Computing with integrals
in nonlinear algebra
Exercises

Pierre Lairez

March 25, 2021

Problem 1. Show that the series ), (sn)t" is algebraic.
Show that the series 2,5 = (3n)

t" is not algebraic.

Problem 2. Using the formula y = - fom e " log tdt, compute 1000 digits of the Euler—
Mascheroni constant.

Problem 3. Show that
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where f;, is defined by f,+2 = fu+1 + frn and fy = 0 and f; = 1, and g, is defined by the

same recurrence relation but go = 2 and g; = 1.



Problem 5. Inspired by Kontsevich and Odesskii (2020), consider the differential
operator L = 9z(z — 1)(z — @)d + z, where « is a parameter with || <« 1.
1. Show that L is Fuchsian.
Let M be the monodromy matrix corresponding to a loop enclosing 0 and « (but not 1).
2. Show that detM = 1.
3. Let exp(+i2mA) be the two eigenvalues of M. Check experimentally that A is a
power series in « with rational coefficients. Compute as many coefficients as

you can.

Problem 6. Inspired by Koutschan (2013), consider a random walk on a face-centered
cubic structure: a point X in Z? starts at 0, and at each step the point moves randomly

to one of its twelve neighbors in the structure:
X+ (£1,+£1,0), X + (£1,0,£1), X + (0, £1, £1).

Let X, be the position after the nth step (this is a random variable). Let p, be the
probability that X, = 0.
1. Let a, be the probability that X,, = 0. Let A(t) = 2,5 ant". Give a rational
function R(t, x1, X2, x3) such that

A(t) = resy, x,x; R.

2. Let by = 0 and, for n > 0, let b, be the probability that X;, = 0 and X; # 0
for 0 < k < n. Let B(t) = ;50 bnt". Show that B(t) =1 - A(t)™".

3. Evaluate numerically the return probability, that is the probability that there is
an n > 0 such that X, = 0.
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