Algebraic consequences of the fundamental theorem of calculus in differential rings

Georg Regensburger joint work with Clemens G. Raab

U N I K A S S E L V E R S I T A T

D-Finite Functions and Beyond, ACA 2023 Warsaw, July 20, 2023

Algebraic consequences of the Leibniz rule and

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x) \quad \text{and} \quad \int_{a}^{x} f'(t) dt = f(x) - f(a)$$

Algebraic consequences of the Leibniz rule and

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x) \quad \text{and} \quad \int_{a}^{x} f'(t) dt = f(x) - f(a)$$

Gian-Carlo Rota:

"The algebraic structure sooner or later comes to dominate $[\ldots]$.

Algebra dictates the analysis."

Algebraic consequences of the Leibniz rule and

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x) \quad \text{and} \quad \int_{a}^{x} f'(t) dt = f(x) - f(a)$$

Gian-Carlo Rota:

"The algebraic structure sooner or later comes to dominate [...].

Algebra dictates the analysis."

(Rota '01)

Operator notation:

$$\partial f$$
 instead of $\partial(f)$

$$\partial fg = (\partial f)g + f\partial g$$
 $\qquad \qquad \partial (fg) = \partial (f)g + f\partial (g)$

Algebraic consequences of the Leibniz rule and

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x) \quad \text{and} \quad \int_{a}^{x} f'(t) dt = f(x) - f(a)$$

Gian-Carlo Rota:

"The algebraic structure sooner or later comes to dominate [...].

Algebra dictates the analysis."

(Rota '01)

Operator notation:

$$\partial f \quad \text{instead of} \quad \partial(f)$$

$$\partial fg = (\partial f)g + f\partial g \qquad \qquad \partial(fg) = \partial(f)g + f\partial(g)$$

$$\int f \qquad \qquad \int (f)$$

 (\mathcal{R},∂) differential ring, $\partial:\mathcal{R}\to\mathcal{R}$ is linear of its constants

$$C = \{ f \in \mathcal{R} \mid \partial f = 0 \}$$

 (\mathcal{R}, ∂) differential ring, $\partial : \mathcal{R} \to \mathcal{R}$ is linear of its constants

$$C = \{ f \in \mathcal{R} \mid \partial f = 0 \}$$

 $\mathcal R$ and $\mathcal C$ can be noncommutative $(\mathcal C^\infty(\mathbb R)^{n\times n}$ with const. matrices $\mathcal C=\mathbb R^{n\times n})$

 (\mathcal{R}, ∂) differential ring, $\partial : \mathcal{R} \to \mathcal{R}$ is linear of its constants

$$C = \{ f \in \mathcal{R} \mid \partial f = 0 \}$$

 $\mathcal R$ and $\mathcal C$ can be noncommutative $(\mathcal C^\infty(\mathbb R)^{n\times n}$ with const. matrices $\mathcal C=\mathbb R^{n\times n})$

Definition

Let (\mathcal{R}, ∂) be a differential ring with constants \mathcal{C} . We call a \mathcal{C} -linear map $f: \mathcal{R} \to \mathcal{R}$ an **integration** on \mathcal{R} , if

$$\partial \int f = f$$

holds for all $f \in \mathcal{R}$.

 (\mathcal{R}, ∂) differential ring, $\partial : \mathcal{R} \to \mathcal{R}$ is linear of its constants

$$C = \{ f \in \mathcal{R} \mid \partial f = 0 \}$$

 \mathcal{R} and C can be noncommutative $(C^{\infty}(\mathbb{R})^{n\times n})$ with const. matrices $C=\mathbb{R}^{n\times n}$

Definition

Let (\mathcal{R}, ∂) be a differential ring with constants C. We call a C-linear map $\int : \mathcal{R} \to \mathcal{R}$ an **integration** on \mathcal{R} , if

$$\partial \int f = f$$

holds for all $f \in \mathcal{R}$.

A C-linear functional

$$e: \mathcal{R} \to \mathcal{C}$$

acting on C as the identity is called an **evaluation** on \mathcal{R} .

Integro-differential rings

Definition

Let (\mathcal{R}, ∂) be a differential ring and let $\int : \mathcal{R} \to \mathcal{R}$ be an integration on \mathcal{R} .

We call $(\mathcal{R},\partial,\int)$ a (generalized) integro-differential ring and we define the (induced) evaluation E on \mathcal{R} by

$$\mathbf{E}f = f - \int \partial f.$$

Integro-differential rings

Definition

Let (\mathcal{R}, ∂) be a differential ring and let $\int : \mathcal{R} \to \mathcal{R}$ be an integration on \mathcal{R} .

We call $(\mathcal{R},\partial,\int)$ a **(generalized) integro-differential ring** and we define the **(induced) evaluation** E on \mathcal{R} by

$$\mathbf{E}f = f - \int \partial f$$
.

Lemma

Let $(\mathcal{R}, \partial, \int)$ be an integro-differential ring with constants C. Then,

$$Ef \in C$$
, $E \int f = 0$, and $Ec = c$.

for all $f \in \mathcal{R}$ and $c \in \mathcal{C}$.

Integro-differential rings

Definition

Let (\mathcal{R}, ∂) be a differential ring and let $\int : \mathcal{R} \to \mathcal{R}$ be an integration on \mathcal{R} .

We call $(\mathcal{R},\partial,\int)$ a (generalized) integro-differential ring and we define the (induced) evaluation E on \mathcal{R} by

$$\mathbf{E}f = f - \int \partial f$$
.

Lemma

Let $(\mathcal{R}, \partial, \int)$ be an integro-differential ring with constants C. Then,

$$Ef \in C$$
, $E \int f = 0$, and $Ec = c$.

for all $f \in \mathcal{R}$ and $c \in \mathcal{C}$. Moreover,

$$\mathcal{R} = C \oplus \int \mathcal{R}$$

as direct sum of C-modules.

(Multiplicative) integro-differential rings and algebras

multiplicative evaluation

$$Efg = (Ef)Eg$$

(Rosenkranz '03 '05, Rosenkranz-R '08, Guo-R-Rosenkranz '14, Hossein Poor-Raab-R '18)

$$\int_{a}^{x} f(t) dt$$
 and evaluation $\mathbf{E}f = f(a)$ of **continuous** functions

(Multiplicative) integro-differential rings and algebras

multiplicative evaluation

$$Efg = (Ef)Eg$$

(Rosenkranz '03 '05, Rosenkranz-R '08, Guo-R-Rosenkranz '14, Hossein Poor-Raab-R '18)

$$\int_{a}^{x} f(t) dt$$
 and evaluation $\mathbf{E}f = f(a)$ of **continuous** functions

Ex: (Matrices of) polynomials, smooth/analytic functions, formal power series

Motivation and application:

algebraic setting for **boundary value problems** for linear ODEs

(Multiplicative) integro-differential rings and algebras

multiplicative evaluation

$$Efg = (Ef)Eg$$

(Rosenkranz '03 '05, Rosenkranz-R '08, Guo-R-Rosenkranz '14, Hossein Poor-Raab-R '18)

$$\int_{a}^{x} f(t) dt$$
 and evaluation $\mathbf{E}f = f(a)$ of **continuous** functions

Ex: (Matrices of) polynomials, smooth/analytic functions, formal power series

Motivation and application:

algebraic setting for boundary value problems for linear ODEs

Differential Rota-Baxter algebras

$$(\int f) \int g = \int f \int g + \int (\int f)g$$

(Guo-Keigher '08)

Laurent polynomials $R=K[x,\frac{1}{x},\ln(x)]$ with $\mathbb{Q}\subseteq K,$ $\partial=\frac{d}{dx},$

Laurent polynomials $R = K[x, \frac{1}{x}, \ln(x)]$ with $\mathbb{Q} \subseteq K$, $\partial = \frac{d}{dx}$, and \int defined by

$$\int x^k \ln(x)^n = \begin{cases} \frac{x^{k+1}}{k+1} & k \neq -1 \land n = 0\\ \frac{x^{k+1}}{k+1} \ln(x)^n - \frac{n}{k+1} \int x^k \ln(x)^{n-1} & k \neq -1 \land n > 0\\ \frac{\ln(x)^{n+1}}{n+1} & k = -1 \end{cases}$$

Laurent polynomials $R = K[x, \frac{1}{x}, \ln(x)]$ with $\mathbb{Q} \subseteq K$, $\partial = \frac{d}{dx}$, and \int defined by

$$\int x^k \ln(x)^n = \begin{cases} \frac{x^{k+1}}{k+1} & k \neq -1 \land n = 0\\ \frac{x^{k+1}}{k+1} \ln(x)^n - \frac{n}{k+1} \int x^k \ln(x)^{n-1} & k \neq -1 \land n > 0\\ \frac{\ln(x)^{n+1}}{n+1} & k = -1 \end{cases}$$

 $E = id - \int \partial$ acts by

$$\mathbf{E}x^k \ln(x)^n = \begin{cases} 1 & k = n = 0 \\ 0 & \text{otherwise} \end{cases}$$

and is not multiplicative:

Laurent polynomials $R = K[x, \frac{1}{x}, \ln(x)]$ with $\mathbb{Q} \subseteq K$, $\partial = \frac{d}{dx}$, and \int defined by

$$\int x^k \ln(x)^n = \begin{cases} \frac{x^{k+1}}{k+1} & k \neq -1 \land n = 0\\ \frac{x^{k+1}}{k+1} \ln(x)^n - \frac{n}{k+1} \int x^k \ln(x)^{n-1} & k \neq -1 \land n > 0\\ \frac{\ln(x)^{n+1}}{n+1} & k = -1 \end{cases}$$

 $E = id - \int \partial$ acts by

$$\operatorname{E} x^k \ln(x)^n = \begin{cases} 1 & k = n = 0 \\ 0 & \text{otherwise} \end{cases}$$

and is not multiplicative: for f = x and $g = \frac{1}{x}$

$$Efg = 1$$
 and $Ef = Eg = 0$

Laurent polynomials $R = K[x, \frac{1}{x}, \ln(x)]$ with $\mathbb{Q} \subseteq K$, $\partial = \frac{d}{dx}$, and \int defined by

$$\int x^k \ln(x)^n = \begin{cases} \frac{x^{k+1}}{k+1} & k \neq -1 \land n = 0\\ \frac{x^{k+1}}{k+1} \ln(x)^n - \frac{n}{k+1} \int x^k \ln(x)^{n-1} & k \neq -1 \land n > 0\\ \frac{\ln(x)^{n+1}}{n+1} & k = -1 \end{cases}$$

 $E = id - \int \partial$ acts by

$$\operatorname{E} x^k \ln(x)^n = \begin{cases} 1 & k = n = 0 \\ 0 & \text{otherwise} \end{cases}$$

and is not multiplicative: for f = x and $g = \frac{1}{x}$

$$Efg = 1$$
 and $Ef = Eg = 0$

Laurent series:

$$K((x))[\ln(x)]$$

contain rational functions K(x) and hyperlogarithms

D-finite functions

D-finite functions are closed under antiderivatives

(Abramov-van Hoeij '97)

D-finite functions

D-finite functions are closed under antiderivatives

(Abramov-van Hoeij '97)

Define integration in terms of an evaluation and antiderivates

Lemma

Let (\mathcal{R}, ∂) be a differential ring such that $\partial \mathcal{R} = \mathcal{R}$ and e be an evaluation on \mathcal{R} . Define $\int_e : \mathcal{R} \to \mathcal{R}$ by

$$\int_{e} f = g - eg$$

where $g \in \mathcal{R}$ is such that $\partial g = f$.

Then $(\mathcal{R}, \partial, \int_{e})$ is an integro-differential ring with induced evaluation E = e.

D-finite functions

D-finite functions are closed under antiderivatives

(Abramov-van Hoeij '97)

Define integration in terms of an evaluation and antiderivates

Lemma

Let (\mathcal{R}, ∂) be a differential ring such that $\partial \mathcal{R} = \mathcal{R}$ and e be an evaluation on \mathcal{R} . Define $\int_e : \mathcal{R} \to \mathcal{R}$ by

$$\int_{e} f = g - eg$$

where $g \in \mathcal{R}$ is such that $\partial g = f$.

Then $(\mathcal{R}, \partial, \int_{e})$ is an integro-differential ring with induced evaluation E = e.

Define an evaluation in terms of formal series solutions

(van Hoeij '97)

Linear operators

- ullet differential operator ∂
- integral ∫
- evaluation $E = id \int \partial$
- multiplication operators: $f \in \mathcal{R}$ acting as $g \mapsto fg$

Linear operators

- ullet differential operator ∂
- integral ∫
- evaluation $E = id \int \partial$
- multiplication operators: $f \in \mathcal{R}$ acting as $g \mapsto fg$

What are all relations between these operators?

Linear operators

- ullet differential operator ∂
- integral ∫
- evaluation $E = id \int \partial$
- multiplication operators: $f \in \mathcal{R}$ acting as $g \mapsto fg$

What are all relations between these operators?

R commutative: all operators are C-linear

 ${\cal R}$ noncommutative: multiplication operators are only additive

Linear operators

- ullet differential operator ∂
- integral ∫
- evaluation $E = id \int \partial$
- multiplication operators: $f \in \mathcal{R}$ acting as $g \mapsto fg$

What are all relations between these operators?

 $\mathcal R$ commutative: all operators are C-linear

 ${\cal R}$ noncommutative: multiplication operators are only additive

Linear operators with composition form a ring

C commutative: a C-algebra C noncommutative: a C-ring

Definition

Let $(\mathcal{R}, \partial, f)$ be an integro-differential ring with constants C.

We define the **ring of integro-differential operators** (IDO)

$$\mathcal{R}\langle\partial,\int,\mathsf{E}\rangle$$

as the ring generated by $\mathcal R$ and ∂ , \int , E,

Definition

Let $(\mathcal{R}, \partial, \int)$ be an integro-differential ring with constants C. We define the **ring of integro-differential operators** (IDO)

$$\mathcal{R}\langle\partial,\int,E\rangle$$

as the ring generated by $\mathcal R$ and ∂ , \int , E, where for $f \in \mathcal R$ the identities

$$\partial \cdot f = f \cdot \partial + \partial f, \quad \partial \cdot \int = 1, \quad \int \cdot \partial = 1 - E$$

$$\partial \cdot f \cdot \mathbf{E} = \partial f \cdot \mathbf{E}, \quad \int \cdot f \cdot \mathbf{E} = \int f \cdot \mathbf{E}, \quad \mathbf{E} \cdot f \cdot \mathbf{E} = \mathbf{E} f \cdot \mathbf{E}$$

hold

Definition

Let $(\mathcal{R}, \partial, \int)$ be an integro-differential ring with constants C. We define the **ring of integro-differential operators** (IDO)

$$\mathcal{R}\langle\partial,\int,E\rangle$$

as the ring generated by $\mathcal R$ and ∂ , \int , E, where for $f \in \mathcal R$ the identities

$$\partial \cdot f = f \cdot \partial + \partial f, \quad \partial \cdot \int = 1, \quad \int \cdot \partial = 1 - E$$

$$\partial \cdot f \cdot \mathbf{E} = \partial f \cdot \mathbf{E}, \quad \int \cdot f \cdot \mathbf{E} = \int f \cdot \mathbf{E}, \quad \mathbf{E} \cdot f \cdot \mathbf{E} = \mathbf{E} f \cdot \mathbf{E}$$

hold and ∂ , \int , E commute with constants in C.

Definition

Let $(\mathcal{R}, \partial, \int)$ be an integro-differential ring with constants C. We define the **ring of integro-differential operators** (IDO)

$$\mathcal{R}\langle\partial,\int,E\rangle$$

as the ring generated by $\mathcal R$ and ∂ , \int , E, where for $f \in \mathcal R$ the identities

$$\partial \cdot f = f \cdot \partial + \partial f$$
, $\partial \cdot \int = 1$, $\int \cdot \partial = 1 - E$

$$\partial \cdot f \cdot \mathbf{E} = \partial f \cdot \mathbf{E}, \quad \int \cdot f \cdot \mathbf{E} = \int f \cdot \mathbf{E}, \quad \mathbf{E} \cdot f \cdot \mathbf{E} = \mathbf{E} f \cdot \mathbf{E}$$

hold and ∂ , \int , E commute with constants in C.

Identities as rules

$$\begin{array}{ccc}
\partial \cdot \int \cdot \partial \\
\swarrow & \searrow \\
1 \cdot \partial & - & \partial \cdot (1 - E)
\end{array}$$

Definition

Let $(\mathcal{R}, \partial, \int)$ be an integro-differential ring with constants C. We define the **ring of integro-differential operators** (IDO)

$$\mathcal{R}\langle\partial,\int,E\rangle$$

as the ring generated by $\mathcal R$ and ∂ , \int , E, where for $f \in \mathcal R$ the identities

$$\partial \cdot f = f \cdot \partial + \partial f, \quad \partial \cdot \int = 1, \quad \int \cdot \partial = 1 - E$$

$$\partial \cdot f \cdot \mathbf{E} = \partial f \cdot \mathbf{E}, \quad \int \cdot f \cdot \mathbf{E} = \int f \cdot \mathbf{E}, \quad \mathbf{E} \cdot f \cdot \mathbf{E} = \mathbf{E} f \cdot \mathbf{E}$$

hold and ∂ , \int , E commute with constants in C.

$$\begin{array}{ccc}
\partial \cdot \int \cdot \partial \\
\swarrow & \searrow \\
1 \cdot \partial & - & \partial \cdot (1 - E) \\
\partial \cdot E = 0
\end{array}$$

$$\int \cdot \partial = 1 - E$$
 and $\partial \cdot f = f \cdot \partial + \partial f$

$$\int \cdot \partial = 1 - \mathbf{E} \quad \text{and} \quad \partial \cdot f = f \cdot \partial + \partial f$$

Ambiguity

$$\int \cdot \partial = 1 - \mathbf{E} \quad \text{and} \quad \partial \cdot f = f \cdot \partial + \partial f$$

Ambiguity

S-polynomial

$$\int \cdot \partial = 1 - \mathbf{E} \quad \text{and} \quad \partial \cdot f = f \cdot \partial + \partial f$$

Ambiguity

S-polynomial

$$\int \cdot f \cdot \partial = f - \mathbf{E} \cdot f - \int \cdot \partial f$$

A known consequence

$$\int \cdot \partial = 1 - \mathbf{E} \quad \text{and} \quad \partial \cdot f = f \cdot \partial + \partial f$$

Ambiguity

S-polynomial

$$\int \cdot f \cdot \partial = f - \mathbf{E} \cdot f - \int \cdot \partial f$$

integration by parts holds in ${\cal R}$

$$\int f \partial g = fg - Efg - \int (\partial f)g$$

A new consequence

From

$$\int \cdot f \cdot \partial \cdot \int$$

integration by parts and $\partial \cdot \int$,

we obtain

$$\int \cdot f \cdot \int = \int f \cdot \int - \int \cdot \int f - \mathbf{E} \cdot \int f \cdot \int$$

A new consequence

From

$$\int \cdot f \cdot \partial \cdot \int$$

integration by parts and $\partial \cdot \int$,

we obtain

$$\int \cdot f \cdot \int = \int f \cdot \int - \int \cdot \int f - \mathbf{E} \cdot \int f \cdot \int$$

Rota-Baxter identity with evaluation in ${\mathcal R}$

$$(\int f) \int g = \int f \int g + \int (\int f)g + \mathbf{E}(\int f) \int g$$

products of integrals = nested integrals plus evaluation

A new consequence

From

$$\int \cdot f \cdot \partial \cdot \int$$

integration by parts and $\partial \cdot \int$,

we obtain

$$\int \cdot f \cdot \int = \int f \cdot \int - \int \cdot \int f - \mathbf{E} \cdot \int f \cdot \int$$

Rota-Baxter identity with evaluation in ${\mathcal R}$

$$(\int f) \int g = \int f \int g + \int (\int f) g + \mathrm{E}(\int f) \int g$$

products of integrals = nested integrals plus evaluation

E is multiplicative: Rota-Baxter identity (shuffle identities)

$$(\int f) \int g = \int f \int g + \int (\int f)g$$

All consequences

Table: Rewrite rules for operator expressions

All consequences

Table: Rewrite rules for operator expressions

Theorem

Let $(\mathcal{R}, \partial, \int)$ be an integro-differential ring. Then, by repeatedly applying the rewrite rules above in any order, every element of the ring $\mathcal{R}\langle\partial, \int, E\rangle$ can be written as a sum of expressions of the form

$$f \cdot \partial^j, \quad f \cdot \int \cdot g, \quad f \cdot \mathbf{E} \cdot g \cdot \partial^j, \quad \text{or} \quad f \cdot \mathbf{E} \cdot h \cdot \int \cdot g$$

where $j \in \mathbb{N}_0$, $f, g \in \mathcal{R}$, and $h \in \int \mathcal{R}$.

Constructive and algorithmic approach to rings of linear operators via **tensor reduction systems** for tensor algebras and rings

(Bergman '78, Hossein Poor-Raab-R '16, Hossein Poor-Raab-R '18, Raab-R '23)

Constructive and algorithmic approach to rings of linear operators via **tensor reduction systems** for tensor algebras and rings

(Bergman '78, Hossein Poor-Raab-R '16, Hossein Poor-Raab-R '18, Raab-R '23)

- compositions is represented by tensor product
- families of relations can be represented as one homomorphism

$$\partial \otimes f \mapsto f \otimes \partial + \partial f$$

- tensor over the ring of constants to deal with linearity
- construction via quotients of tensor rings

Constructive and algorithmic approach to rings of linear operators via **tensor reduction systems** for tensor algebras and rings

(Bergman '78, Hossein Poor-Raab-R '16, Hossein Poor-Raab-R '18, Raab-R '23)

- compositions is represented by tensor product
- families of relations can be represented as one homomorphism

$$\partial \otimes f \mapsto f \otimes \partial + \partial f$$

- tensor over the ring of constants to deal with linearity
- construction via quotients of tensor rings
- Diamond Lemma for tensors for unique normal forms (confluence proof)
- completion analogous to Buchberger's algorithm

Constructive and algorithmic approach to rings of linear operators via **tensor reduction systems** for tensor algebras and rings

(Bergman '78, Hossein Poor-Raab-R '16, Hossein Poor-Raab-R '18, Raab-R '23)

- compositions is represented by tensor product
- families of relations can be represented as one homomorphism

$$\partial \otimes f \mapsto f \otimes \partial + \partial f$$

- tensor over the ring of constants to deal with linearity
- construction via quotients of tensor rings
- Diamond Lemma for tensors for unique normal forms (confluence proof)
- completion analogous to Buchberger's algorithm

Mathematica package TenRes

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

$$(\mathcal{R},\partial,\int)$$
 and

$$L = \partial + a$$

"fundamental matrix"
$$z \in \mathcal{R}$$
, $\partial z + az = 0$,

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

 $(\mathcal{R},\partial,\int)$ and

$$L = \partial + a$$

"fundamental matrix" $z \in \mathcal{R}$, $\partial z + az = 0$,

$$H = z \cdot \int \cdot z^{-1} \in \mathcal{R}\langle \partial, \int, E \rangle$$

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

 $(\mathcal{R},\partial,\int)$ and

$$L = \partial + a$$

"fundamental matrix" $z \in \mathcal{R}$, $\partial z + az = 0$,

$$H = z \cdot \int \cdot z^{-1} \in \mathcal{R}\langle \partial, \int, E \rangle$$

$$(\partial + a) \cdot z = \partial \cdot z + a \cdot z =$$

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

 $(\mathcal{R},\partial,\int)$ and

$$L = \partial + a$$

"fundamental matrix" $z \in \mathcal{R}$, $\partial z + az = 0$,

$$H = z \cdot \int \cdot z^{-1} \in \mathcal{R}\langle \partial, \int, E \rangle$$

$$(\partial + a) \cdot z = \partial \cdot z + a \cdot z = z \cdot \partial + \partial z + az =$$

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

 $(\mathcal{R},\partial,\int)$ and

$$L = \partial + a$$

"fundamental matrix" $z \in \mathcal{R}$, $\partial z + az = 0$,

$$H = z \cdot \int \cdot z^{-1} \in \mathcal{R}\langle \partial, \int, E \rangle$$

$$(\partial + a) \cdot z = \partial \cdot z + a \cdot z = z \cdot \partial + \partial z + az = z \cdot \partial$$

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

 $(\mathcal{R},\partial,\int)$ and

$$L = \partial + a$$

"fundamental matrix" $z \in \mathcal{R}$, $\partial z + az = 0$,

$$H = z \cdot \int \cdot z^{-1} \in \mathcal{R}\langle \partial, \int, E \rangle$$

$$(\partial + a) \cdot z = \partial \cdot z + a \cdot z = z \cdot \partial + \partial z + az = z \cdot \partial$$

$$(\partial + a) \cdot (z \cdot \int \cdot z^{-1}) = z \cdot \partial \cdot \int \cdot z^{-1} =$$

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

 $(\mathcal{R},\partial,\int)$ and

$$L = \partial + a$$

"fundamental matrix" $z \in \mathcal{R}$, $\partial z + az = 0$,

$$H = z \cdot \int \cdot z^{-1} \in \mathcal{R}\langle \partial, \int, E \rangle$$

$$(\partial + a) \cdot z = \partial \cdot z + a \cdot z = z \cdot \partial + \partial z + az = z \cdot \partial$$

$$(\partial + a) \cdot (z \cdot \int \cdot z^{-1}) = z \cdot \partial \cdot \int \cdot z^{-1} =$$

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

 $(\mathcal{R},\partial,\int)$ and

$$L = \partial + a$$

"fundamental matrix" $z \in \mathcal{R}$, $\partial z + az = 0$,

$$H = z \cdot \int \cdot z^{-1} \in \mathcal{R}\langle \partial, \int, E \rangle$$

$$(\partial + a) \cdot z = \partial \cdot z + a \cdot z = z \cdot \partial + \partial z + az = z \cdot \partial$$

$$(\partial + a) \cdot (z \cdot \int \cdot z^{-1}) = z \cdot \partial \cdot \int \cdot z^{-1} = z \cdot z^{-1} = 1$$

$$x'(t) + A(t)x(t) = f(t)$$
 $x_0(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s)f(s)ds$

 $(\mathcal{R}, \partial, \int)$ and

$$L = \partial + a$$

"fundamental matrix" $z \in \mathcal{R}$, $\partial z + az = 0$,

$$H = z \cdot \int \cdot z^{-1} \in \mathcal{R}\langle \partial, \int, E \rangle$$

is a right inverse of *L*:

$$(\partial + a) \cdot z = \partial \cdot z + a \cdot z = z \cdot \partial + \partial z + az = z \cdot \partial$$

$$(\partial + a) \cdot (z \cdot \int \cdot z^{-1}) = z \cdot \partial \cdot \int \cdot z^{-1} = z \cdot z^{-1} = 1$$

Rewrite rules and normal forms: equational prover in calculus, discover identities by ansatz, basics of linear ODEs with initial conditions

Generalized Taylor formula

Integro-differential subring generated by $\boldsymbol{1}$ and constants contains "monomials"

$$x_i = \int_0^i 1$$

Generalized Taylor formula

Integro-differential subring generated by 1 and constants contains "monomials"

$$x_i = \int_0^i 1$$

Theorem

Let $(\mathcal{R}, \partial, \int)$ be an integro-differential ring such that E is multiplicative on the integro-differential subring generated by 1. Then, for all $n \in \mathbb{N}$, we have

$$1 = \sum_{k=0}^{n} x_k \cdot \mathbf{E} \cdot \partial^k + \sum_{k=0}^{n} (-1)^{n-k} x_k \cdot \int \cdot x_{n-k} \cdot \partial^{n+1}$$
$$- \sum_{k=0}^{n-1} \sum_{j=1}^{n-k} (-1)^{n-k-j} x_k \cdot \mathbf{E} \cdot x_j \cdot \int \cdot x_{n-k-j} \cdot \partial^{n+1}$$

Generalized Taylor formula

Integro-differential subring generated by 1 and constants contains "monomials"

$$x_i = \int_0^i 1$$

Theorem

Let $(\mathcal{R}, \partial, \int)$ be an integro-differential ring such that E is multiplicative on the integro-differential subring generated by 1. Then, for all $n \in \mathbb{N}$, we have

$$1 = \sum_{k=0}^{n} x_k \cdot \mathbf{E} \cdot \partial^k + \sum_{k=0}^{n} (-1)^{n-k} x_k \cdot \int \cdot x_{n-k} \cdot \partial^{n+1} - \sum_{k=0}^{n-1} \sum_{j=1}^{n-k} (-1)^{n-k-j} x_k \cdot \mathbf{E} \cdot x_j \cdot \int \cdot x_{n-k-j} \cdot \partial^{n+1}$$

$$\mathbb{Q} \subseteq \mathcal{R}$$
:

$$f = \sum_{k=0}^{n} \frac{x_1^k}{k!} E \partial^k f + \sum_{k=0}^{n} \frac{(-1)^{n-k}}{k!(n-k)!} x_1^k \int x_1^{n-k} \partial^{n+1} - \sum_{k=0}^{n-1} \sum_{j=1}^{n-k} \frac{(-1)^{n-k-j}}{k! j!(n-k-j)!} x_1^k E x_1^j \int x_1^{n-k-j} \partial^{n+1} f x_1^{n-k-j} \partial^{n+1$$

Generalized shuffle relations

 ${\cal R}$ commutative integro-differential ring

$$C\langle\mathcal{R}\rangle=igoplus_{n=0}^\infty\mathcal{R}^{\otimes n}$$
 with **shuffle product** \sqcup , homomorphism

$$\varphi(a_1 \otimes \ldots \otimes a_n) = \int a_1 \int a_2 \ldots \int a_n \in \mathcal{R}$$
 and $a_i^j = a_i \otimes a_{i+1} \otimes \ldots \otimes a_j$

Generalized shuffle relations

 ${\cal R}$ commutative integro-differential ring

$$C\langle \mathcal{R} \rangle = \bigoplus_{n=0}^{\infty} \mathcal{R}^{\otimes n}$$
 with **shuffle product** \sqcup , homomorphism

$$\varphi(a_1 \otimes \ldots \otimes a_n) = \int a_1 \int a_2 \ldots \int a_n \in \mathcal{R} \quad \text{and} \quad a_i^j = a_i \otimes a_{i+1} \otimes \ldots \otimes a_j$$

Theorem

Let $(\mathcal{R}, \partial, \int)$ be a commutative integro-differential ring with constants C. Let $f, g \in C\langle \mathcal{R} \rangle$ be pure tensors of length m and n. Then, the product of $\varphi(f) = \int f_1 \int f_2 \dots \int f_m$ and $\varphi(g) = \int g_1 \int g_2 \dots \int g_n$ is given by

$$\varphi(f)\varphi(g) = \varphi(f \sqcup g) + \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} e(f_{i+1}^m, g_{j+1}^n) \varphi(f_1^i \sqcup g_1^j) \in \mathcal{R}$$

with constants $e(f_{i+1}^m, g_{i+1}^n) = \mathbb{E}\varphi(f_{i+1}^m)\varphi(g_{i+1}^n) \in C$.

Generalized shuffle relations

 ${\cal R}$ commutative integro-differential ring

$$C\langle \mathcal{R} \rangle = \bigoplus_{n=0}^{\infty} \mathcal{R}^{\otimes n}$$
 with **shuffle product** \sqcup , homomorphism

$$\varphi(a_1 \otimes \ldots \otimes a_n) = \int a_1 \int a_2 \ldots \int a_n \in \mathcal{R} \quad \text{and} \quad a_i^j = a_i \otimes a_{i+1} \otimes \ldots \otimes a_j$$

Theorem

Let $(\mathcal{R}, \partial, \int)$ be a commutative integro-differential ring with constants C. Let $f, g \in C\langle \mathcal{R} \rangle$ be pure tensors of length m and n. Then, the product of $\varphi(f) = \int f_1 \int f_2 \dots \int f_m$ and $\varphi(g) = \int g_1 \int g_2 \dots \int g_n$ is given by

$$\varphi(f)\varphi(g) = \varphi(f \sqcup g) + \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} e(f_{i+1}^m, g_{j+1}^n) \varphi(f_1^i \sqcup g_1^j) \in \mathcal{R}$$

with constants
$$e(f_{i+1}^m, g_{i+1}^n) = \mathbb{E}\varphi(f_{i+1}^m)\varphi(g_{i+1}^n) \in C$$
.

E multiplicative:

$$(\int f_1 \int f_2 \cdots \int f_m) (\int g_1 \int g_2 \cdots \int g_n) = \int f_1 \int f_2 \cdots \int f_m \sqcup \int g_1 \int g_2 \cdots \int g_n$$

Outlook

- Integro-differential rings over integral domains
- Tensor reduction systems
- Other operator rings (with linear substitutions, discrete analogs, . . .)
- Free integro-differential rings (integro-differential polynomials)

Clemens G. Raab, R., The fundamental theorem of calculus in differential rings. arXiv:2301.13134 [math.RA] (2023)

Clemens G. Raab, R., The free commutative generalized integro-differential ring. (2023) In preparation.