorphic function
on PL. To it is rational.
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Fuchsian holonomic functions with trivial or finite orbits

Let f be a Fuchsian holonomic function, such that monodromy acts trivially.
e Locally, we can expand f in C((z)) [z, log z] for some A € C.

¢ No monodromy, so f must be in C((z)), so it is a meromorphic function
on PL. To it is rational.

Let f be a Fuchsian holonomic function, with a finite orbit {f3, ..., f;} under
monodromy.

e Form the polynomial P(T) = [[;(T — f;). Note that P(f) = 0.
¢ The coefficients of P have no monodromy, so they are rational functions.
e So fis algebraic.
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Stable subspaces under monodromy

Let L be a Fuchsian differential operator.

e If L = AB, then {y € V}, | B(y) = 0} is a subspace of V}, stable under
monodromy action.
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Stable subspaces under monodromy

Let L be a Fuchsian differential operator.

e If L = AB, then {y € V}, | B(y) = 0} is a subspace of V}, stable under
monodromy action.

® Conversely, let S € Vj, be subspace stable under the monodromy action.
Pick a basis yy, ...,y of S and let

yioooye [y oo oy 0
y’ ce y’ y’ ce y’ 9

B=|". ! ! !/ e C(2)(d)
gr'—l) L y’(ﬁr.—l) gr) L yf‘r) 9"

The coefficients of this operator are monodromy-invariant, so rational.

Every solution of B is a solution of L, so B right-divides L.
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Factorization of Fuchsian differential operators

(van der Hoeven, 2007; Chyzak, Goyer, & Mezzarobba, 2022)

input L € C(z)(d) Fuchsian
output A right factor of L, or nothing if L is irreducible

b <« arandom pointin C
numerically compute generators My, ..., Mg

of the monodromy group, with base point b
find a nontrivial stable space Cy; +---+Cy, C V),

if impossible then return @
-1

Yu o0 Yr yr - yr 0
/ y/ y/ e yl a

return | . :r :1 :r . | € C(2)€9)
:(lr_l) R ys‘r_l) :(lr) ce y,('r) o

(reconstruct the coefficients by evaluation-interpolation)
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Factorization of Fuchsian differential operators: comments

¢ Implemented in Sagemath (by Goyer)

® Relies on very high precision evaluation of the monodromy matrices
(typically 1000 decimal digits)

¢ This is possible with quasilinear complexity! (algorithms and
implementation by Mezzarobba)

® Performs very well
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A famous hypergeometric function

B (30n)!n!
b(2) = ;) (15n)1(10n)!(6n)!

z" e Z[[z]]

Theorem (Beukers and Heckman, 1989; Rodriguez-Villegas, 2005)
There is a polynomial P € C|[z][T] of degree 483,840 such that P(¢(z)) = 0.

e Follows from a result of Beukers and Heckman (1989) on the monodromy
of generalized hypergeometric functions.

e Relies on an enormous classification work in finite group theory,
especially (Shephard & Todd, 1954).

¢ Can we confirm this result computationally?
Can we check that the orbit of ¢ under the monodromy action is finite?
DEMO
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Overview

3. Homology of complex varieties



The matrix of periods

X smooth compact complex algebraic manifold of dimension n

Basis of cohomology
oG
] Basis of homology

Vi
Matrix of periods = matrix of the pairing H, (X, C) X H;(X,C) — C.

¢ describe fine algebraic invariants of X, related to the Hodge structure
* How to compute it?
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The long road to periods

(joint work with Eric Pichon-Pharabod and Pierre Vanhove)
e How to compute fy a given y and a?

® what does it mean to give y?
® the description of a seems less of an issue
® this is a problem of numerical integration

e How to compute a basis of De Rham cohomology?
® For smooth hypersurfaces in a projective space: Griffiths—-Dwork reduction

® How to compute a basis of the singular homology?
® By Lefschetz, reduction to the case of a one-parameter family (X;);cp1 We need:
® the homology of one fiber X; (induction on dimension)
® the monodromy action
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Monodromy acting on homology

a family (X¢)¢ec, such that X; is compact and smooth for generic ¢
critical values X = {t € C | X; singular}
base point be C\ X
aloop y:[0,1] - C\Z%Z,y(0)=y(1)=b
® By Ehresmann’s theorem, Xy, ;) deforms continously as u goes from 0 to 1
® Induces diffeomorphism Xy ) = X, (1), determined up to homotopy.
¢ Induces X; ~ X and in particular, an automorphism of H, (X, Z)

monodromy action This induces
¢ : 11 (C\ L,b) — Autz(H.(Xp, Z)).

How to compute it?
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A family of elliptic curves

X ={lx:y:z] e P*| (x+y)(y +2)(z +x) + txyz = 0}

Given a basis y1, y2 of Hy(Xp), there is a unique way to extend it
continously to a basis y;(t), y2(t) of Hy(Xy).

We want to compute the monodromy of this basis.

Fix a basis a(t), a(t) of HIZJR(Xt), where a depends rationally on t.
w'l(t) = fyl(t) a('t) and 'wz(t) = A/z(t) a(t) are a basis of solution of the
Picard-Fuchs differential equation

t(t+8)(t—1)y" + (32 +14t - 8)y + (t+2)y =0
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Monodromy

Consider the continuation along a loop n in C.

on the one hand nw;(t) = apwi(t) + apw2(t), as the monodromy acts on
the solution space of the Picard-Fuchs equation.

on the other hand «(t) has no monodromy, so

ne(t) = / e
nyi(t

conclusion The monodromy on Hy(X, Z) is given that of the PF
equation:

nyi(t)(b) = ai1y1(b) + apy2(b)

DEMO
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