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Abstra
t

The Galois theory for di�erential equations is now 
lassi
al. We 
onsider here a Galois

theory for di�eren
e equations whose development is more re
ent. In analogy with the

di�erential 
ase, a 
on
ept of Liouvillian solutions of a di�eren
e equation is introdu
ed,

in relation to equations with solvable Galois group. In the �rst part of this talk, Bomboy

presents the Galois theory for linear �nite di�eren
e operators. Next he adapts the 
on
ept of

eigenring introdu
ed in the di�erential 
ase by Singer [11℄ to suggest an algorithm sear
hing

for Liouvillian solutions of linear di�eren
e equations. This dire
t algorithm solves a sub
lass

of the di�eren
e equations without using Petkov�sek's algorithm [8℄.

Introdu
tion

We review in Se
tion 1 the basi
 notions of Galois theory for di�eren
e equations, following the

presentation of [7℄. As in the di�erential 
ase, the Galois group is a linear algebrai
 group. In

Se
tion 2 we present the main properties of redu
ible and 
ompletely redu
ible systems, from the

point of view of the stru
ture of their asso
iated matri
es. In the di�erential 
ase, a Liouvillian

extension of a di�erential �eld is done by algebrai
 extensions and by the operations of exponenti-

ation and integration of a fun
tion of the �eld. In Se
tion 3 we de�ne Liouvillian solutions in the

di�eren
e 
ase; these solutions are essentially interla
ings of hypergeometri
 sequen
es. We des
ribe

the notion of eigenring in Se
tion 4 and summarize relevant properties. We �nish by presenting

Bomboy's algorithm for sear
hing Liouvillian solutions in Se
tion 5, and by 
on
luding 
omments.

1. Di�eren
e Galois Theory

A di�eren
e ring (k; �) is a ring k with an automorphism �. (Note that all rings 
onsidered here

are rings with identity.) For example, let k be the ring C [z℄ of polynomials or the �eld C (z) of

fra
tions, and � the automorphism that substitutes z + 1 for z. When �(x) = x for x 2 k, x is


alled a 
onstant of (k; �). The set C(k) of 
onstants is a subring of k.

From now on we assume that k is a �eld. A (s
alar) di�eren
e equation has the form

(1) L(y) = �

m

(y) + a

m�1

�

m�1

(y) + � � � + a

0

y = 0;

where the a

i

's are in k and L = �

m

+a

m�1

�

m�1

+� � �+a

0

is the di�eren
e operator asso
iated to the

equation. The set of di�eren
e operators or skew polynomials in � with multipli
ation �a = �(a)�

is a non-
ommutative ring P

k

(�). Equation (1) 
an be transformed into the system �(Y ) = A

L

Y ,
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where � is applied 
omponentwise to the ve
tor Y and

A

L

=

0

B

B

B

�

0 1 0 : : : 0

0 0 1 : : : 0
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.
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.

.

.

.

.

.
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�a

0

�a

1

: : : : : : (�a

m

� 1)

1

C

C

C

A

:

One sees that y is a solution of L(y) = 0 if and only if

�

y; �(y); : : : ; �

m�1

(y)

�

T

is a solution of

�(Y ) = A

L

Y .

More generally, we will 
onsider systems of di�eren
e equations of the form

(2) �(Y ) = AY

for an element A of GL

n

(k), the spa
e of invertible matri
es of dimension n over k. IfR is a di�eren
e

ring extension of k, a fundamental matrix for Equation (2) is an element U =

�

u

i;j

�

2 GL

n

(R)

su
h that �(U) = AU where � maps 
omponentwise to matri
es. A di�eren
e ring extension R

of k is 
alled a Pi
ard{Vessiot extension of k for Equation (2) if R is a simple di�eren
e ring (the

only �-invariants ideals are (0) and R) and R = k

�

u

1;1

; : : : ; u

n;n

; (detU)

�1

�

with U a fundamental

matrix. The following theorem des
ribes the stru
ture of su
h extensions.

Theorem 1 ([12℄). If the set of 
onstants C(k) is algebrai
ally 
losed, Pi
ard{Vessiot extensions

R of k exist and are unique up to isomorphism.

The Galois group Gal(R=k) of R over k is the set of linear maps that are the identity on k

and 
ommute with �. As in the di�erential 
ase, it 
an be proved to have a stru
ture of a linear

algebrai
 group over C(k). The set V of solutions of Equation (2) in R

n

is an n-dimensional ve
tor

spa
e over C(k) that is invariant by Gal(R=k). This yields a representation of Gal(R=k) in C(k)

n

.

Let �(Y ) = AY and �(Y ) = BY be two systems with A and B in GL

n

(k) and let V

A

and V

B

be the 
orresponding solution spa
es in Pi
ard{Vessiot extensions R

A

and R

B

. Both systems are

equivalent if there is a matrix T 2 GL

n

(k) su
h that B = �(T )AT

�1

. Then, if U is a fundamental

matrix of �(Y ) = AY , it follows that TU is a fundamental matrix for �(Y ) = BY ; in this 
ase, one


an identify the rings R

A

and R

B

, and V

A

and V

B

are isomorphi
 as Gal(R=k)-modules (de�ned as

modules over the group algebra of Gal(R=k) with 
oeÆ
ients in C(k)). For a large 
lass of di�eren
e

�elds, any system �(Y ) = AY is equivalent to the 
ompanion system of a s
alar equation [7℄.

We 
on
lude this se
tion with an illustration on the ring S of germs of sequen
es over C .

De�nition 1. Consider two elements (a

n

)

n2N

and (b

n

)

n2N

of C

N

(where C � C is a ring). We

de�ne the following equivalen
e relation: (x

n

) � (y

n

) if and only if (x

n

) and (y

n

) only di�er by

a �nite number of terms. We now 
onsider the quotient ring S =

�

C

N

= �

�

where addition and

multipli
ation are de�ned 
omponentwise; an element of this ring is 
alled a germ.

Note that this gives us a natural embedding � of the rational fun
tion ring C (z) into S, where

for F 2 C (z), �(F ) is given as the germ of any (s

n

)

n2N

su
h that s

n

= F (n) for suÆ
iently large n.

De�nition 2. The shift � of S maps �

�

(x

0

; : : : ; x

n

; : : : )

�

to �

�

(x

1

; : : : ; x

n+1

; : : : )

�

.

From now on, the ring C is an algebrai
ally 
losed sub�eld of C and k = �

�

C(z)

�

.

Property 1 ([12℄). Let C � C be an algebrai
ally 
losed �eld. There exists a Pi
ard{Vessiot

extension of the equation �(Y ) = AY over C(z) � S that also lies in S.

Example. Consider k = �

�

C (z)

�

and the equation �(x) = �x. The Pi
ard{Vessiot extension R of k

is the ring generated by k and the sequen
e s = (1;�1; 1;�1; : : : ). Note that if t = s+(1; 1; : : : ) =

(2; 0; 2; : : : ) then t��(t) = 0. The Pi
ard{Vessiot extension therefore has zero divisors and 
annot

be a �eld.
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2. Redu
ibility

The following theorem gives a 
riterion of redu
ibility for operators.

Theorem 2 ([3℄). Consider an operator L 2 P

k

(�) with Pi
ard{Vessiot extension R. The following

statements are equivalent:

1. L is redu
ible (i.e., L = L

1

L

2

in P

k

(�));

2. the solution spa
e V has a stri
t subspa
e W that is stable under the a
tion of the Galois

group G = Gal(R=k);

3. the system �(X) = A

L

X is equivalent to a system with blo
k upper triangular 
ompanion

matrix.

We also 
onsider the 
lass of 
ompletely redu
ible operators.

De�nition 3. Let l
lm stand for least 
ommon left multiple. An operator L 2 P

k

(�) is 
ompletely

redu
ible if there exist L

1

, . . . , L

k

su
h that L = l
lm(L

1

; : : : ; L

k

),

Beware that an irredu
ible operator L is 
ompletely redu
ible be
ause L = l
lm(L).

Property 2 ([3℄). The following statements are equivalent:

1. L is 
ompletely redu
ible;

2. the solution spa
e V is expressible as a dire
t sum V = V

1

� � � � � V

k

where V

i

is a stable

G-module for ea
h i, and the 
orresponding operators are irredu
ible;

3. the system �(X) = AX is equivalent to a system with blo
k diagonal 
ompanion matrix where

ea
h blo
k 
orresponds to an irredu
ible G-module.

3. Liouvillian Solutions

We begin this se
tion by de�ning Liouvillian solutions of an equation in terms of interla
ings

of sequen
es and hypergeometri
 sequen
es. Next we give the expe
ted Galois-theoreti
 
hara
ter-

ization of Liouvillian solutions of a di�eren
e equation, before giving another 
hara
terization in

terms of interla
ings of hypergeometri
 solutions.

De�nition 4. The interla
ing of sequen
es x

1

, . . . , x

l

of C

N

is the sequen
e (x

1

0

; x

2

0

; : : : ; x

l

0

; x

1

1

; : : : ).

This de�nition extends to interla
ing of germs in a natural way.

De�nition 5. Hypergeometri
 sequen
es are germs x 2 S su
h that �(x) = ax for some a 2 k.

De�nition 6. The set L of Liouvillian sequen
es is the smallest subring of S su
h that:

1. 
onstants belong to L, where it is understood that 
 2 C(k) is identi�ed to the germ

(
; 
; : : : ) 2 S;

2. if x is hypergeometri
, x belongs to L;

3. if x is solution of �(x) = x+ a with a 2 L, then x belongs to L;

4. if x belongs to L, the interla
ings of x with zero germs (i.e., the interla
ings of x

1

= � � � =

x

l�1

= 0 and x

l

= x) belongs to L.

Example. Elements of k are hypergeometri
, thus belong to L; on the other hand, the germs (2

n

)

n2N

and (n!)

n2N

are two examples of hypergeometri
, thus Liouvillian, sequen
es that are not in k.

Example (Harmoni
 numbers). If k = C (z) and x =

�

P

n

j=1

1=j

�

n2N

we have

�

1=(n + 1)

�

n2N

=

�

�

1=(z + 1)

�

2 k and �(x) = x+

�

1=(n+ 1)

�

n2N

. The germ �(x) thus belongs to L.

Example. The sequen
e (0; 1; 0; 1; : : : ) is the interla
ing of both 
onstant sequen
es 0 and 1, and

therefore belongs to L.

The following theorem gives the expe
ted Galois-theoreti
 
hara
terization of Liouvillian se-

quen
es.
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Theorem 3 ([7℄). A solution x 2 S of Equation (1) is Liouvillian if and only if the Galois group

of any Pi
ard{Vessiot extension of this equation is solvable.

We 
ome to another 
hara
terization of Liouvillian sequen
es. Let Z be a fundamental system

of �(X) = AX. Then by iteratively applying � to �(Z) = AZ we see that Z is solution of

�

m

(Z) = �

m

�

Z where �

m

�

= �

m�1

(A) : : : A. Let � be the automorphism of C (z) substituting mz

for z. Then � Æ �

m

= � Æ � ; for i from 0 to m � 1, the ith m-se
tion � Æ �

i

(Z) of Z satis�es the

equation �(O) =

�

�

m

�;i

A

�

O in the unknown O, where �

m

�;i

A = � Æ�

i

�

�

m

�

A

�

. This gives the following

theorem and 
orollary.

Theorem 4 ([7℄). Let L be an operator of order n over k. The following statements are equivalent:

1. there is a Liouvillian solution for the equation L(y) = 0;

2. there exists an m less than or equal to n, su
h that the equation L(y) = 0 has a solution that

is the interla
ing of m hypergeometri
 series;

3. there exists an m su
h that, for all i between 0 and m� 1, the equation �(y) = (�

m

�;i

A

L

)(y)

has an hypergeometri
 solution;

4. there exist m and i, with i � m, su
h that the equation �(y) = (�

m

�;i

A

L

)(y) has an hyperge-

ometri
 solution.

Corollary 1 ([7℄). Let L be an operator with 
oeÆ
ients in k. One 
an �nd operators H

1

, . . . , H

t

,

R with 
oeÆ
ients in k su
h that

1. L = RH

t

: : : H

1

;

2. the solution spa
e of ea
h H

i

is spanned by interla
ings of hypergeometri
 sequen
es;

3. any Liouvillian solution of L(y) = 0 is a solution of H

t

: : : H

1

(y) = 0.

4. Eigenrings and their Stru
ture

We 
onsider the non-
ommutative ring A = P

k

(�) and a di�eren
e operator L 2 A with Pi
ard{

Vessiot extension R. Let V be the spa
e of solutions of L in R. We now des
ribe isomorphisms

between three 
lasses of obje
ts:

1. eigenrings, that are rings that essentially 
ontain operators that follow some spe
ial 
ommu-

tation relation with L;

2. endomorphisms of V that 
ommute with the Galois group G = Gal(R=k);

3. A-module homomorphisms of A=AL into A=AL.

Eigenring of L. Given an operator L, the elements U +AL 2 A=AL su
h that there exists U

0

2 A

satisfying LU = U

0

L 
learly form a ring. We 
all it the eigenring E(L) of L. Note that E(L) is

never empty: C(k) is always part of E(L).

G-endomorphisms of the solution spa
e V . For P 2 A, 
onsider the mapping �

P

of R into R

de�ned by �

P

(v) = P � v for all v in R. This C(k)-linear mapping 
learly 
ommutes with G, sin
e

G 
ommutes with �. We are interested in the situation when the mapping �

P

indu
es a linear map

of End

G

V , the algebra of C(k)-linear mappings of V into V that 
ommute with G. Take v in V ;

we have L � v = 0. Consider L � �

P

(v) = LP � v. This is zero if and only if P +AL belongs to E(L),

for then there is P

0

su
h that LP = P

0

L. In this latter 
ase, �

P

indu
es a G-endomorphism of V .

A-linear endomorphisms of A=AL. Consider the C(k)-algebra End

A

(A=AL) of A-linear endomor-

phisms of A=AL, and � an element of this algebra. Re
all that the module A=AL 
an be viewed

as the A-module generated by any \generi
 solution" of L; the linear map � is thus 
ompletely
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des
ribed by the image of the generator 1+AL of A=AL. The map � is well-de�ned as an A-linear

map if and only if the image �(1 +AL) = U +AL abides by the relation

L(U +AL) = L�(1 +AL) = �

�

L(1 +AL)

�

= �(0) = 0;

whi
h implies that there exists U

0

su
h that LU = U

0

L; in other words, U +AL is in the eigenring.

The 
onverse property is proved similarly.

With a 
loser look on the bije
tions above, one gets the following result.

Proposition 1. The three rings E(L), End

G

V , and End

A

(A=AL) are isomorphi
.

The 
lassi
al representation theory for semi-simple modules [6℄ applies to the study of the stru
-

ture of eigenrings, yielding the following proposition and 
orollary.

Proposition 2 ([4℄). For an operator L with Galois group G and spa
e of solutions V , there are

ring isomorphisms between:

1. the eigenring E(L);

2. the endomorphism algebra End

G

V ;

3. the set of matri
es P 2M

n

(k) satisfying A

L

P = �(P )A

L

.

Proposition 3 ([4℄). Let L be a 
ompletely redu
ible operator with solution spa
e V . Then V is

isomorphi
 to a dire
t sum V

n

1

1

� � � � � V

n

l

l

where no V

i

and V

j

are isomorphi
 for i 6= j; the

eigenring E(L) is isomorphi
 to the dire
t sum

L

l

i=1

M

n

i

�

C(k)

�

.

Corollary 2 ([4℄). Let L be a di�eren
e operator with eigenring E(L). Then:

1. L is irredu
ible implies that E(L) is isomorphi
 to C(k);

2. L is 
ompletely redu
ible and E(L) is isomorphi
 to C(k) imply that L is irredu
ible.

5. Algorithms

Eigenring. An algorithm to 
ompute the eigenring of a di�erential operator was given by Singer

[11℄. A similar algorithm 
omputes the eigenring in the di�eren
e 
ase. The method pro
eeds by

undetermined 
oeÆ
ients: an element of the eigenring of an operator L of order n is viewed as a

residue U modulo L; it is thus represented by n undetermined rational fun
tion 
oeÆ
ients. One

then performs the multipli
ation by L on the left, then the Eu
lidean division by L on the right.

This yields a �rst-order linear di�eren
e system in the n unknowns. This system is then solved for

rational fun
tion solutions by algorithms based on Abramov's algorithm [1℄.

1

Linear Di�eren
e Equations of Order 2. We 
onsider the sear
h for Liouvillian solutions

of linear di�eren
e operators in the 
ase of order 2. As follows from the analysis in Se
tion 3,

the sear
h for Liouvillian solutions redu
es to sear
hing for hypergeometri
 solutions of asso
iated

equations. Petkov�sek gave an algorithm for this purpose [8℄, but with exponential 
omplexity.

Bomboy's algorithm pro
eeds by determining hypergeometri
 solutions from the 
omputation of

su

essive eigenrings, so as to derive the shape of the Galois group G little by little, while avoiding

Petkov�sek's algorithm as mu
h as possible.

In order to help to solve for hypergeometri
 solutions, note that ea
h non-trivial element U +AL

of E(L) yields a right fa
tor of L. Indeed, viewed as an element of End

G

V , it ne
essarily has an

eigenvalue � and a 
orresponding eigenve
tor v. The right g
d G of U � � and L 
an be expressed

by a B�ezout relation and satis�es G � v = 0. It is therefore a non-
onstant right-hand fa
tor of L.

1

Note that the same idea was used in the 
ontext of symboli
 summation/integration in Chyzak's work [5℄.



62 Eigenring and Redu
ibility of Di�eren
e Equations

Let x be a hypergeometri
 solution: there exists a 2 C (z) su
h that �(x) = a �x. For all g in the

Galois group G we have

�

�

g(x)

�

= g

�

�(x)

�

= g(a � x) = a � g(x):

Therefore the subspa
e C x is globally invariant under the a
tion of G. This entails that the spa
e

of hypergeometri
 solutions is a G-module, as is the total solution spa
e of L. From this and

Proposition 3, it follows that the eigenring is either not a semi-simple G-module, or has dimension

1, 2, or 4.

If the spa
e of hypergeometri
 solutions is 2-dimensional, G is isomorphi
 to the group of di-

agonal matri
es with two independent non-zero entries, and E(L) has dimension 2 or 4. If there

is only a 1-dimensional spa
e of hypergeometri
 solutions, a 
lassi�
ation of the algebrai
 sub-

groups of GL

2

(C ) then shows that G is isomorphi
 to the group of upper triangular matri
es

�

a b

0 a

�

;

moreover, either the solution spa
e V is semi-simple as G-module and the eigenring E(L) has di-

mension 2, or it is not semi-simple, and in view of E(L) ' End

G

(V ), E(L) 
onsists of matri
es

that 
ommute with all the upper triangular matri
es above, and has dimension 1 or 2. If there are

no hypergeometri
 solutions, the same 
lassi�
ation shows that the Galois group G 
ontains the

spe
ial linear group SL

2

(C ) of matri
es of determinant 1, and E(L) has dimension 1.

If L has a Liouvillian solution, it also has a one that is either hypergeometri
 or the interla
ing of

two hypergeometri
 sequen
es. Bomboy's algorithm to de
ide the existen
e of Liouvillian solutions

and 
ompute a basis of their ve
tor spa
e therefore �rst 
omputes the eigenring E(L). If it is

not trivial (i.e., does not redu
e to homotheties), it provides all hypergeometri
 solutions, then all

Liouvillian solutions; otherwise, the eigenring 
orresponding to the system �

2

�

A

L

is 
omputed and:

1. if it is not trivial, we obtain an hypergeometri
 solution of this system, whi
h gives a solution

of L by interla
ing of hypergeometri
 sequen
es;

2. otherwise, the 
lassi�
ation of algebrai
 groups shows that either L has a unique hypergeo-

metri
 solution, and it is ne
essary to sear
h this solution by Petkov�sek's algorithm, or L has

no hypergeometri
 solutions, and therefore L provedly has no Liouvillian solution.

6. Con
lusion

Finally, the authors of this summary wish to do full justi
e to Petkov�sek, and want to empha-

size that the sear
h for Liouvillian solutions 
an be entirely performed by means of (variants of)

algorithms by Petkov�sek, and with no need of Galois theory.

2

Indeed, Petkov�sek showed in an unpublished work [9℄

3

how to use his algorithm for �nding

hypergeometri
 solutions [8℄ in a re
ursive fashion and in 
ombination with redu
tion of order so

as to produ
e all Alembertian solutions of an operator. (The 
lass of Alembertian sequen
es is

obtained by the same 
losure operations as the Liouvillian 
ase, ex
ept for interla
ings.) This

algorithm 
orresponds to fa
torizations into �rst-order operators H

i

in Corollary 1.

In fa
t, Petkov�sek's hypergeometri
 algorithm extends in a simple way to an algorithm for �nding

the solutions of a re
urren
e

a

0

(n)u

n

+ � � �+ a

m�1

u

n+m�1

+ u

n+m

= 0

that are interla
ings of hypergeometri
 sequen
es:

1. derive a re
urren
e on u

n

in whi
h the index is shifted by multiples of m: sin
e we know that

the C (n)-ve
tor spa
e generated by u

n

is �nite-dimensional with basis (u

n

; u

n+1

; : : : ; u

n+m�1

),

2

This se
tion is the result of stimulating dis
ussions with Bruno Salvy.

3

seemingly subsumed by [2℄,
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the parti
ular shifts u

n

, u

n+m

, u

n+2m

, . . . rewrite onto this basis, and a linear dependen
y


an be found by Gaussian elimination;

2. for ea
h i between 0 and m� 1, derive a re
urren
e on v

(i)

p

= u

mp+i

by substituting mp+ i

for n in the obtained re
urren
e, and solve it for hypergeometri
 solutions;

3. return the interla
ing of the sequen
es v

(0)

p

, v

(1)

p

, . . . , v

(m�1)

p

.

A variant algorithm (
orresponding to Steps 1. and 2. above) is derived in [10℄ by a di�erent

approa
h.

Corollary 1, or equivalently a dire
t analysis mimi
king that in [9℄, 
an now be used to derive

an algorithm for �nding all Liouvillian solutions of a re
urren
e. This algorithm is essentially

Petkov�sek's algorithm for Alembertian solutions where sear
hes for hypergeometri
 solutions|

and �rst-order right-hand fa
tors|is repla
ed with sear
hes for interla
ings of hypergeometri


solutions|and higher-order right-hand fa
tors. The main di�eren
e is that redu
tion of order is

simultaneously performed by as many independent parti
ular solutions as the order of the interla
-

ings, instead of by just 1.

One 
an thus view Bomboy's 
ontribution as providing a variant algorithm in terms of eigenrings.

A 
omplexity of both approa
hes still has to be performed so as to 
ompare them 
on
lusively.
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