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(R, 0) differential ring, 0: R — R is linear of its constants
C={feR|of =0}

R and C can be noncommutative (C* (R)™" with const. matrices C = R™")

Definition
Let (R, d) be a differential ring with constants C. We call a C-linear map
f: R — R an integration on R, if

aff=f

holds for all f € R.
A C-linear functional
e:R—->C

acting on C as the identity is called an evaluation on R.
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Integro-differential rings

Definition

Let (R, 0) be a differential ring and let f: R — R be an integration on R.
We call (R, 9, f) a (generalized) integro-differential ring and we define the
(induced) evaluation E on R by

Ef =f - [of.
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Lemma
Let (R, 0, f ) be an integro-differential ring with constants C. Then,

EfeC, Eff=0, and Ec=c.
forall f € R and ¢ € C. Moreover,
R=Ceo [R

as direct sum of C-modules.
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(Rosenkranz '03 '05, Rosenkranz-R '08, Guo-R-Rosenkranz "14, Hossein Poor-Raab-R "18)

faxf(t) dt and evaluation Ef = f(a)
of continuous functions

Ex: (Matrices of) polynomials, smooth/analytic functions, formal power series
Motivation and application:

algebraic setting for boundary value problems for linear ODEs

Differential Rota-Baxter algebras

(N [g=[f[g+[([s

(Guo-Keigher '08)
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Laurent polynomials and series

Laurent polynomials R = K[x, 1,In(x)] with Q C K, d = 4, and [ defined by

> x?

a k#-1An=0
[ )" = {2 ()" - 25 [FIn(x)" k#-1An>0

1 ()n+l _

nn)-ci-l k=-1

E =id- [ acts by
1 k=n=0
0 otherwise

Ex* In(x)" = {

and is not multiplicative: for f = xand g = %

Efg=1 and Ef=Eg=0

Laurent series:

K((x))[In(x)]

contain rational functions K (x) and hyperlogarithms (Kummer 1840)
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D-finite functions are closed under antiderivatives

(Abramov-van Hoeij '97)

Define integration in terms of an evaluation and antiderivates

Lemma

Let (R, d) be a differential ring such that 9R = R and e be an evaluation on R.
Define fe: R — R by

[ef =g—eg
where g € R is such that 0g = f.
Then (R, 0, f ¢) Is an integro-differential ring with induced evaluation E = e.

Define an evaluation in terms of formal series solutions

(van Hoeij '97)
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Integro-differential operators

Linear operators

o differential operator 0

@ integral f

@ evaluationE = id —f(?

@ multiplication operators: f € R acting as g — fg

What are all relations between these operators?

R commutative: all operators are C-linear

R noncommutative: multiplication operators are only additive
Linear operators with composition form a ring

C commutative: a C-algebra  C noncommutative: a C-ring
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Generators and relations

Let (R, 0, f) be an integro-differential ring with constants C.
We define the ring of integro-differential operators (IDO)

R(0, [,E)

as the ring generated by R and 9, f E, where for f € R the identities
o-f=f-0+0f, 0-[=1, [-0=1-E
d-f-E=0df-E, f~f~E:ff-E, E-f-E=Ef-E

hold and 9, f E commute with constants in C.

Identities as rules 0 f -0

K It
1.4 -  4-(1-E)

0-E=0



A known consequence

[-8=1-E and 0-f=f-0+0f



A known consequence

[-8=1-E and 0-f=f-0+0f

Ambiguity f -0-f



A known consequence

[-8=1-E and 0-f=f-0+0f

Ambiguity f -0-f

e S
(1-BE)-f - [-(f-0+0f)

S-polynomial



A known consequence

[-8=1-E and 0-f=f-0+0f

Ambiguity [0
e I
(1-B)-f - [-(f-0+df

S-polynomial

f~f~6=f—E-f—f~c?f



A known consequence

[-8=1-E and 0-f=f-0+0f

Ambiguity f -0-f

e S
(1-BE)-f - [-(f-0+0f)

S-polynomial
f~f~5=f—E-f—f~(?f
integration by parts holds in R

[fog =fz—Efg— [(9f)g
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A new consequence

From
f -f'(?'/
integration by parts and 9 - f ,

we obtain
[ ]=1r =] Jf-E-Jf-]

Rota-Baxter identity with evaluation in R

([N [e=[f[g+[([Hes+E([N g

products of integrals = nested integrals plus evaluation

E is multiplicative: Rota-Baxter identity (shuffle identities)

(N [g=[f[g+[([Ns
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All consequences

o-f=f-0+0f | [-f-d=f-E-f—[-0f

d-E=0 [-f-E=[f-E

9-[=1 Joaf=lr =] Jr-BJf]
E-f-E=Ef-E [-0=1-E

E-E=E [-E=[1E

E-[=0 [f=]v[=]J1-B-J1-]

Table: Rewrite rules for operator expressions

Let (R, 0, f ) be an integro-differential ring. Then, by repeatedly applying the
rewrite rules above in any order, every element of the ring R{0, f ,E) can be
written as a sum of expressions of the form

f-o, f’f‘g’ f-E-g-&, or f~E~h~f~g

where j € No, f,g € R, and h € [R.
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Rings of linear operators via tensor reduction systems

Constructive and algorithmic approach to rings of linear operators
via tensor reduction systems for tensor algebras and rings

(Bergman '78, Hossein Poor-Raab-R '16, Hossein Poor-Raab-R '18, Raab-R "23)

@ compositions is represented by tensor product
o families of relations can be represented as one homomorphism

0Qf —>f0+0f

tensor over the ring of constants to deal with linearity
construction via quotients of tensor rings
Diamond Lemma for tensors for unique normal forms (confluence proof)

completion analogous to Buchberger’s algorithm
Mathematica package TenRes
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Proving variation of constants

K0+ A0 =f() xo() = B(7) / ! (5)f (s)ds

(R.9, [) and
L=0+a

“fundamental matrix” z € R, dz+az=0,

H:z-f-z_1 eR(é,/,E)
is a right inverse of L:

(0+a)-z=0-z+a-z=z-0+9z+az=2-0

(6+a)~(z-f~z_l)=z~6~f~z_1=z'z_1=1



Proving variation of constants

X' (1) + A(D)x(1) = f (1) XO(t)=<D(t)/ @ (5)f (s)ds

(R.9, [) and
L=0+a

“fundamental matrix” z € R, dz+az=0,

H:z-f-z_1 eR(é,f,E)
is a right inverse of L:

(0+a)-z=0-z+a-z=z-0+9z+az=2-0

(6+a)~(z-f~z_l)=z~6'f~z_1=z~z_1=1

Rewrite rules and normal forms: equational prover in calculus,
discover identities by ansatz, basics of linear ODEs with initial conditions
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Generalized Taylor formula

Integro-differential subring generated by 1 and constants contains “monomials”

x,z/il

Theorem

Let (R, 0, f ) be an integro-differential ring such that E is multiplicative on the
integro-differential subring generated by 1. Then, for all n € N, we have

n n
1= Zxk "E- 0"+ Z(—l)"_kxk . f *Xp—k gm!
k=0 k=0
1 n—k i
(-1)"*x; -E- x; - / Xk * ol
Jj=1

n

k

1l
(=}

ﬁ Eo'f + Z =D )g«/xn kgn+l _ nzinzl‘j (=D kExi/xn—k—jamlf
k! kl(n—k)!"! kljl(n—k— j)- Ea

k=0
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Generalized shuffle relations

R commutative integro-differential ring
C(R) = P,-, R®" with shuffle product LLI, homomorphism

go(a1®...®an)=fa1fa2...fan€R and ai::ai®ai+1®...®aj

Let (R, 0, f ) be a commutative integro-differential ring with constants C. Let
f,g € C{R) be pure tensors of length m and n. Then, the product of

o(f)= [fiffa... [fwand o(g) = [g1[g2... [gnis given by

m—1 n—1

e(e(g) = p(fLig)+ > > e(fl, gh)e(fiwg)) e R

i=0 j=0

with constants e(f]!,, g j+1) 90(f,+1)90(g %) €C.

E multiplicative:

Srfr- [f[efe- [e)=[Affr . [fuw [g1[g2-. [gn

(Ree '58)



@ Integro-differential rings over integral domains
@ Tensor reduction systems

@ Other operator rings (with linear substitutions, discrete analogs, . . .)
@ Free integro-differential rings (integro-differential polynomials)

Clemens G. Raab, R., The fundamental theorem of calculus in differential rings.
arXiv:2301.13134 [math.RA] (2023)

Clemens G. Raab, R., The free commutative generalized integro-differential ring.
(2023) In preparation.



