POSITIVE SEQUENCES IN THE OEIS

4

Philipp Nuspl
July 19, 2023

EEEEEEEEEEEEEE
IIIIIIIIIIIIII



Neil Sloane collects integer sequences since
1964.

Since 1996 the database was first published
online as the On-Line Encyclopedia of Integer
Sequences (OEIS).

At the moment it contains around 360 000
integer sequences.

How many of them satisfy a linear recurrence?

Figure: Neil Sloane at the
e-party to celebrate the
100,000-th sequence in 2004
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Definition: C-finite

A sequence c(n) € QY is called C-finite if there are constants v, ..., v, € Q, not
all zero, with
Ycn)+ - +yen+r)=0 forallneN.
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Definition: C-finite

A sequence c(n) € QY is called C-finite if there are constants v, ..., v, € Q, not
all zero, with
Ycn)+ - +yen+r)=0 forallneN.

» Examples: Fibonacci sequence, Perrin numbers, geometric sequences, etc.
» The minimal r is called the order of c.

2/19



Definition: P-recursive

A sequence c(n) € QY is called P-recursive if there are polynomials
po, - - -, pr € Q[z], not all zero, such that

po(n)c(n)+---+p.(n)c(n+7r)=0 forallnecN.
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Definition: P-recursive

A sequence c(n) € QY is called P-recursive if there are polynomials
po, - - -, pr € Q[z], not all zero, such that

po(n)c(n)+---+p.(n)c(n+7r)=0 forallnecN.

Examples: C-finite sequences, Harmonic numbers, factorials, etc.

« We call r the order of the recurrence.

We call max; deg p; the degree of the recurrence.
» A P-recursive sequence satisfies many recurrences (order/degree curve)...
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Does the sequence with initial values
1,1,2,3,5,8,...
satisfy a linear recurrence?
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Does the sequence with initial values
1,1,2,3,5,8,...
satisfy a linear recurrence? Suppose it satisfies
Yoc(n)+mce(n+1)+vcn+2)=0 forallneN.
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Does the sequence with initial values
1,1,2,3,5,8,...
satisfy a linear recurrence? Suppose it satisfies
Yoe(n) +are(n+1) +rze(n+2) =0
Hence, in particular
Yol+ml+722=0
Yl+7124+7%3=0
Y02+m3+725=0
Y3 +715+78=0

foralln € N.
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Does the sequence with initial values
1,1,2,3,5,8,...
satisfy a linear recurrence? Suppose it satisfies
Yoc(n)+mce(n+1)+vcn+2)=0 forallneN.
Hence, in particular
Yol+ml+722=0
Yol +v124+7%3=0
Y2+713+75=0
Y3 +715+78=0
This linear equation has the nontrivial solution
Y=Im=1L7n=-1
which gives rise to the recurrence

cn)+cn+1)—cn+2)=0.
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» Given ¢(0),¢(1),...,¢(D). Does c satisfy a recurrence?
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» Given ¢(0),¢(1),...,¢(D). Does c satisfy a recurrence?
« If cis P-recursive of order r and degree d, we get a linear system

r d
Zmenjc(n—ki):O forn=0,...,D—r
i=0 j=0
of size
D—r+1x(r+1)(d+1)

for the unknown coefficients p; ; € Q of the recurrence.
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of size
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If the system is overdetermined and we get a non-trivial solution, it is probably
there for a reason...

The more equations compared to variables we have, the more confident we
can be in our guess.
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Given ¢(0),¢(1),...,¢(D). Does c satisfy a recurrence?
If ¢ is P-recursive of order » and degree d, we get a linear system

r d
ZZPi,jnjC(n+i) =0 forn=0,...,.D—r
i=0 j=0

of size

D—r+1x(r+1)(d+1)

for the unknown coefficients p; ; € Q of the recurrence.

If the system is overdetermined and we get a non-trivial solution, it is probably
there for a reason...

The more equations compared to variables we have, the more confident we
can be in our guess.

Here, e € N denotes the confidence we have in our guess.
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Given ¢(0),¢(1),...,¢(D). Does c satisfy a recurrence?
If ¢ is P-recursive of order » and degree d, we get a linear system

r d
Zmenjc(n—ki):O forn=0,...,D—r
i=0 j=0
of size
D—r+1x(r+1)(d+1)

for the unknown coefficients p; ; € Q of the recurrence.

If the system is overdetermined and we get a non-trivial solution, it is probably
there for a reason...

The more equations compared to variables we have, the more confident we
can be in our guess.

Here, e € N denotes the confidence we have in our guess.

ldea: use guessing to determine how many sequences in the OEIS are

C-finite or P-recursive.
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« If we have more terms of a sequence, we can guess recurrences better.
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« If we have more terms of a sequence, we can guess recurrences better.
» For about 6% of the sequences at most 10 terms are given, about 50% have
at most 100 terms, about 13% have at least 10 000 terms given.
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Figure: Number of sequences with number of terms specified in the OEIS

6/19



100000

80000

60000

40000

20000

e=1 e=3 e=5 e=8 e=10 e=15
26.8% 22.0% 194% 17.0% 15.7% 13.8%

Figure: Number of C-finite sequences with order < 100
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C-finite sequences orders

14000 A

12000 A

10000 1

8000 1

6000 §

4000 §

2000 1

—e=1, 26.8%
e=3, 22.0%
e=5, 19.4%
e=8, 17.0%

—e=10, 15.7%
e=15, 13.8%

Figure: Number of C-finite sequences of given order
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Let a(n) be the sequence A000122 with initial values
1,2,0,0,2,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,...
Guessing yields the recurrence (if e = 1)
n(n —1)a(n) = 0.
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http://oeis.org/A000122

Let a(n) be the sequence A000122 with initial values
1,2,0,0,2,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,...
Guessing yields the recurrence (if e = 5)
n(n—1)(n —4)a(n) = 0.
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http://oeis.org/A000122

Let a(n) be the sequence A000122 with initial values
1,2,0,0,2,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,...
Guessing yields the recurrence (if e = 50)
nin—1)(n—4)(n—9)(n — 16)(n — 25)(n — 36)(n — 49) a(n) = 0.
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http://oeis.org/A000122

Let a(n) be the sequence A000122 with initial values
1,2,0,0,2,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,...
Guessing yields the recurrence (if e = 50)
n(n—1)(n—4)(n —9)(n — 16)(n — 25)(n — 36)(n — 49) a(n) = 0.
Idea: If sequence has many zeros, make sure that the system is even more
overdetermined (Kauers and Verron 2019).
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Figure: Number of P-recursive sequences of given order
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Figure: Number of P-recursive sequences of given degree
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Figure: Number of P-recursive sequences of given order/degree
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Figure: Ratio of P-recursive sequences in the OEIS
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Suppose we are given a C-finite sequence c¢. We want to decide whether
Vn € N:¢(n) >0
holds. We write ¢ > 0, if this is the case.
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(Skolem Problem).
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» Only known to be decidable for sequences of small order:

o Order 2 (Halava, Harju, and Hirvensalo 2006),
o Order 3 (Laohakosol and Tangsupphathawat 2009),
o Order 4 and 5 (Ouaknine and Worrell 2014).

14/19



Suppose we are given a C-finite sequence c¢. We want to decide whether
Vn € N:¢(n) >0
holds. We write ¢ > 0, if this is the case.
« The sequence c has no zero terms if and only if ¢? is a positive sequence
(Skolem Problem).
Exact same ideas apply for non-negativity: Vn € N: ¢(n) > 0.

The problem ¢ > d is equivalent to ¢ — d > 0 as C-finite sequences form a ring.

Only known to be decidable for sequences of small order:

o Order 2 (Halava, Harju, and Hirvensalo 2006),
o Order 3 (Laohakosol and Tangsupphathawat 2009),
o Order 4 and 5 (Ouaknine and Worrell 2014).

» Can we prove positivity of sequences in practice?
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Let ¢(n) denote the number of partitions of n into parts 1,2 or 5.
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Let ¢(n) denote the number of partitions of n into parts 1,2 or 5.
c¢(l)=1 because 1=1.
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Let ¢(n) denote the number of partitions of n into parts 1,2 or 5.
c(2)=2 because 2=1+1,2=2.
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Let ¢(n) denote the number of partitions of n into parts 1,2 or 5.
c(3)=2 because 3=1+1+4+1,3=1+2.
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Let ¢(n) denote the number of partitions of n into parts 1,2 or 5.
c(4)=3 because 4=1+1+1+1,4=14+1+4+2,4=2+2.

15/19



Let ¢(n) denote the number of partitions of n into parts 1,2 or 5.
c(4)=3 because 4=1+1+1+1,4=1+1+2,4=2+2.
In fact, ¢(n) is C-finite of order 8 satisfying
cn)—c(n+1)—c(n+2)+c(n+3)—c(n+5)
+c(n+6)+cn+7) —cn+8) =
with initial values ¢ = (1,1,2,2,3,4,5,6,...).
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Let ¢(n) denote the number of partitions of n into parts 1,2 or 5.
c(4)=3 because 4=1+1+1+1,4=14+1+4+2,4=2+2.

In fact, ¢(n) is C-finite of order 8 satisfying

cn) —cn+1)—cn+2)+c(n+3) —c(n+5)

+c(n+6)+c(n+7) —c(n+8) =0
with initial values ¢ = (1,1,2,2,3,4,5,6,...).
We can compute
c(10n+k)=5n>+(k+4)n+c(k)>0 forallk=0,...,9.
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Let ¢(n) denote the number of partitions of n into parts 1,2 or 5.

c(4)=3 because 4=1+1+1+1,4=14+1+4+2,4=2+2.
In fact, ¢(n) is C-finite of order 8 satisfying

c(n) —c(n+1) —c(n+2)+c(n+3) —c(n+5)
+c(n+6)+c(n+7) —cn+8) =0
with initial values ¢ = (1,1,2,2,3,4,5,6,...).
We can compute
c(10n+k)=5n*+ (k+4)n+c(k) >0 foralk=0,...,9.

Hence, c is the interlacing of positive sequences, so ¢(n) > 0 for all n € N.
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» We took 1000 C-finite sequences from the OEIS which look positive.
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https://github.com/PhilippNuspl/rec_sequences
https://www3.risc.jku.at/research/combinat/software/ergosum/index.html

» We took 1000 C-finite sequences from the OEIS which look positive.
» The sequences have the following orders:
oder| 1| 2| 3| 4|5 |6|7][8]9][10]>10
| 73| 134 | 117 [ 139 | 120 | 80 | 87 | 36 | 47 | 27 | 140
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» We implemented several known and new algorithms which can be used to
show positivity of a C-finite sequence:

o The SageMath implementation is part of the rec_sequences package.
o The Mathematica implementation is part of the RISCErgoSum package.
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https://github.com/PhilippNuspl/rec_sequences
https://www3.risc.jku.at/research/combinat/software/ergosum/index.html

We took 1000 C-finite sequences from the OEIS which look positive.
The sequences have the following orders:
oder| 1| 2| 3| 4|5 |6|7][8]9][10]>10
| 73| 134 | 117 [ 139 | 120 | 80 | 87 | 36 | 47 | 27 | 140
We implemented several known and new algorithms which can be used to
show positivity of a C-finite sequence:

o The SageMath implementation is part of the rec_sequences package.
o The Mathematica implementation is part of the RISCErgoSum package.

The implementations can prove positivity of all 1000 sequences (N. and
Pillwein 2022).

o Decompose sequence into subsequences which have simple asymptotic
behavior.
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How can we prove positivity of C-finite sequences with SageMath? First, C-finite
sequences can be defined in different ways:
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How can we prove positivity of C-finite sequences with SageMath? First, C-finite
sequences can be defined in different ways:
sage: C = CFiniteSequenceRing(QQ)
sage: fib = C([1,1,-1], [1,1]) # use recurrence and initial values
sage: fib[:10]
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
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Several methods for proving C-finite (termwise) inequalities are implemented:
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Several methods for proving C-finite (termwise) inequalities are implemented:

sage: fib >= 0
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sage: fib < 100
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Several methods for proving C-finite (termwise) inequalities are implemented:

sage: fib >= 0

True

sage: fib < 100

False

sage: =c¢(ft,-1,-1,1,0,-1,1,1,-11, [1,1,2,2,3,4,5,6])

sage: 0 in c
False

sage: ¢ > 0
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Several methods for proving C-finite (termwise) inequalities are implemented:

sage: fib >= 0

True

sage: fib < 100

False

sage: =c¢(ft,-1,-1,1,0,-1,1,1,-11, [1,1,2,2,3,4,5,6])

sage: 0 in c
False
sage: ¢ > 0

True
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What have we done?

» We estimated ratio of C-finite (around 15%) and P-recursive (around 20%)
sequences in the OEIS.

» The results are available online. Hence, these sequences can be used for
testing algorithms.

» We showed that proving positivity of C-finite sequences can usually be done
in practice.

What is left?

» Can we prove positivity of P-recursive sequences in practice?
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Comparison

There is also a Wiki page with a list of C-finite sequences in the OEIS.

« Some that are clearly C-finite are not in there (e.g., A272636).

» Some look very C-finite but the recurrence is only conjectured and therefore
the sequence not on the Wiki page (e.g., A281605).

It contains about 34 000 sequences. Compare with guessed sequences with
ensure=1.

Wiki Guessed
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« Some that are clearly C-finite are not in there (e.g., A272636).

» Some look very C-finite but the recurrence is only conjectured and therefore
the sequence not on the Wiki page (e.g., A281605).

It contains about 34 000 sequences. Compare with guessed sequences with
ensure=10.

Wiki Guessed
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Example

The Berstel sequence (A007420) is C-finite of order 3 satisfying
de(n) —4e(n+1)+2¢(n+2) —c(n+3) =0
with ¢(0) = ¢(1) = 0,¢(2) = 1.
Define d(n) = c¢(n + 53)2. Then, d looks positive. However, it does not have a
unique dominant root and cannot be decomposed to obtain one.
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