Becker's Conjecture on Mahler Functions

Frédéric Chyzak

Differential Galois theory in Strasbourg — September 5, 2019

Joint work with Jason P. Bell, Michael Coons, and Philippe Dumas

Classes of Interest: the Generative Viewpoint

$$n = \overline{j_e \dots j_0}^k$$
 (expansion in base k)
$$S(z) = \sum_{n \in \mathbb{N}} s_n z^n \in \mathbb{C}[[z]]$$

k-Automatic series [Cobham (1972), Christol (1979), CKMR (1980), Allouche (1987)]

Fix a finite automaton and a map ϕ from states to \mathbb{C} , then set: $s_n = \phi(\text{final state after a run on the word } j_0 j_1 \dots j_e).$

Classes of Interest: the Generative Viewpoint

$$n = \overline{j_e \dots j_0}^k$$
 (expansion in base k)
$$S(z) = \sum_{n \in \mathbb{N}} s_n z^n \in \mathbb{C}[[z]]$$

k-Automatic series

[Cobham (1972), Christol (1979), CKMR (1980), Allouche (1987)]

Fix a finite automaton and a map ϕ from states to \mathbb{C} , then set: $s_n = \phi(\text{final state after a run on the word } j_0 j_1 \dots j_e).$

k-Regular series [Allouche and Shallit (1992, 2003)]

Fix matrices $A_0, ..., A_{k-1}$ and vectors L and C, then set: $s_n = LA_{j_e}...A_{j_0}C$.

Classes of Interest: the Generative Viewpoint

$$n = \overline{j_e \dots j_0}^k$$
 (expansion in base k)

$$S(z) = \sum_{n \in \mathbb{N}} s_n z^n \in \mathbb{C}[[z]]$$

k-Automatic series

[Cobham (1972), Christol (1979), CKMR (1980), Allouche (1987)]

Fix a finite automaton and a map ϕ from states to \mathbb{C} , then set: $s_n = \phi(\text{final state after a run on the word } j_0 j_1 \dots j_e)$.

k-Regular series [Allouche and Shallit (1992, 2003)]

Fix matrices $A_0, ..., A_{k-1}$ and vectors L and C, then set: $s_n = LA_{j_e}...A_{j_0}C$.

 $\{k$ -automatic series $\} \subset \{k$ -regular series $\}$

Polynomial bound.

Form an algebra.

Fast to compute.

Classes of Interest: the Section Viewpoint

section operator
$$\Lambda_j:(s_n)_{n\in\mathbb{N}}\mapsto (s_{kn+j})_{n\in\mathbb{N}}\qquad \text{for }j=0,\ldots,k-1$$

 $k\text{-orbit of }(s_n)_{n\in\mathbb{N}}=\text{set containing }(s_n)_{n\in\mathbb{N}}\text{ and closed under }\Lambda_0,\ldots,\Lambda_{k-1}$

Classes of Interest: the Section Viewpoint

section operator
$$\Lambda_j:(s_n)_{n\in\mathbb{N}}\mapsto (s_{kn+j})_{n\in\mathbb{N}}\qquad \text{for }j=0,\ldots,k-1$$
 $k\text{-orbit of }(s_n)_{n\in\mathbb{N}}=\text{set containing }(s_n)_{n\in\mathbb{N}}\text{ and closed under }\Lambda_0,\ldots,\Lambda_{k-1}$

Cobham (1972)

 $(s_n)_{n\in\mathbb{N}}$ is k-automatic iff its k-orbit is finite.

Allouche and Shallit (1992)

 $(s_n)_{n\in\mathbb{N}}$ is k-regular iff the \mathbb{C} -span of its k-orbit is finite-dimensional.

 $\{k
-automatic series\} \subset \{k
-regular series\}$ (again)

Classes of Interest: the Section Viewpoint

section operator
$$\Lambda_j: (s_n)_{n \in \mathbb{N}} \mapsto (s_{kn+j})_{n \in \mathbb{N}}$$
 for $j = 0, ..., k-1$
 k -orbit of $(s_n)_{n \in \mathbb{N}}$ = set containing $(s_n)_{n \in \mathbb{N}}$ and closed under $\Lambda_0, ..., \Lambda_{k-1}$

Cobham (1972)

 $(s_n)_{n\in\mathbb{N}}$ is k-automatic iff its k-orbit is finite.

Allouche and Shallit (1992)

 $(s_n)_{n\in\mathbb{N}}$ is k-regular iff the \mathbb{C} -span of its k-orbit is finite-dimensional.

 $\{k
-automatic series\} \subset \{k
-regular series\}$ (again)

(Generalized) Cartier operators

For j = 0, ..., k-1 and Laurent power series $S(z) \in \mathbb{C}((z))$,

$$\Lambda_j: S(z) = \sum_n s_n z^n \mapsto \sum_n s_{kn+j} z^n$$

k-Mahler equations

For polynomials $a_i(z) \in \mathbb{C}[z]$ with $a_0(z)a_d(z) \neq 0$, consider:

$$a_0(z)F(z) + \dots + a_d(z)F(z^{k^d}) = 0.$$

A series solution in $\mathbb{C}((z))$ is called k-Mahler.

k-Mahler equations

For polynomials $a_i(z) \in \mathbb{C}[z]$ with $a_0(z)a_d(z) \neq 0$, consider:

$$a_0(z)F(z)+\cdots+a_d(z)F(z^{k^d})=0.$$

A series solution in $\mathbb{C}((z))$ is called k-Mahler.

Note:
$$S(z) = \sum_{j=0}^{k-1} z^{j} \Lambda_{j}(S)(z^{k})$$

k-Mahler equations

For polynomials $a_i(z) \in \mathbb{C}[z]$ with $a_0(z) a_d(z) \neq 0$, consider:

$$a_0(z)F(z) + \dots + a_d(z)F(z^{k^d}) = 0.$$

A series solution in $\mathbb{C}((z))$ is called k-Mahler.

Note:
$$S(z) = \sum_{j=0}^{k-1} z^j \Lambda_j(S)(z^k) = \sum_{j=0}^{k-1} \sum_{j'=0}^{k-1} z^{j+kj'} \Lambda_{j'} \Lambda_j(S)(z^{k^2}) = \cdots$$

 $\{k$ -automatic series $\} \subset \{k$ -regular series $\} \subset \{k$ -Mahler series $\}$

Given
$$V$$
 closed under the Λ_j and $m \ge 0$:

$$V \subset \sum_{H \in V} \mathbb{C}(z) H(z^{k^m}).$$

k-Mahler equations

For polynomials $a_i(z) \in \mathbb{C}[z]$ with $a_0(z)a_d(z) \neq 0$, consider:

$$a_0(z)F(z) + \dots + a_d(z)F(z^{k^d}) = 0.$$

A series solution in $\mathbb{C}((z))$ is called k-Mahler.

Note:
$$S(z) = \sum_{j=0}^{k-1} z^j \Lambda_j(S)(z^k) = \sum_{j=0}^{k-1} \sum_{j'=0}^{k-1} z^{j+kj'} \Lambda_{j'} \Lambda_j(S)(z^{k^2}) = \cdots$$

 $\{k$ -automatic series $\} \subset \{k$ -regular series $\} \subset \{k$ -Mahler series $\}$

Given V closed under the Λ_j and $m \ge 0$:

$$V \subset \sum_{H \in V} \mathbb{C}(z) H(z^{k^m}).$$

Special cases:

- V = a k-orbit of finite cardinality m,
- $V = \text{the } \mathbb{C}\text{-span of } \mathbb{C}\text{-dimension } m \text{ of a } k\text{-orbit.}$

Computational Viewpoint: k-Regular Series Are Simpler

Divide-and-conquer recurrences

k-Mahler equation \Longrightarrow a recurrence of the form

$$s_n = \sum_{j \in J, \ j > 0} b_{0,j} s_{n-j} + \sum_{i=1}^d \sum_{j \in J} b_{i,j} s_{(n-j)/k^i}$$
 (finite J).

Computing s_n requires:

- computing *n* terms in the general *k*-Mahler case;
- computing just $O(\log n)$ terms if $b_{0,j} = 0$ for $j \ge 1$ $(a_0(z) \in \mathbb{C})$.

Linear representation $(L, \{A_i\}, C)$

Computing s_n requires $O(\log n)$ operations in the k-regular case.

Computational Viewpoint: k-Regular Series Are Simpler

Divide-and-conquer recurrences

k-Mahler equation \Longrightarrow a recurrence of the form

$$s_n = \sum_{j \in J, j > 0} b_{0,j} s_{n-j} + \sum_{i=1}^d \sum_{j \in J} b_{i,j} s_{(n-j)/k^i}$$
 (finite J).

Computing s_n requires:

- computing n terms in the general k-Mahler case;
- computing just $O(\log n)$ terms if $b_{0,j} = 0$ for $j \ge 1$ $(a_0(z) \in \mathbb{C})$.

Linear representation $(L, \{A_i\}, C)$

Computing s_n requires $O(\log n)$ operations in the k-regular case.

How to determine if a k-Mahler is k-regular?

k-Regularity and Singularities

$$F(z) = \frac{1}{a_0(z)} \sum_{j=1}^d a_j(z) \, F(z^{k^j}) \qquad \longrightarrow \begin{cases} |z| = 1 & \text{stay on unit circle,} \\ |z| < 1 & \text{approach it from 0,} \\ |z| > 1 & \text{approach it from } \infty. \end{cases}$$

k-Regularity and Singularities

$$F(z) = \frac{1}{a_0(z)} \sum_{j=1}^d a_j(z) \, F(z^{k^j}) \qquad \longrightarrow \begin{cases} |z| = 1 & \text{stay on unit circle,} \\ |z| < 1 & \text{approach it from 0,} \\ |z| > 1 & \text{approach it from } \infty. \end{cases}$$

Classes with restricted singularities

A series satisfying a (potentially non-minimal) k-Mahler equation is called:

• k-Becker if $a_0 = 1$;

Becker's partial converse (1994)

A k-Becker series is k-regular.

k-Regularity and Singularities

$$F(z) = \frac{1}{a_0(z)} \sum_{j=1}^d a_j(z) \, F(z^{k^j}) \qquad \longrightarrow \begin{cases} |z| = 1 & \text{stay on unit circle,} \\ |z| < 1 & \text{approach it from 0,} \\ |z| > 1 & \text{approach it from } \infty. \end{cases}$$

Classes with restricted singularities

 $\alpha \in \mathbb{C}$ is k-calm if α is either 0 or a root of unity of order not coprime to k.

A series satisfying a (potentially non-minimal) k-Mahler equation is called:

- k-Becker if $a_0 = 1$;
- k-Dumas if any zero of a_0 is k-calm.

Becker's partial converse (1994)

A k-Becker series is k-regular.

Dumas's partial converse (1993)

A *k*-Dumas series is *k*-regular.

Raising roots of unity to kth power

- order not coprime to $k \iff$ on the tails of the ρ 's
- order coprime to $k \iff$ on the cycles of the ρ 's

From Becker's Conjecture to Our Proof

Becker's conjecture (1994)

If F is k-regular, then \exists a k-regular $R \in \mathbb{C}(z)$ s.t. F(z)/R(z) is k-Becker.

Factorization of singularities vs Desingularization of operator

From Becker's Conjecture to Our Proof

Becker's conjecture (1994)

If F is k-regular, then \exists a k-regular $R \in \mathbb{C}(z)$ s.t. F(z)/R(z) is k-Becker.

Factorization of singularities vs Desingularization of operator

No singularities at roots of unity: Kisielewski (2017)

Let F be k-Mahler with a minimal-order k-Mahler equation whose a_0 has no roots at roots of unity. Then:

- F is k-regular iff it is k-Dumas;
- F is k-regular iff \exists a k-regular $R \in \mathbb{C}(z)$ s.t. F(z)/R(z) is k-Becker.

From Becker's Conjecture to Our Proof

Becker's conjecture (1994)

If F is k-regular, then \exists a k-regular $R \in \mathbb{C}(z)$ s.t. F(z)/R(z) is k-Becker.

Factorization of singularities vs Desingularization of operator

No singularities at roots of unity: Kisielewski (2017)

Let F be k-Mahler with a minimal-order k-Mahler equation whose a_0 has no roots at roots of unity. Then:

- F is k-regular iff it is k-Dumas;
- F is k-regular iff \exists a k-regular $R \in \mathbb{C}(z)$ s.t. F(z)/R(z) is k-Becker.

General case: our result (2018)

- If F is k-regular, then $\exists \gamma \in \mathbb{N}$, $\exists Q \in \mathbb{C}[z]$ s.t. 1/Q(z) is k-regular and $F(z)/(z^{\gamma}Q(z))$ is k-Becker.
- Q can be obtained from an initial equation for F.
- F is k-regular iff it is k-Dumas.

$$a_0(z)F(z) + \dots + a_d(z)F(z^{k^d}) = 0 \implies F(z) = \sum_{i=0}^{d-1} c_{i,n}(z)F(z^{k^{n+i}})$$

$$a_0(z)F(z) + \dots + a_d(z)F(z^{k^d}) = 0 \implies F(z) = \sum_{i=0}^{d-1} c_{i,n}(z)F(z^{k^{n+i}})$$

$$\Phi(z) := \left(F(z), \dots, F(z^{k^{d-1}}) \right)^T$$

$$a_0(z)F(z) + \dots + a_d(z)F(z^{k^d}) = 0 \implies F(z) = \sum_{i=0}^{d-1} c_{i,n}(z)F(z^{k^{n+i}})$$

$$A(z) := \begin{pmatrix} -\frac{a_1}{a_0}(z) & \dots & -\frac{a_d}{a_0}(z) \\ 1 & 0 & 0 \\ & \ddots & & 0 \\ 0 & & 1 & 0 \end{pmatrix} =: B_1(z) \qquad B_n(z) := A(z)B_{n-1}(z^k)$$

$$\Phi(z) := \left(F(z), \dots, F(z^{k^{d-1}})\right)^T \qquad \Phi(z) = B_n(z) \Phi(z^{k^n})$$

$$a_0(z)F(z) + \dots + a_d(z)F(z^{k^d}) = 0 \implies F(z) = \sum_{i=0}^{d-1} c_{i,n}(z)F(z^{k^{n+i}})$$

$$A(z) := \begin{pmatrix} -\frac{a_1}{a_0}(z) & \dots & -\frac{a_d}{a_0}(z) \\ 1 & 0 & 0 \\ & \ddots & & 0 \\ 0 & & 1 & 0 \end{pmatrix} =: B_1(z) \qquad B_n(z) := A(z)B_{n-1}(z^k)$$

$$\Phi(z) := \left(F(z), \dots, F(z^{k^{d-1}})\right)^T \qquad \Phi(z) = B_n(z) \Phi(z^{k^n})$$

$$B_n(z) = \begin{pmatrix} c_{1,n}(z) & \dots & c_{d,n}(z) \\ c_{1,n-1}(z^k) & \dots & c_{d,n-1}(z^k) \\ \vdots & & \vdots \\ c_{1,n-d+1}(z^{k^{d-1}}) & \dots & c_{d,n-d+1}(z^{k^{d-1}}) \end{pmatrix} = \left(c_{j,n+1-i}(z^{k^{i-1}})\right)_{i,j}$$

More Properties of k-Orbits

Note:
$$\Lambda_j(S(z) T(z^k)) = \Lambda_j(S(z)) T(z)$$
.

k-Orbit of a k-Mahler series

For
$$n \ge 0$$
, since $F(z) = \sum_{i=0}^{d-1} c_{i,n}(z) F\left(z^{k^{n+i}}\right)$,
$$\forall (j), \quad \Lambda_{j_n} \cdots \Lambda_{j_1}(F)(z) = \sum_{i=0}^{d-1} \Lambda_{j_n} \cdots \Lambda_{j_1}(c_{i,n})(z) F\left(z^{k^i}\right).$$

More Properties of k-Orbits

Note:
$$\Lambda_j(S(z) T(z^k)) = \Lambda_j(S(z)) T(z)$$
.

k-Orbit of a k-Mahler series

For
$$n \ge 0$$
, since $F(z) = \sum_{i=0}^{d-1} c_{i,n}(z) F(z^{k^{n+i}})$, $\forall (j), \quad \Lambda_{j_n} \cdots \Lambda_{j_1}(F)(z) = \sum_{i=0}^{d-1} \Lambda_{j_n} \cdots \Lambda_{j_1}(c_{i,n})(z) F(z^{k^i})$.

k-Orbit of a k-regular series

Since
$$V := \sum_{n,(j)} \mathbb{C}\Lambda_{j_n} \cdots \Lambda_{j_1}(F)(z)$$
 has finite \mathbb{C} -dimension,
$$\exists h \in \mathbb{C}[z], \quad V \subset \frac{1}{h(z)} \sum_{i=0}^{d-1} \mathbb{C}[z] \, F\!\left(z^{k^i}\right).$$

Bounding Denominators in the $B_n(z)$

 $\omega_{\alpha}(S)$:= order of the pole of S(z) at α

Cartiers operators and pole orders (Kisielewski, 2017)

Given $c \in \mathbb{C}(z)$ and a non-zero $\alpha \in \mathbb{C}$,

$$\exists j, \quad \omega_{\alpha}\left(\Lambda_{j}(c)(z^{k})\right) \geq \omega_{\alpha}\left(c(z)\right).$$

Bounding Denominators in the $B_n(z)$

 $\omega_{\alpha}(S)$:= order of the pole of S(z) at α

Cartiers operators and pole orders (Kisielewski, 2017)

Given $c \in \mathbb{C}(z)$ and a non-zero $\alpha \in \mathbb{C}$,

$$\exists j, \quad \omega_{\alpha}\left(\Lambda_{j}(c)(z^{k})\right) \geq \omega_{\alpha}(c(z)).$$

Uniform order bound for k-regular series at nonzero "fixed point" (2018)

Given a k-regular F(z) and $\xi \neq 0$ s.t. $\xi^k = \xi$,

$$\omega_{\xi}(B_n(z))$$

is bounded uniformly for $n \ge 1$.

Proof: $\Lambda_{j_n} \cdots \Lambda_{j_1}(c_{i,n})(z) \in h(z)^{-1} \mathbb{C}[z]; \quad \omega_{\xi} (c(z)) = \omega_{\xi} (c(z^k));$ Kisielewski's lemma implies $\omega_{\xi} (c_{i,n}(z)) \leq \omega_{\xi} (h(z)^{-1});$ structure of $B_n(z)$.

Fixed roots of unity and k-regular series (2018)

Given a k-regular F(z), consider its minimal-order Mahler equation. If $a_0(\xi)=0$ and $\xi^k=\xi$, then $\xi=0$.

Fixed roots of unity and k-regular series (2018)

Given a k-regular F(z), consider its minimal-order Mahler equation. If $a_0(\xi) = 0$ and $\xi^k = \xi$, then $\xi = 0$.

Proof: Assume $\xi^k = \xi \neq 0$. Pattern of pole orders in first row of $A = B_1$:

$$\begin{pmatrix} \omega < X & \dots & \omega < X & \omega = X & \omega \leq X & \omega \leq X \\ 1 & \dots & N & \dots & d \\ \end{cases}$$

Fixed roots of unity and k-regular series (2018)

Given a k-regular F(z), consider its minimal-order Mahler equation. If $a_0(\xi) = 0$ and $\xi^k = \xi$, then $\xi = 0$.

Proof: Assume $\xi^k = \xi \neq 0$. Pattern of pole orders in first row of $A = B_1$:

$$\begin{pmatrix} \omega < X & \dots & \omega < X & \omega = X & \omega \leq X & \omega \leq X \\ 1 & \dots & N & \dots & d \\ \end{cases}$$

As F is k-regular, because of the structure of $B_n(z)$, the maximal pole order Y among the B_n occurs as some $(B_m)_{1,J}$ for minimal m, and satisfies $Y \ge X > 0$.

Fixed roots of unity and k-regular series (2018)

Given a k-regular F(z), consider its minimal-order Mahler equation. If $a_0(\xi) = 0$ and $\xi^k = \xi$, then $\xi = 0$.

Proof: Assume $\xi^k = \xi \neq 0$. Pattern of pole orders in first row of $A = B_1$:

$$\begin{pmatrix} \omega < X & \dots & \omega < X & \omega = X & \omega \leq X & \omega \leq X \\ 1 & \dots & N & \dots & d \\ \end{pmatrix}$$

As F is k-regular, because of the structure of $B_n(z)$, the maximal pole order Y among the B_n occurs as some $(B_m)_{1,J}$ for minimal m, and satisfies $Y \ge X > 0$. Pattern of pole orders in Jth column of B_{m+N-1} :

$$\begin{pmatrix} \omega \leq Y & \dots & \omega \leq Y & \omega = Y & \omega < Y & \omega < Y \end{pmatrix}^T$$

$$1 \quad \dots \quad N \quad \dots \quad d$$

Fixed roots of unity and k-regular series (2018)

Given a k-regular F(z), consider its minimal-order Mahler equation. If $a_0(\xi) = 0$ and $\xi^k = \xi$, then $\xi = 0$.

Proof: Assume $\xi^k = \xi \neq 0$. Pattern of pole orders in first row of $A = B_1$:

$$\begin{pmatrix} \omega < X & \dots & \omega < X & \omega = X & \omega \leq X & \omega \leq X \\ 1 & \dots & N & \dots & d \\ \end{cases}$$

As F is k-regular, because of the structure of $B_n(z)$, the maximal pole order Y among the B_n occurs as some $(B_m)_{1,J}$ for minimal m, and satisfies $Y \ge X > 0$. Pattern of pole orders in Jth column of B_{m+N-1} :

$$\begin{pmatrix} \omega \le Y & \dots & \omega \le Y & \omega = Y & \omega < Y & \omega < Y \end{pmatrix}^T$$

$$1 & \dots & N & \dots & d$$

Now, the (1, N)-entry of $B_{m+N}(z) = A(z) B_{m+N-1}(z^k)$ is the sum of d-1 elements of order < X + Y and one of order X + Y. Contradiction.

Periodic roots of unity and k-regular series (2018)

Given a k-regular F(z), consider $q \in \mathbb{C}[z]$ of minimal degree s.t.

$$q(z)F(z) \in \sum_{j\geq 1} \mathbb{C}[z]F(z^{k^j}).$$

If $q(\xi) = 0$ and $\xi^{k^M} = \xi$ for some $M \ge 1$, then $\xi = 0$.

Proof: If F is k-regular, it is k^M -regular. By previous lemma (for k^M) and because $q \mid a_0, \xi$ must be zero.

Dumas's Structure Theorem and a Consequence

Structure theorem for k-Mahler functions (Dumas, 1993)

$$\begin{cases} a_0(z)F(z)+\dots+a_d(z)F(z^{k^d})=0\\ a_0(z)=\rho z^\delta P(z),\ P(0)=1 \end{cases} \implies \begin{cases} \exists J(z)\ k\text{-regular},\\ K(z):=\prod_{j\geq 1}P(z^{k^j})\ k\text{-regular},\\ F(z)=J(z)/K(z). \end{cases}$$

Dumas's Structure Theorem and a Consequence

Structure theorem for k-Mahler functions (Dumas, 1993)

$$\begin{cases} a_0(z)F(z)+\dots+a_d(z)F(z^{k^d})=0\\ a_0(z)=\rho z^\delta P(z),\ P(0)=1 \end{cases} \implies \begin{cases} \exists J(z)\ k\text{-regular},\\ K(z):=\prod_{j\geq 1}P(z^{k^j})\ k\text{-regular},\\ F(z)=J(z)/K(z). \end{cases}$$

Our (preliminary) structure theorem for k-regular functions (2018)

$$\begin{cases} F(z) \text{ is } k\text{-regular} \\ a_0(z)F(z)+\dots+a_d(z)F(z^{k^d})=0 \end{cases} \implies \begin{cases} \exists Q \in \mathbb{C}[z], \text{ s.t.} \\ 1/Q(z) \text{ is } k\text{-regular}, \\ F(z)=z^{\gamma}Q(z)G(z), \end{cases}$$

with G(z) given by an equation $q_0(z)G(z)+\cdots+q_d(z)G(z^{k^d})=0$ satisfying:

- $q_0(0) \neq 0$
- if $q_0(\xi) = 0$ for a root of unity ξ , then $\xi^{k^M} = \xi$ for some non-zero $M \in \mathbb{N}$.

Proof: Gather zeroes of a_0 that are ultimately periodic but not periodic roots of unity into Q. Apply Dumas's theorem to F. Simplify infinite

$$\frac{k\text{-regular }F(z)}{z^{\gamma}Q(z)} = k\text{-Becker}$$

Our main theorem (2018)

If F is k-regular, then $\exists \gamma \in \mathbb{N}$, $\exists Q \in \mathbb{C}[z]$ s.t. 1/Q(z) is k-regular and $F(z)/(z^{\gamma}Q(z))$ is k-Becker.

$$\frac{k\text{-regular }F(z)}{z^{\gamma}Q(z)} = k\text{-Becker}$$

Our main theorem (2018)

If F is k-regular, then $\exists \gamma \in \mathbb{N}$, $\exists Q \in \mathbb{C}[z]$ s.t. 1/Q(z) is k-regular and $F(z)/(z^{\gamma}Q(z))$ is k-Becker.

Proof: For Q(z) and G(z) as in the previous theorem, consider $q \in \mathbb{C}[z]$ of minimal degree s.t.

$$q(z)G(z) \in \sum_{j \ge 1} \mathbb{C}[z]G(z^{k^j}),$$

 $q(0) \neq 0$, and if $q(\xi) = 0$ for a root of unity ξ , then $\xi^{k^M} = \xi$ for some $M \geq 1$.

$$\frac{k\text{-regular }F(z)}{z^{\gamma}Q(z)} = k\text{-Becker}$$

Our main theorem (2018)

If F is k-regular, then $\exists \gamma \in \mathbb{N}$, $\exists Q \in \mathbb{C}[z]$ s.t. 1/Q(z) is k-regular and $F(z)/(z^{\gamma}Q(z))$ is k-Becker.

Proof: For Q(z) and G(z) as in the previous theorem, consider $q \in \mathbb{C}[z]$ of minimal degree s.t.

$$q(z)G(z) \in \sum_{j \ge 1} \mathbb{C}[z]G(z^{k^j}),$$

 $q(0) \neq 0$, and if $q(\xi) = 0$ for a root of unity ξ , then $\xi^{k^M} = \xi$ for some $M \geq 1$. Applying the lemma about periodic roots to $H(z) = z^{\gamma}G(z)$ (k-regular) forbids those roots of unity. So no zero of q(z) is 0 or a root of unity.

$$\frac{k\text{-regular }F(z)}{z^{\gamma}Q(z)} = k\text{-Becker}$$

Our main theorem (2018)

If F is k-regular, then $\exists \gamma \in \mathbb{N}$, $\exists Q \in \mathbb{C}[z]$ s.t. 1/Q(z) is k-regular and $F(z)/(z^{\gamma}Q(z))$ is k-Becker.

Proof: For Q(z) and G(z) as in the previous theorem, consider $q \in \mathbb{C}[z]$ of minimal degree s.t.

$$q(z)G(z) \in \sum_{j\geq 1} \mathbb{C}[z]G(z^{k^j}),$$

 $q(0) \neq 0$, and if $q(\xi) = 0$ for a root of unity ξ , then $\xi^{k^M} = \xi$ for some $M \geq 1$. Applying the lemma about periodic roots to $H(z) = z^\gamma G(z)$ (k-regular) forbids those roots of unity. So no zero of q(z) is 0 or a root of unity. If $\exists \lambda, \ q(\lambda) = 0$, consider denominator bound h(z) for k-orbit V of H(z). For $N \gg 1$, $h(\lambda^{k^N}) \neq 0$. Write $H(z) \in \sum_{j=1}^d \mathbb{C}(z) H(z^{k^{N+j}})$ and use Kisielewski's lemma for a contradiction.

$$\frac{k\text{-regular }F(z)}{z^{\gamma}Q(z)} = k\text{-Becker}$$

Our main theorem (2018)

If F is k-regular, then $\exists \gamma \in \mathbb{N}$, $\exists Q \in \mathbb{C}[z]$ s.t. 1/Q(z) is k-regular and $F(z)/(z^{\gamma}Q(z))$ is k-Becker.

Proof: For Q(z) and G(z) as in the previous theorem, consider $q \in \mathbb{C}[z]$ of minimal degree s.t.

$$q(z)G(z) \in \sum_{j \ge 1} \mathbb{C}[z]G(z^{k^j}),$$

 $q(0) \neq 0$, and if $q(\xi) = 0$ for a root of unity ξ , then $\xi^{k^M} = \xi$ for some $M \geq 1$. Applying the lemma about periodic roots to $H(z) = z^\gamma G(z)$ (k-regular) forbids those roots of unity. So no zero of q(z) is 0 or a root of unity. If $\exists \lambda, \ q(\lambda) = 0$, consider denominator bound h(z) for k-orbit V of H(z). For N >> 1, $h(\lambda^{k^N}) \neq 0$. Write $H(z) \in \sum_{j=1}^d \mathbb{C}(z) H(z^{k^{N+j}})$ and use Kisielewski's lemma for a contradiction. So q = 1, that is, G(z) is k-Becker.