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• Neil Sloane collects integer sequences since
1964.

• Since 1996 the database was first published
online as the On-Line Encyclopedia of Integer
Sequences (OEIS).

• At the moment it contains around 360 000
integer sequences.

• How many of them satisfy a linear recurrence?

Figure: Neil Sloane at the
e-party to celebrate the
100,000-th sequence in 2004
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Definition: C-finite

A sequence c(n) ∈ QN is called C-finite if there are constants γ0, . . . , γr ∈ Q, not
all zero, with

γ0 c(n) + · · ·+ γr c(n+ r) = 0 for all n ∈ N.

• Examples: Fibonacci sequence, Perrin numbers, geometric sequences, etc.

• The minimal r is called the order of c.
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Definition: P-recursive

A sequence c(n) ∈ QN is called P -recursive if there are polynomials
p0, . . . , pr ∈ Q[x], not all zero, such that

p0(n) c(n) + · · ·+ pr(n) c(n+ r) = 0 for all n ∈ N.

• Examples: C-finite sequences, Harmonic numbers, factorials, etc.

• We call r the order of the recurrence.

• We call maxi deg pi the degree of the recurrence.

• A P -recursive sequence satisfies many recurrences (order/degree curve)...
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Does the sequence with initial values

1, 1, 2, 3, 5, 8, . . .

satisfy a linear recurrence?
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γ0 c(n) + γ1 c(n+ 1) + γ2 c(n+ 2) = 0 for all n ∈ N.
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γ0 c(n) + γ1 c(n+ 1) + γ2 c(n+ 2) = 0 for all n ∈ N.
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γ0 c(2) + γ1 c(3) + γ2 c(4) = 0

γ0 c(3) + γ1 c(4) + γ2 c(5) = 0
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Does the sequence with initial values

1, 1, 2, 3, 5, 8, . . .

satisfy a linear recurrence? Suppose it satisfies

γ0 c(n) + γ1 c(n+ 1) + γ2 c(n+ 2) = 0 for all n ∈ N.
Hence, in particular

γ0 1 + γ1 1 + γ2 2 = 0

γ0 1 + γ1 2 + γ2 3 = 0

γ0 2 + γ1 3 + γ2 5 = 0

γ0 3 + γ1 5 + γ2 8 = 0

This linear equation has the nontrivial solution

γ0 = 1, γ1 = 1, γ2 = −1
which gives rise to the recurrence

c(n) + c(n+ 1)− c(n+ 2) = 0.
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• Given c(0), c(1), . . . , c(D). Does c satisfy a recurrence?

• If c is P -recursive of order r and degree d, we get a linear system
r∑

i=0

d∑
j=0

pi,jn
jc(n+ i) = 0 for n = 0, . . . , D − r

of size
D − r + 1× (r + 1)(d+ 1)

for the unknown coefficients pi,j ∈ Q of the recurrence.
• If the system is overdetermined and we get a non-trivial solution, it is probably

there for a reason...
• The more equations compared to variables we have, the more confident we

can be in our guess.
• Here, e ∈ N denotes the confidence we have in our guess.
• Idea: use guessing to determine how many sequences in the OEIS are
C-finite or P -recursive.
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• If we have more terms of a sequence, we can guess recurrences better.

• For about 6% of the sequences at most 10 terms are given, about 50% have
at most 100 terms, about 13% have at least 10 000 terms given.

Figure: Number of sequences with number of terms specified in the OEIS

.
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Figure: Number of C-finite sequences with order ≤ 100
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C-finite sequences orders

Figure: Number of C-finite sequences of given order 8/19



Let a(n) be the sequence A000122 with initial values

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, . . .

Guessing yields the recurrence (if e = 1)

n(n− 1) a(n) = 0.
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Let a(n) be the sequence A000122 with initial values

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, . . .

Guessing yields the recurrence (if e = 50)

n(n− 1)(n− 4)(n− 9)(n− 16)(n− 25)(n− 36)(n− 49) a(n) = 0.

Idea: If sequence has many zeros, make sure that the system is even more
overdetermined (Kauers and Verron 2019).
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Figure: Number of P -recursive sequences of given order
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Figure: Number of P -recursive sequences of given degree
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Figure: Number of P -recursive sequences of given order/degree
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Figure: Ratio of P -recursive sequences in the OEIS
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Suppose we are given a C-finite sequence c. We want to decide whether

∀n ∈ N : c(n) > 0

holds. We write c > 0, if this is the case.

• The sequence c has no zero terms if and only if c2 is a positive sequence
(Skolem Problem).

• Exact same ideas apply for non-negativity: ∀n ∈ N : c(n) ≥ 0.

• The problem c > d is equivalent to c− d > 0 as C-finite sequences form a ring.
• Only known to be decidable for sequences of small order:

� Order 2 (Halava, Harju, and Hirvensalo 2006),
� Order 3 (Laohakosol and Tangsupphathawat 2009),
� Order 4 and 5 (Ouaknine and Worrell 2014).

• Can we prove positivity of sequences in practice?
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Let c(n) denote the number of partitions of n into parts 1, 2 or 5.
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c(4) = 3 because 4 = 1 + 1 + 1 + 1, 4 = 1 + 1 + 2, 4 = 2 + 2.

In fact, c(n) is C-finite of order 8 satisfying

c(n)− c(n+ 1)− c(n+ 2) + c(n+ 3)− c(n+ 5)

+ c(n+ 6) + c(n+ 7)− c(n+ 8) = 0

with initial values c = 〈1, 1, 2, 2, 3, 4, 5, 6, . . . 〉.
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We can compute

c(10n+ k) = 5n2 + (k + 4)n+ c(k) > 0 for all k = 0, . . . , 9.
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with initial values c = 〈1, 1, 2, 2, 3, 4, 5, 6, . . . 〉.

We can compute

c(10n+ k) = 5n2 + (k + 4)n+ c(k) > 0 for all k = 0, . . . , 9.

Hence, c is the interlacing of positive sequences, so c(n) > 0 for all n ∈ N.
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• We took 1000 C-finite sequences from the OEIS which look positive.

• The sequences have the following orders:

order 1 2 3 4 5 6 7 8 9 10 > 10
73 134 117 139 120 80 87 36 47 27 140

• We implemented several known and new algorithms which can be used to
show positivity of a C-finite sequence:

� The SageMath implementation is part of the rec_sequences package.
� The Mathematica implementation is part of the RISCErgoSum package.

• The implementations can prove positivity of all 1000 sequences (N. and
Pillwein 2022).

� Decompose sequence into subsequences which have simple asymptotic
behavior.

16/19

https://github.com/PhilippNuspl/rec_sequences
https://www3.risc.jku.at/research/combinat/software/ergosum/index.html
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How can we prove positivity of C-finite sequences with SageMath? First, C-finite
sequences can be defined in different ways:

sage: C = CFiniteSequenceRing(QQ)
sage: fib = C([1,1,-1], [1,1]) # use recurrence and initial values
sage: fib [:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
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Several methods for proving C-finite (termwise) inequalities are implemented:

sage: fib >= 0
True
sage: fib < 100
False
sage: c = C([1,-1,-1,1,0,-1,1,1,-1], [1,1,2,2,3,4,5,6])
sage: 0 in c
False
sage: c > 0
True
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What have we done?

• We estimated ratio of C-finite (around 15%) and P -recursive (around 20%)
sequences in the OEIS.

• The results are available online. Hence, these sequences can be used for
testing algorithms.

• We showed that proving positivity of C-finite sequences can usually be done
in practice.

What is left?

• Can we prove positivity of P -recursive sequences in practice?
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Comparison

• There is also a Wiki page with a list of C-finite sequences in the OEIS.
• Some that are clearly C-finite are not in there (e.g., A272636).
• Some look very C-finite but the recurrence is only conjectured and therefore

the sequence not on the Wiki page (e.g., A281605).
• It contains about 34 000 sequences. Compare with guessed sequences with

ensure=1.

Wiki Guessed

600 33 900 62 500
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Comparison

• There is also a Wiki page with a list of C-finite sequences in the OEIS.
• Some that are clearly C-finite are not in there (e.g., A272636).
• Some look very C-finite but the recurrence is only conjectured and therefore

the sequence not on the Wiki page (e.g., A281605).
• It contains about 34 000 sequences. Compare with guessed sequences with

ensure=10.

Wiki Guessed

7300 27 100 22 400

22/19

http://oeis.org/A272636
http://oeis.org/A281605


Example

The Berstel sequence (A007420) is C-finite of order 3 satisfying

4c(n)− 4c(n+ 1) + 2c(n+ 2)− c(n+ 3) = 0

with c(0) = c(1) = 0, c(2) = 1.

Define d(n) = c(n+ 53)2. Then, d looks positive. However, it does not have a
unique dominant root and cannot be decomposed to obtain one.
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