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Abstract

The Galois theory for differential equations is now classical. We consider here a Galois
theory for difference equations whose development is more recent. In analogy with the
differential case, a concept of Liouvillian solutions of a difference equation is introduced,
in relation to equations with solvable Galois group. In the first part of this talk, Bomboy
presents the Galois theory for linear finite difference operators. Next he adapts the concept of
eigenring introduced in the differential case by Singer [11] to suggest an algorithm searching
for Liouvillian solutions of linear difference equations. This direct algorithm solves a subclass
of the difference equations without using Petkovsek’s algorithm [8].

Introduction

We review in Section 1 the basic notions of Galois theory for difference equations, following the
presentation of [7]. As in the differential case, the Galois group is a linear algebraic group. In
Section 2 we present the main properties of reducible and completely reducible systems, from the
point of view of the structure of their associated matrices. In the differential case, a Liouvillian
extension of a differential field is done by algebraic extensions and by the operations of exponenti-
ation and integration of a function of the field. In Section 3 we define Liouvillian solutions in the
difference case; these solutions are essentially interlacings of hypergeometric sequences. We describe
the notion of eigenring in Section 4 and summarize relevant properties. We finish by presenting
Bomboy’s algorithm for searching Liouvillian solutions in Section 5, and by concluding comments.

1. Difference Galois Theory

A difference ring (k, ¢) is a ring k with an automorphism ¢. (Note that all rings considered here
are rings with identity.) For example, let k& be the ring C[z] of polynomials or the field C(z) of
fractions, and ¢ the automorphism that substitutes z + 1 for z. When ¢(x) = z for z € k, x is
called a constant of (k,¢). The set C(k) of constants is a subring of k.

From now on we assume that k is a field. A (scalar) difference equation has the form

(1) L(y) = ¢™(y) + am—10""(y) + -+ + aoy = 0,

where the a;’s are in k and L = ¢ +a,,_1¢™ '+ - -+ay is the difference operator associated to the
equation. The set of difference operators or skew polynomials in ¢ with multiplication ¢a = ¢(a)d
is a non-commutative ring Pk(¢). Equation (1) can be transformed into the system ¢(Y) = ALY,
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where ¢ is applied componentwise to the vector Y and

0 1 0 0
0 0 1 0
AL =
—ap —ay ... ... (—apm-—1)

One sees that y is a solution of L(y) = 0 if and only if (y,$(y),... ,d)m*l(y))T is a solution of
p(Y)=ALY.
More generally, we will consider systems of difference equations of the form

(2) P(Y) =AY

for an element A of GL,,(k), the space of invertible matrices of dimension n over k. If R is a difference
ring extension of k, a fundamental matriz for Equation (2) is an element U = (u;;) € GL,(R)
such that ¢(U) = AU where ¢ maps componentwise to matrices. A difference ring extension R
of k is called a Picard-Vessiot extension of k for Equation (2) if R is a simple difference ring (the
only ¢-invariants ideals are (0) and R) and R = k[u1,1,...,upp, (det U) '] with U a fundamental
matrix. The following theorem describes the structure of such extensions.

Theorem 1 ([12]). If the set of constants C(k) is algebraically closed, Picard—Vessiot extensions
R of k exist and are unique up to isomorphism.

The Galois group Gal(R/k) of R over k is the set of linear maps that are the identity on k
and commute with ¢. As in the differential case, it can be proved to have a structure of a linear
algebraic group over C(k). The set V of solutions of Equation (2) in R™ is an n-dimensional vector
space over C'(k) that is invariant by Gal(R/k). This yields a representation of Gal(R/k) in C(k)".

Let ¢(Y) = AY and ¢(Y) = BY be two systems with A and B in GL, (k) and let V4 and Vp
be the corresponding solution spaces in Picard—Vessiot extensions R4 and Rp. Both systems are
equivalent if there is a matrix 7' € GL, (k) such that B = ¢(T)AT!. Then, if U is a fundamental
matrix of ¢(Y') = AY, it follows that T'U is a fundamental matrix for ¢(Y') = BY’; in this case, one
can identify the rings R4 and Rp, and V4 and Vg are isomorphic as Gal(R/k)-modules (defined as
modules over the group algebra of Gal(R/k) with coefficients in C'(k)). For a large class of difference
fields, any system ¢(Y') = AY is equivalent to the companion system of a scalar equation [7].

We conclude this section with an illustration on the ring S of germs of sequences over C.
Definition 1. Consider two elements (a,)nen and (by)pen of CN (where C C C is a ring). We
define the following equivalence relation: (z,) = (y,) if and only if (z,) and (y,) only differ by
a finite number of terms. We now consider the quotient ring § = (CN/ E) where addition and
multiplication are defined componentwise; an element of this ring is called a germ.

Note that this gives us a natural embedding v of the rational function ring C(z) into S, where
for F' € C(z), v(F) is given as the germ of any (s, )nen such that s, = F(n) for sufficiently large n.

Definition 2. The shift o of S maps u((a;o, U )) to 1/((3;1, U T B ))

From now on, the ring C is an algebraically closed subfield of C and k = v(C(z)).
Property 1 ([12]). Let C C C be an algebraically closed field. There exists a Picard—Vessiot
extension of the equation o(Y') = AY over C(z) C S that also lies in S.

Ezample. Consider k = v(C(z)) and the equation o(z) = —. The Picard—Vessiot extension R of k
is the ring generated by k£ and the sequence s = (1,—1,1,—1,...). Note that if t = s+ (1,1,...) =
(2,0,2,...) then ¢t x o(¢t) = 0. The Picard-Vessiot extension therefore has zero divisors and cannot
be a field.
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2. Reducibility

The following theorem gives a criterion of reducibility for operators.

Theorem 2 ([3]). Consider an operator L € Py(¢) with Picard-Vessiot extension R. The following
statements are equivalent:

1. L is reducible (i.e., L = L1Ly in P(¢));

2. the solution space V has a strict subspace W that is stable under the action of the Galois
group G = Gal(R/k);

3. the system ¢(X) = AL X is equivalent to a system with block upper triangular companion
matriz.

We also consider the class of completely reducible operators.

Definition 3. Let lclm stand for least common left multiple. An operator L € Py(¢) is completely
reducible if there exist Ly, ..., Lg such that L = lclm(Lq,..., L),

Beware that an irreducible operator L is completely reducible because L = lclm(L).
Property 2 ([3]). The following statements are equivalent:

1. L is completely reducible;

2. the solution space V is expressible as a direct sum V = Vi @ --- ® V. where V; is a stable
G-module for each i, and the corresponding operators are irreducible;

3. the system ¢p(X) = AX is equivalent to a system with block diagonal companion matriz where
each block corresponds to an irreducible G-module.

3. Liouvillian Solutions

We begin this section by defining Liouvillian solutions of an equation in terms of interlacings
of sequences and hypergeometric sequences. Next we give the expected Galois-theoretic character-
ization of Liouvillian solutions of a difference equation, before giving another characterization in
terms of interlacings of hypergeometric solutions.

Definition 4. The interlacing of sequences z1, ... x! of CN is the sequence (z}, 22, ... b =t .. .).
g q , ) q 0> L0 yLgy Ly,

This definition extends to interlacing of germs in a natural way.
Definition 5. Hypergeometric sequences are germs x € S such that o(z) = ax for some a € k.
Definition 6. The set £ of Liouvillian sequences is the smallest subring of & such that:

1. constants belong to £, where it is understood that v € C(k) is identified to the germ
(v,7,---) €8;
2. if z is hypergeometric, « belongs to L;
if z is solution of o(x) = = + a with a € L, then x belongs to £;
4. if = belongs to £, the interlacings of x with zero germs (i.e., the interlacings of z! = --. =
z!=! = 0 and z! = ) belongs to L.
Ezample. Elements of k are hypergeometric, thus belong to £; on the other hand, the germs (2"),,cn
and (n!),ecn are two examples of hypergeometric, thus Liouvillian, sequences that are not in k.
Ezample (Harmonic numbers). If £ = C(z) and = = (2?21 1/j)n€N we have (1/(n + 1))nEN =
v(1/(z+1)) €k and o(z) =z + (1/(n + 1))n€N. The germ v(z) thus belongs to L.
Ezample. The sequence (0,1,0,1,...) is the interlacing of both constant sequences 0 and 1, and
therefore belongs to L.

bad

The following theorem gives the expected Galois-theoretic characterization of Liouvillian se-
quences.
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Theorem 3 ([7]). A solution x € S of Equation (1) is Liouvillian if and only if the Galois group
of any Picard—Vessiot extension of this equation is solvable.

We come to another characterization of Liouvillian sequences. Let Z be a fundamental system
of 0(X) = AX. Then by iteratively applying o to o(Z) = AZ we see that Z is solution of
o™(Z) = I™Z where I = 0™~1(A)... A. Let 7 be the automorphism of C(z) substituting mz
for z. Then 70 0™ = o o7; for i from 0 to m — 1, the ith m-section 7 o 0*(Z) of Z satisfies the
equation o(0O) = (H;’fiA) O in the unknown O, where II7; A = Too! (II™A). This gives the following
theorem and corollary.

Theorem 4 ([7]). Let L be an operator of order n over k. The following statements are equivalent:

L. there is a Liouvillian solution for the equation L(y) = 0;

2. there ezists an m less than or equal to n, such that the equation L(y) = 0 has a solution that
1s the interlacing of m hypergeometric series;

3. there exists an m such that, for all i between 0 and m — 1, the equation o(y) = (117 Ar)(y)
has an hypergeometric solution;

4. there exist m and i, with i < m, such that the equation o(y) = (II7};A)(y) has an hyperge-
ometric solution.

Corollary 1 ([7]). Let L be an operator with coefficients in k. One can find operators Hy, ..., Hy,
R with coefficients in k such that

1. L=RH;... Hy;
2. the solution space of each H; is spanned by interlacings of hypergeometric sequences;
3. any Liouvillian solution of L(y) =0 is a solution of Hy ... Hy(y) = 0.

4. Eigenrings and their Structure

We consider the non-commutative ring A = Py (o) and a difference operator L € A with Picard-
Vessiot extension R. Let V' be the space of solutions of L in R. We now describe isomorphisms
between three classes of objects:

1. eigenrings, that are rings that essentially contain operators that follow some special commu-
tation relation with L;

2. endomorphisms of V' that commute with the Galois group G = Gal(R/k);

3. A-module homomorphisms of A/AL into A/AL.

FEigenring of L. Given an operator L, the elements U + AL € A/AL such that there exists U’ € A
satisfying LU = U'L clearly form a ring. We call it the eigenring E(L) of L. Note that F(L) is
never empty: C(k) is always part of E(L).

G-endomorphisms of the solution space V. For P € A, consider the mapping np of R into R
defined by np(v) = P -v for all v in R. This C(k)-linear mapping clearly commutes with G, since
G commutes with 0. We are interested in the situation when the mapping np induces a linear map
of Endg V, the algebra of C'(k)-linear mappings of V' into V' that commute with G. Take v in V;
we have L -v = 0. Consider L -np(v) = LP-v. This is zero if and only if P+ AL belongs to E(L),
for then there is P’ such that LP = P'L. In this latter case, np induces a G-endomorphism of V.

A-linear endomorphisms of A/AL. Consider the C(k)-algebra Ends(A/AL) of A-linear endomor-
phisms of A/AL, and A an element of this algebra. Recall that the module A/AL can be viewed
as the A-module generated by any “generic solution” of L; the linear map A is thus completely
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described by the image of the generator 1+ AL of A/AL. The map A is well-defined as an A-linear
map if and only if the image A(1 + AL) = U + AL abides by the relation

L(U + AL) = LA(1 + AL) = A(L(1 + AL)) = A(0) =0,

which implies that there exists U’ such that LU = U’L; in other words, U + AL is in the eigenring.
The converse property is proved similarly.

With a closer look on the bijections above, one gets the following result.
Proposition 1. The three rings E(L), Endg V', and Enda(A/AL) are isomorphic.

The classical representation theory for semi-simple modules [6] applies to the study of the struc-
ture of eigenrings, yielding the following proposition and corollary.

Proposition 2 ([4]). For an operator L with Galois group G and space of solutions V', there are
ring isomorphisms between:

1. the eigenring E(L);

2. the endomorphism algebra Endg V;

3. the set of matrices P € My(k) satisfying AP = o(P)AyL.

Proposition 3 ([4]). Let L be a completely reducible operator with solution space V. Then V is
isomorphic to a direct sum V"™ & --- @ V;"' where no V; and V; are isomorphic for i # j; the

eigenring E(L) is isomorphic to the direct sum @é:l M,,(C(k)).
Corollary 2 ([4]). Let L be a difference operator with eigenring E(L). Then:

1. L is irreducible implies that E(L) is isomorphic to C(k);
2. L is completely reducible and E(L) is isomorphic to C(k) imply that L is irreducible.

5. Algorithms

Eigenring. An algorithm to compute the eigenring of a differential operator was given by Singer
[11]. A similar algorithm computes the eigenring in the difference case. The method proceeds by
undetermined coefficients: an element of the eigenring of an operator L of order n is viewed as a
residue U modulo L; it is thus represented by n undetermined rational function coefficients. One
then performs the multiplication by L on the left, then the Euclidean division by L on the right.
This yields a first-order linear difference system in the n unknowns. This system is then solved for
rational function solutions by algorithms based on Abramov’s algorithm [1].!

Linear Difference Equations of Order 2. We consider the search for Liouvillian solutions
of linear difference operators in the case of order 2. As follows from the analysis in Section 3,
the search for Liouvillian solutions reduces to searching for hypergeometric solutions of associated
equations. Petkovsek gave an algorithm for this purpose [8], but with exponential complexity.
Bomboy’s algorithm proceeds by determining hypergeometric solutions from the computation of
successive eigenrings, so as to derive the shape of the Galois group G little by little, while avoiding
Petkovsek’s algorithm as much as possible.

In order to help to solve for hypergeometric solutions, note that each non-trivial element U + AL
of E(L) yields a right factor of L. Indeed, viewed as an element of Endg V, it necessarily has an
eigenvalue A and a corresponding eigenvector v. The right gcd G of U — A and L can be expressed
by a Bézout relation and satisfies G - v = 0. It is therefore a non-constant right-hand factor of L.

INote that the same idea was used in the context of symbolic summation/integration in Chyzak’s work [5].
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Let x be a hypergeometric solution: there exists a € C(z) such that o(z) = a-z. For all g in the
Galois group G we have

o(9(z)) = g(o(z)) =gla-z) =a-g(z).
Therefore the subspace Cx is globally invariant under the action of G. This entails that the space
of hypergeometric solutions is a G-module, as is the total solution space of L. From this and
Proposition 3, it follows that the eigenring is either not a semi-simple G-module, or has dimension
1, 2, or 4.

If the space of hypergeometric solutions is 2-dimensional, G is isomorphic to the group of di-
agonal matrices with two independent non-zero entries, and E(L) has dimension 2 or 4. If there
is only a 1-dimensional space of hypergeometric solutions, a classification of the algebraic sub-
groups of GLy(C) then shows that G is isomorphic to the group of upper triangular matrices (g 2),
moreover, either the solution space V is semi-simple as G-module and the eigenring F(L) has di-
mension 2, or it is not semi-simple, and in view of F(L) ~ Endg(V), E(L) consists of matrices
that commute with all the upper triangular matrices above, and has dimension 1 or 2. If there are
no hypergeometric solutions, the same classification shows that the Galois group G contains the
special linear group SLy(C) of matrices of determinant 1, and F/(L) has dimension 1.

If L has a Liouvillian solution, it also has a one that is either hypergeometric or the interlacing of
two hypergeometric sequences. Bomboy’s algorithm to decide the existence of Liouvillian solutions
and compute a basis of their vector space therefore first computes the eigenring E(L). If it is
not trivial (i.e., does not reduce to homotheties), it provides all hypergeometric solutions, then all
Liouvillian solutions; otherwise, the eigenring corresponding to the system IT12 A;, is computed and:

1. if it is not trivial, we obtain an hypergeometric solution of this system, which gives a solution
of L by interlacing of hypergeometric sequences;

2. otherwise, the classification of algebraic groups shows that either L has a unique hypergeo-
metric solution, and it is necessary to search this solution by Petkovsek’s algorithm, or L has
no hypergeometric solutions, and therefore L provedly has no Liouvillian solution.

6. Conclusion

Finally, the authors of this summary wish to do full justice to Petkovsek, and want to empha-
size that the search for Liouvillian solutions can be entirely performed by means of (variants of)
algorithms by Petkovsek, and with no need of Galois theory.?

Indeed, Petkovsek showed in an unpublished work [9]* how to use his algorithm for finding
hypergeometric solutions [8] in a recursive fashion and in combination with reduction of order so
as to produce all Alembertian solutions of an operator. (The class of Alembertian sequences is
obtained by the same closure operations as the Liouvillian case, except for interlacings.) This
algorithm corresponds to factorizations into first-order operators H; in Corollary 1.

In fact, Petkovsek’s hypergeometric algorithm extends in a simple way to an algorithm for finding
the solutions of a recurrence

aO(n)un + ot A 1Unpm 1t Upgm =0

that are interlacings of hypergeometric sequences:

1. derive a recurrence on u,, in which the index is shifted by multiples of m: since we know that
the C(n)-vector space generated by u,, is finite-dimensional with basis (u,, un+1, ..., Untm—1),

2This section is the result of stimulating discussions with Bruno Salvy.

3seemingly subsumed by [2],
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the particular shifts uy, Up4+m, Unt+om, -.. rewrite onto this basis, and a linear dependency

can be found by Gaussian elimination;

2. for each 7 between 0 and m — 1, derive a recurrence on v,(f) = Upp+; by substituting mp + 1

for n in the obtained recurrence, and solve it for hypergeometric solutions;

3. return the interlacing of the sequences v,go), v,(,l), ey v,(,mfl).

A variant algorithm (corresponding to Steps 1. and 2. above) is derived in [10] by a different
approach.

Corollary 1, or equivalently a direct analysis mimicking that in [9], can now be used to derive
an algorithm for finding all Liouvillian solutions of a recurrence. This algorithm is essentially
Petkovsek’s algorithm for Alembertian solutions where searches for hypergeometric solutions—
and first-order right-hand factors—is replaced with searches for interlacings of hypergeometric
solutions—and higher-order right-hand factors. The main difference is that reduction of order is
simultaneously performed by as many independent particular solutions as the order of the interlac-
ings, instead of by just 1.

One can thus view Bomboy’s contribution as providing a variant algorithm in terms of eigenrings.
A complexity of both approaches still has to be performed so as to compare them conclusively.
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