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In dedication to Marko Petkovsek.

First-order factors of linear Mahler operators



Linear Mahler Operators and Mahler Function

L)y + -+ 000y (xP) + Lo(X)y(x) = 0 (L)

foraradixb € N>,, an orderr € N>, rational functions ¢; € Q).
Operator notation
In the skew algebra Q(x)(M) where Mx = x’M, write

L=L,(x)M + -+ L1(x)M+ £y(x).

Action: My(x) = y(x?). (L) < Ly(x) =0.
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Linear Mahler Operators and Mahler Function

L)y + -+ 000y (xP) + Lo(X)y(x) = 0 (L)

foraradixb € N>,, an orderr € N>, rational functions ¢; € Q).

Operator notation

In the skew algebra Q(x)(M) where Mx = x’M, write
L=L,(x)M + -+ L1(x)M+ £y(x).
Action: My(x) = y(x?). (L) < Ly(x) =0.

— Transcendence theory, Automata theory, “Divide-and-conquer”
recurrences, Difference Galois theory, Computer algebra.

Mahler, Cobham, Christol, Kamae, Mendés France, Rauzy, Loxton, v. d. Poorten, Nishioka, Allouche, Shallit,

Becker, Dumas, Bell, Coons, Philippon, Adamczewski, Faverjon, Dreyfus, Hardouin, Roques, Smertnig, ...
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Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)

The function y is Mahler if it satisfies some (L) of any order,
hypergeometric if it satisfies some (L) of order 1.
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Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)

The function y is Mahler if it satisfies some (L) of any order,
hypergeometric if it satisfies some (L) of order 1.

Given some skew polynomial L = L(x, M), several equivalent formulations:
@ Find all hypergeometric solutions y of the linear Mahler equation

XY () + - -+ L0y () + Lo(X)y (x) = 0. (L)

@ Find all first-order right-hand factors M — u of L for u € Q(x).
@ Find all rational solutions u of the Riccati Mahler equation

Cruix) - uld) + -+ HEu)ul) + G (ulx) + Lolx) = 0. (R)

u= % lhs of (R) = remainder in division of L by M — u.
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Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)

The function y is Mahler if it satisfies some (L) of any order,
hypergeometric if it satisfies some (L) of order 1.

Given some skew polynomial L = L(x, M), several equivalent formulations:
@ Find all hypergeometric solutions y of the linear Mahler equation

Xy () + -+ L (Y (XP) + Lo(x)y(x) = 0. (L)
@ Find all first-order right-hand factors M — u of L for u € Q(x).
@ Find all rational solutions u of the Riccati Mahler equation
GONU) - Ul ) + -+ BOOUURE) + L (ulx) + LX) = 0. (R)

u= % lhs of (R) = remainder in division of L by M — u.

We provide algorithms following two algorithmic approaches.
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Outline

Motivating examples

First approach: generalizing Petkovsek’s algorithm

An effective difference algebra for solutions

Second approach: structured Hermite-Padé approximants

Comparison of the approaches
and Application to hypertranscendence
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Part |




Paradigmatic Examples of Mahler Series

Thue-Morse sequence over the alphabet {—1, 1} (2-automatic)
yi) = [ )
j20

fixpoint of the morphism a — ab, b — ba: a.b.ba.baab.baababba. . . .

Stern-Brocot sequence (2-regular but not 2-automatic)
v =TT +x +x")
j>0

explicit bijection N ~ Qxo: n — [x"]y/[x"*!]y

(2-Mahler but not 2-regular)

=Tl

j>0
expressions of n € Nin the formn = ng + n12 + ny22 +--- wheren; € N
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Paradigmatic Examples of Mahler Series

Thue-Morse sequence over the alphabet {—1, 1} (2-automatic)

v =Jla-x) = uk=

j20

fixpoint of the morphism a — ab, b — ba: a.b.ba.baab.baababba. . . .

Stern-Brocot sequence (2-regular but not 2-automatic)
7 1 1
_ 2, _
o) =Tl +x") = u= s

j>0
explicit bijection N ~ Q>o: n > [x"]y/[x™1y
(2-Mahler but not 2-regular)

)= H(l —x¥)t = ulx)=1—x

j>0

expressions of n € Nin the formn = ng + n12 + ny22 +--- wheren; € N
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Ramified Mahler-Hypergeometric Solutions

Hypergeometric = infinite product + log-factor + a ramification order

R

T+ 27 (b=3)

y = (In x)'°8s Ax1/2 H
k>0

is annihilated by

L= (1= TX°)M + (2x — 14x* — x> — 20x%)M + 2063 (1 + 2x)
= (M —2x) (1 — 7x)M — Ax(1+2x)).
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Ramified Mahler-Hypergeometric Solutions

Hypergeometric = infinite product + log-factor + a ramification order

R

— logs A, 1/2
e et

k>0

is annihilated by

L= (1= TX°)M + (2x — 14x* — x> — 20x%)M + 2063 (1 + 2x)
= (M —2x) (1 — 7x)M — Ax(1+2x)).

Linear equations with no ramification can need ramification to be solved.
A ramified y with unramified u = My /y is possible.
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Disproving Hypergeometricity

Missing digit in ternary expansion (OEIS A005836)
L :=3(1+x%)2M? — (1+3x +4x?)M + x for b = 2 annihilates

y(x) = Z(n-th positive integer written without 2 in base 3) x”
n>0

S +32+ A3+ 10+
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Disproving Hypergeometricity

Missing digit in ternary expansion (OEIS A005836)
L :=3(1+x%)2M? — (1+3x +4x?)M + x for b = 2 annihilates

y(x) = Z(n-th positive integer written without 2 in base 3) x”
n>0

S +32+ A3+ 10+

1

Unique monic right-hand first-order factorisM — ——
3(1+x)

_ (lnx)'°gz(1/3)
= all hypergeometric solutions in @ﬁ

= y(x) is not hypergeometric.
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Parametrized Mahler-Hypergeometric Solutions

d
Remember the differential case, D = a:

1 1
Dx=xD+1 = Vr, D*= (D+—)(D——),
X+r X+r

inrelationto: Qx® Q1= U Qx+r).
re@
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Parametrized Mahler-Hypergeometric Solutions

Parities of digit repetitions in ternary expansion

Adamczewski and Faverjon (2017) introduce

Sq = {n ) even number of @’s in ternary expansion ofn}, a=1,2,

= > k= Y K ykE Y X k= Yy X

nesiNs; neSiNS, neSINS, neding,

and show
y1(x) 1 x 0 x?
= 3 _ [ yaix) Ix 1 X o0
yx) =AX)y(x’)  for  y(x)= o | A=y 2 1 o
ya(x) XX 0 x 1
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Parametrized Mahler-Hypergeometric Solutions

Parities of digit repetitions in ternary expansion

Adamczewski and Faverjon (2017) introduce

Sq = {n ) even number of @’s in ternary expansion ofn}, a=1,2,

= > k= Y K ykE Y X k= Yy X

nesiNs; neSiNS, neSINS, neding,

and show
y1(x) 1 x 0 x?
= 3 _ [ yaix) Ix 1 X o0
yx) =AX)y(x’)  for  y(x)= o | A=y 2 1 o
ya(x) XX 0 x 1

— Common linear Mahler equation: order 4, degree 258.
— Hypergeometric solutions correspond to a ratio v among

1 1 g1+ gax® 1 ) 1A
1—x—x2" 1+x—x* gl+ng1+x2+x4f°r(91-92)€lp’(@).

None of the y; is hypergeometric.

Frédéric Chyzak First-order factors of linear Mahler operators



Part Il

First Approach: Generalizing
Petkovsek’s Algorithm
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Classical Algorithms by Gosper-Petkovsek Forms

shiftx — x+1 (Petkovsek, 1992)
u(x) = Clx+ 1) Al) + coprimality constraints
k) B primaty
g-shift x — gx (Abramov, Paule, Petkovsek, 1998)
C A
ux) =n C(Z();) % + coprimality constraints
Mahler (order 2) (Roques, 2018)
C(xP) A
ulx®) =17 be) A) + coprimality constraints

Cl) B(x)
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Classical Algorithms by Gosper-Petkovsek Forms

shiftx — x+1 (Petkovsek, 1992)
u(x) = Clx+ 1) Al) + coprimality constraints
k) B primaty
g-shift x — gx (Abramov, Paule, Petkovsek, 1998)
C A
ux) =n C(Z();) % + coprimality constraints
Mahler (order 2) (Roques, 2018)
b
A
u(x?) = n%% + coprimality constraints

All those algorithms:
@ iterate on factors of A of ¢y and B of ¢, (or slight variations),
@ determine a polynomial equation on 7 + a degree bound on C,
@ solve an auxiliary linear functional equation for C.
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New Algorithm for Mahler Equations of Any Order

Bounded Gosper-Petkovsek forms (exist forany u € C(x))

x=th? gcd(A C(t)) = ged (B(t tb)) =l
{ 1 C() AT ged (A(tY ) =1 forie {0 ,r—1}

b -
“E = em a4, ) = ged(ct, ) =1
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New Algorithm for Mahler Equations of Any Order

Zz ) (HAtb “)(1;[13(15“)):0

Bounded Gosper-Petkovsek forms (exist forany u € C(x))

x=th? gcd(A C(t)) = ged (B(t tb)) =l
{ 1 C() AT ged (A(tY ) =1 forie {0 ,r—1}

b -
“E = em a4, ) = ged(ct, ) =1
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New Algorithm for Mahler Equations of Any Order

r—1
Z£ &y e (HAt"’ h’)(HB(tU)) =0
ji

Bounded Gosper-Petkovsek forms (exist forany u € C(x))

x=t" gcd (A C(t) ) gcd( tb)) -1
{ ) = C(t®) At ) ged (A(tY ) =1 forie {0 r—1}
! ~ e B ng(At (7)) = gcd( (t), (tb)) 1

Sketch of new algorithm

o forall monicA(t) | 4o(t), for all monic B(t) | £,(t)

o determine potential degrees for C from the degrees of A, B, ¢;,
o forall obtained candidate degrees:

@ extract the leading coefficient w.r.t. t and solve as an equation in 7,
o for all candidates 7, solve equation for C by linear algebra;

@ return (n, A(t), B(t), C(t)) after removing redundancy.
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New Algorithm for Mahler Equations of Any Order

r—1
Z£ &y e (HAt"’ h’)(HB(tU)) =0
ji

Bounded Gosper-Petkovsek forms (exist forany u € C(x))

x=t" ged (A C(t) ) gcd( tb)) -1
{ ) = C(t®) At ) ged (A(tY ) =1 forie {0 r—1}
! ~ e B ng(At (7)) = gcd( (t), (tb)) 1

Sketch of new algorithm

o forall monicA(t) | 4o(t), for all monic B(t) | £,(t)

o determine potential degrees for C from the degrees of A, B, ¢;,
o forall obtained candidate degrees:

@ extract the leading coefficient w.r.t. t and solve as an equation in 7,
o for all candidates 7, solve equation for C by linear algebra;

@ return (n, A(t), B(t), C(t)) after removing redundancy.

NB: parameters in C — continuous family of u.

Frédéric Chyzak First-order factors of linear Mahler operators



Efficiency Improvements

Pruning the set of (4, B)

@ Factor ¢y and 4, into irreducible.

@ Some factors of one forbid other factors of the other.
@ lIterate on tuples of exponents.

Removing repetitions in the found (n, A, B, C)

Some (A, B) make other (4’, B') useless.

Avoiding redundant computations of degree bounds for C

Newton polygon for different (A, B) are related.

Taking degree bounds into account

When choosing (A, B), after getting potential degrees for C.
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Efficiency Improvements

Pruning the set of (4, B)

@ Factor ¢y and 4, into irreducible.

@ Some factors of one forbid other factors of the other.
@ lIterate on tuples of exponents.

Removing repetitions in the found (n, A, B, C)

Some (A, B) make other (4’, B') useless.

Avoiding redundant computations of degree bounds for C

Newton polygon for different (A, B) are related.

Taking degree bounds into account

When choosing (A, B), after getting potential degrees for C.

Number of cases to test still exponential in the degrees of the ;.
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Part Il




Where to Look for Solutions of the Linear Equation?

Field of Puiseux series: P := U Q((xM9).

qEN,
ey = (Inx)°% > Mey = \ey, 0:=logy,Inx, ML=1(+1,
€)\ex = ey (M—1)2£=0.

Regular singular Mahler systems (Roques, 2018)

Uu="p [(e)\))\e(@%o, E] is a universal Picard-Vessiot ring for the regular
singular Mahler systems over P: “enough” solutions, same constants.

Field of Hahn series: H := {f eQQ ’ suppfis well-founded}.

Local structure of Mahler systems (Roques, 2016)

Solving general systems requires 7 and solutions of all (M — \)y = 0.
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Where to Look for Solutions of the Linear Equation?

Field of Puiseux series: P := U Q((xM9).

qEN,
ey = (Inx)°% > Mey = \ey, 0:=logy,Inx, ML=1(+1,
€)\ex = ey (M—1)2£=0.

Regular singular Mahler systems (Roques, 2018)

Uu="p [(e)\))\e(@%o, E] is a universal Picard-Vessiot ring for the regular
singular Mahler systems over P: “enough” solutions, same constants.

What about non-regular singular systems?

Field of Hahn series: H := {f eQQ ’ suppfis well-founded}.
Algorithms for computing in H?

Local structure of Mahler systems (Roques, 2016)

Solving general systems requires 7 and solutions of all (M — \)y = 0.
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Where to Look for Solutions of the Linear Equation?

Field of Puiseux series: P := U Q((xM9).

qEN,
ey = (Inx)°% > Mey = \ey, 0:=logy,Inx, ML=1(+1,
€)\ex = ey (M—1)2£=0.

Regular singular Mahler systems (Roques, 2018)

Uu="p [(e)\))\e(@%o, E] is a universal Picard-Vessiot ring for the regular
singular Mahler systems over P: “enough” solutions, same constants.

What about non-regular singular systems?

Field of Hahn series: H := {f eQQ ’ suppfis well-founded}.
Algorithms for computing in H?

Local structure of Mahler systems (Roques, 2016)

Solving general systems requires 7 and solutions of all (M — \)y = 0.

Remark: (ex +e_,)(ex —e_y) =0,so U/ cannot be a field.
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Structure of Hypergeometric Solutions
write: Q") =P, D= Pllealreq,)= D Inx"% QU).

AEQy

similarity, hypergeometricity
@ y;andy, are similarif3g € (@(x)#, Y2 =gy
@ yis hypergeometricif Ju € Q(x), My = uy.

Structure of hypergeometric solutions in ©

{ hypergeometric solutions of (L) in®} = {0} L H (9)40
/1

where:
@ Each (55/)740 isaclassof similar hypergeometric solutions.
@ The vector spaces $); are in direct sum in ©.
@ The sum of the d; := dim §); add up to at most the order of L.
@ $; C (Inx)'°8 NQ((x}/*)) for a suitable ;.
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Structure of Hypergeometric Solutions

wite: Q) =P, D = Plleaseg,]= D (nx)° Q).
AEQy
Fix: Q) Cc Fc® withfield F stable under M.

F-similarity, F-hypergeometricity
@ yiandy, are F-similarif 3q € Fzo, y> = qy1.
@ yis F-hypergeometricif Ju € F, My = uy.

Structure of hypergeometric solutions in ©

{F-hypergeometric solutions of (L) in®} = {0} L H (9)40
/1

where:
@ Each (55/)740 is a class of F-similar F-hypergeometric solutions.
@ The vector spaces $); are in direct sum in ©.
@ The sum of the d; := dim §); add up to at most the order of L.
@ $; C (Inx)'°8 NQ((x}/*)) for a suitable ;.
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Structure of Solutions to the Riccati Equation

o (InX)°%AQ(xY*)) = Q((x*/*)) is well-defined for each .
y = Myly

Transport of the solution structure, given Q(x) C F C ©

m
{(some) solutions of (R)} = H R
1
where:
® 9= pl(5),)
@ pinduces a one-to-one parametrization of %i; by P($;) ~ P4—(Q).
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Structure of Solutions to the Riccati Equation

o (InX)°%AQ(xY*)) = Q((x*/*)) is well-defined for each .
y = Myly

Transport of the solution structure, given Q(x) C F C ©
m

{(some) solutions of (R)} = H R

/1

where:
° %= p((9),)
@ pinduces a one-to-one parametrization of 93; by P(§);) ~ PY—1(Q).

Given a basis (y1, .. ., yq) of $ = §;, with dimension d := d|:

. giMy1 + -+ gaMyy
guyit - +gayd
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Structure of Solutions to the Riccati Equation

o (InX)°%AQ(xY*)) = Q((x*/*)) is well-defined for each .
y = Myly
X+ .. ,_>/\X(b—1)"+...

Transport of the solution structure, given Q(x) C F C ©

m
{(some) solutions of (R)} = H R
1
where:
® 9= pl(5),)
@ pinduces a one-to-one parametrization of %i; by P($;) ~ P4—(Q).

- : n Rational solutions
Puiseux series solutions

=y A+ Newton polygon — gy € N
Fi= * =
Q) g = lemy gy — F = Q((x/9))
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Useful Solving Algorithms (old) and Bounds (new)

L € Qx]I(M) deg,L=d deg,L=r

Arithmetic complexity of solving the linear equation (CDDM, 2018)

@ Basis of polynomial solutions: O(b~"d? + M(d)) ops.
@ Basis of approximate formal power series: O(rzd + rZM(r)) ops.
@ Also: rational solutions, Puiseux series solutions.
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Useful Solving Algorithms (old) and Bounds (new)

L € Qx]I(M) deg,L=d deg,L=r

Arithmetic complexity of solving the linear equation (CDDM, 2018)

@ Basis of polynomial solutions: O(b~"d? + M(d)) ops.
@ Basis of approximate formal power series: O(rzd + rZM(r)) ops.
@ Also: rational solutions, Puiseux series solutions.

Ramification order of Puiseux series solutions (old + new)

Each (In x)©°% * implies some Q((x/9*)) for g read on a Newton polygon.
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Useful Solving Algorithms (old) and Bounds (new)

L € Qx]I(M) deg,L=d deg,L=r

Arithmetic complexity of solving the linear equation (CDDM, 2018)

@ Basis of polynomial solutions: O(b~"d? + M(d)) ops.
@ Basis of approximate formal power series: O(rzd + rZM(r)) ops.
@ Also: rational solutions, Puiseux series solutions.

Ramification order of Puiseux series solutions (old + new)

Each (In x)©°% * implies some Q((x/9*)) for g read on a Newton polygon.

Degree bounds for rational solutions u of the Riccati equation (new)

\ numerators denominators \ both
b=2 | (1+27")(2d) 2d o(d)

b>3| (1+b7Y) biz = o(d/b")
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Part IV

Second Approach: Structured
Hermite-Padé Approximants

Frédéric Chyzak First-order factors of linear Mahler operators



Reformulation of the problem as structured syzygies

Parametrization of the search space

For each ), using the suitable ramification order g = g,:

p (108 2Q((9) — QuX/))
My
Y y
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Reformulation of the problem as structured syzygies

Parametrization of the search space

For each ), using the suitable ramification order g = g,:

p:{y € (Inx)°%AQ((x9)) | Ly =0} — Q((x*/9))

U u

5;:)1‘ — %j C Q(X)
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Reformulation of the problem as structured syzygies

Parametrization of the search space

For each ), using the suitable ramification order g = g,:

pispan((Inx)°& Az, .. (Inx)'°%*z4) — Q((x*/9))
U u

5;:)1‘ — %j C Q(X)
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Reformulation of the problem as structured syzygies

Parametrization of the search space

For each ), using the suitable ramification order g = g,:

pispan((Inx)°& Az, .. (Inx)'°%*z4) — Q((x*/9))

yw%e@(x)?
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Reformulation of the problem as structured syzygies

Parametrization of the search space

For each ), using the suitable ramification order g = g,:

p: Q' = Q((x)
01M21+' --+atht ~

€ Qx)?

ay,...,d¢) —
(17 al’) Gz + -+ aez
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Reformulation of the problem as structured syzygies

Parametrization of the search space

For each ), using the suitable ramification order g = g,:

p: Q' = Q((x)
01M21+' --+atht ~

€ Qx)?

ay,...,d¢) —
(17 al’) Gz + -+ aez

Other formulation, after renormalizing L so that A = 1 and z; € Q[[x]]

Describe (a3, . .., a:) #0such that 3P/Q € Q(x)4,

(=a1P)zy + - - + (—a¢P) 2t + (@1Q) Mz, + - - - + (a;Q) Mz; = 0.
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Relaxation of the problem
Solutions
(—a1P)zy + -+ (=atP) 2 + (a1Q) Mzy + - - - + (a:Q) Mz; = 0
are structured instances of the syzygies
Przy+.--+Przg+ Qi Mzy + - +Qt Mz; = 0,
which are approximated by approximate syzygies

Pyzi+---+Pizi + Qu Mz + - - + Q: Mz = O(x7).
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Relaxation of the problem
Solutions
(—a1P)zy + -+ (=atP) 2 + (a1Q) Mzy + - - - + (a:Q) Mz; = 0
are structured instances of the syzygies
Przy+.--+Przg+ Qi Mzy + - +Qt Mz; = 0,
which are approximated by approximate syzygies
Pyzy+- -+ Pizg+ Q1 Mzy + - - - + Qe Mz = O(x7).

© Foro > 1, approximate syzygies of “low” degree are exact syzygies.
@ Structured syzygies are linear combinations of syzygies.
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Relaxation of the problem
Solutions
(—a1P)zy + -+ (=atP) 2 + (a1Q) Mzy + - - - + (a:Q) Mz; = 0
are structured instances of the syzygies
Przy+.--+Przg+ Qi Mzy + - +Qt Mz; = 0,
which are approximated by approximate syzygies
Pizy+- -+ Pzt + Qi Mzy + -+ Qe Mzy = O(x7).

© Foro > 1, approximate syzygies of “low” degree are exact syzygies.
@ Structured syzygies are linear combinations of syzygies.

We search for structured syzygies as recombinations of approximate syzygies.
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Structure and computation of approximate syzygies

Minimal basis of approximate syzygies

Algorithms find a basis of the module of approximate syzygies to order o:

Pii,...,P1t Q1,1,---,0Q1,¢ Z 0(x?)
Pta,...,Ptt Qt,1y---,0¢t ze | _| Ox7)
Pte11s -3 Prere Qws1s- -+, Queaye Mz, O(x?)
Patay.-sPott Qatay.-.y Qo Mz, 0(x?)

(Derksen, 1994), (Beckermann, Labahn, 1994, 2000), Neiger (2016).
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Structure and computation of approximate syzygies

Minimal basis of approximate syzygies

Algorithms find a basis of the module of approximate syzygies to order o:

Pii,...,P1t Q1,1,---,0Q1,¢ Z 0(x?)
Pta,...,Ptt Qt,1y---,0¢t ze | _| Ox7)
Pte11s -3 Prere Qws1s- -+, Queaye Mz, O(x?)
Patay.-sPott Qatay.-.y Qo Mz, 0(x?)

(Derksen, 1994), (Beckermann, Labahn, 1994, 2000), Neiger (2016).

Properties (module)

The module of the rows: (i) has rank 2t for all o; (ii) is ultimately decreasing
with o; (iii) has the module of (exact) syzygies as a limit (with rank < 2t).
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Reduction to a polynomial system

Properties (vector space)

The vector space of the rows of “low” degree: (i) is nonincreasing; (ii) has
the vector space of exact syzygies of “low” degree as a limit.

W := submatrix of (independent) rows of “low” degree.
p :=rank of the module of rows generated by .
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Reduction to a polynomial system

Properties (vector space)

The vector space of the rows of “low” degree: (i) is nonincreasing; (ii) has
the vector space of exact syzygies of “low” degree as a limit.

W := submatrix of (independent) rows of “low” degree.
p :=rank of the module of rows generated by .

Search for structured approximate syzygies, hoping that they are exact

Givena = (ay, ..., a:) #0,the following are equivalent:
@ 3P/Q € Q(x) such that (—aP, aQ) is in the module Q[x]***W,
@ W, has a nontrivial left kernel, where W, is W stacked above

dy,...,0a¢ 0
0 ai,...,0q¢ ’
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Reduction to a polynomial system

Properties (vector space)

The vector space of the rows of “low” degree: (i) is nonincreasing; (ii) has
the vector space of exact syzygies of “low” degree as a limit.

W := submatrix of (independent) rows of “low” degree.
p :=rank of the module of rows generated by .

Search for structured approximate syzygies, hoping that they are exact

Givena = (ay, ..., a:) #0,the following are equivalent:
@ 3P/Q € Q(x) such that (—aP, aQ) is in the module Q[x]***W,
@ W, has a nontrivial left kernel, where W, is W stacked above

dy,...,0a¢ 0
0 ai,...,0q¢ ’

@ ais asolution of the quadratic homogeneous polynomial system
3= {coefﬁcients w.r.t x of the minors of size p + 2 of W+} c Qlal.
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A Polynomial System with a Linear Variety of Solutions

V(z) = Ulj (I; = irreducible component)
J

When o increases, V(Z) stabilizes. At the limit:
@ each Jjis a subspace of Q,
@ the/;arein direct sum,
@ each /; parametrizes a subset of rational solutions of (R),
@ theimages of the /; form a partition of the rational solutions of (R).

Adjust the precision o to be able to solve

@ Primary decomposition: obtain Grobner bases for prime ideals p; s.t.

V() =y CQlay, ..., ad.
J

(Gianni, Trager, Zacharias, 1988): implementation over Q in Singular.
@ If any Grébner basis contains a nonlinear element, ¢ is too small.
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Sketch of the algorithm (for a given \)

Obtain all rational u = \x“ + - - - s.t. M — vis aright-hand factor of L:

@ Renormalize L so as to reduce the computation of the solutions of L
in (Inx)"°8 *Q((x*/*)) to solutions of some Ly in Q[[x]].

@ Compute a basis of truncated series solutions (z1, . . . , z:) to some initial
order oo.

@ For o in a geometric sequence oot

@ Prolong the basis to order o.

Compute a minimal basis of the module of approximate syzygies.

Extract the “low”-degree rows into a matrix W of rank 0 < p < 2t.

p € {0,2t — 1,2t} are special cases dealt with separately.

Compute minors of W., then their coefficients to obtain X.

Compute the primary decomposition 4/(Z) = ﬂj pj over Q.

If any p; shows a nonlinear polynomial, increase o.

For each j:
@ Solve p; to get a matrix S and a parametrization a = Sg for g in some Q.
@ Solve for the left kernel of W: at a = Sg. If incompatible result, increase o.
@ Get a candidate P/Q (with param. g) from the basis element of the kernel.
o If degrees of u := P/Q are too high, or if u does not satisfy (R), increase o

@ Convert all obtained u from solutions of L into solutions of L.

@ Quit and return the solutions.
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PartV

Comparison of the Approaches
and
Application to Hypertranscendence
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Benchmark (preliminary Maple implementation by Dumas)

P HP
example| br d| tot| fst dim o rfn syz  tot
Baum_Sweet| 22 1[ 0.10{0.14 (1,1) (6,6)0.04 0.03 0.22
Rudin_Shapiro| 22 1| 0.08/0.11 (1,0) (6, 1)0.02 0.02 0.22
Stern_Brocot_b2| 22 4| 0.22/|0.12 (1) (21)0.02 0.10 0.25
no_2s_in_3_exp| 22 4| 0.25/0.16 (1,1) (33,9)0.04 0.18 0.39
Dilcher_Stolarsky| 42 4| 0.11/0.09 (2) (43)0.07 0.27 0.48
Stern_Brocot_b4| 42 26| 6.3 (1) (63)0.03 0.23 0.42

Katz_Linden| 24 14| 2.5
Adamczewski_Faverjon| 34 258| 707
Tclm_3rat_ilog| 33 121 275

14(0,1,0,0)(f, 69, t, 1)0.14 0.36 0.65
(4) (163)0.59 2.0 3.3
12 €] (140)0.31 2.8 3.4 Caveat:

cooloccooo oo o
N
o

lclm_3rat_2log| 33 122 281/0.14 (2, 1) (88,52)0.17 0.65 1.0
lclm_2rat_trunc_s10| 24 56| 569(0.16 2 (294) 1.8 12 14 imi i
lclm_2rat_trunc_sli| 24 61| 965 >2d ° tlmlngs Wlth a
lclm_3rat_trunc_sli| 35 1260 >2d[0.36 (3,2) (574,268) 9.3 47 56 heuristic for

lclm_4pow b2| 27 107| >2d[0.37  (1,4) (429,739)0.20 3.5 4.1
lclm_dpow b3| 36 727| >2d[0.85  (1,4) (108,174) 1.1 0.82 2.9 absolute
lclm_dpow_b4| 45 989| >2d|0.47 (@) (223)0.72 0.91 2.2 ..
lclm_dpow_b5| 55 3103| >2d| 14 (1,4) (44,289) 21 1.2 37 decompOSItlon,
lclm_Spow_b4| 4717270 >2d| 84  (1,5) (274,1326) 129 8.3 226
dft_Baum_Sweet| 42 6| 0.15/0.09 @ (124)0.10 0.56 0.79 i .
dft_Rudin_Shapiro| 42 7| 6.3(0.07 (1,0 (88, 1)0.04 0.29 0.40 @ ongoing work:
dft_Stern Brocot_b2| 42 24| 3.3[0.13 &) (59)0.10 0.14 0.39 calling Singular
dft_no_2s_in_3_exp| 42 20| 11[0.09 (1,1 (85,33)0.08 0.78 0.96
dft_Dilcher Stolarsky|162 50| 42750.23 b)) (666)0.14 4.6 5.0 from Maple.
dft_Stern Brocot_b4|162 348(432130.26 &) (239)0.17 2.2 2.7
Tmo_2_1| 23 19| 6.1 >2d
mmo_3_1| 33 37| 16/0.10 &) (111)0.24 517 518
rmo_2_2| 23 44| 17 >2d
rmo_3 2| 33 82| 46[0.12 (3) (247) 2.11010010102
rmo_2 3| 23 69| 31 >2d
rmo_3.3| 33 127| 85/0.12 3) (386) 6.86010260109
mmo_2_ 4| 23 94| 49| >2d
mmo_3_4| 33 172| 131 >2d
mmo_2_5| 23 119| 70| >2d
mo_3.5| 33 217| 194 >2d
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Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)

f € C((x)) is hypertranscendental over C(x) <
f admits no polynomial differential equation over C(x)

Corollary of a criterion (Roques, 2018) on the difference Galois group of L
Assume:
o y(x?) + Ax)y(x) + B(x)y(x) = 0 admits a nonzero solution f € Q[[x]].
@ No rational function u(x) is solution of one of the Riccati equations

u(x)u(x®) + Al)u(x) + B(x) = 0,
B(x?)

Bix”) — AxP) + ) u(x) + ———— =0.

bZ
uxu(x”) + A0P) A

Then, f and Mf are differentially algebraically independent.
In particular, f is hypertranscendental, which was already proven in
(Adamczewski, Dreyfus, and Hardouin, 2021).
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Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)

f € C((x)) is hypertranscendental over C(x) <
f admits no polynomial differential equation over C(x)

Corollary of a criterion (Roques, 2018) on the difference Galois group of L

Assume:
o y(x?) + Ax)y(x) + B(x)y(x) = 0 admits a nonzero solution f € Q[[x]].
@ No rational function u(x) is solution of one of the Riccati equations

u(x)u(x®) + Al)u(x) + B(x) = 0,
B(x?)

U(X)U(sz) 4 ig((;; —A(Xb) + A()()) ulx) + ——=—==0.

Then, f and Mf are differentially algebraically independent.
In particular, f is hypertranscendental, which was already proven in
(Adamczewski, Dreyfus, and Hardouin, 2021).

Independence for the Baum-Sweet, Rudin-Shapiro, and Dilcher-Stolarsky examples!
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