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Abstract: We expand on 1deas of Balser, Lutz, and Schiifke by
showing how coetficients and integrals involved 1n calculations
related to the analytic continuation of Borel transtorms obey
simple recurrences that lead to efficient numerical computations.
This work 1s a follow-up to a talk by Donald Lutz at our

- Algornthms seminar, and summarized in [Durand].

1. Borel-Laplace resummation and Euler
acceleration

Starting with a linear differential equation with polynomial
coefficients satisfied by a formal power series

L=}
X = ZJ:J]"""

n=0
1t 1s possible to compute a differential equation satisfied by the

Borel transform of x . We assume that x~ 1s Gevrey 1, which
means that x, <A ¢ n! for some constants A and ¢. so that the

Borel transform of x defined by
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o il

y(z)= Z =

1
=0 mn.

15 convergent on some neighbourhood of the ornigin. The Borel
transform has an "inverse”, the Laplace transform defined by

4

Laplace(v)=] e Uy(:)dr.

0
Provided this integral converges, the function it defines has z x~
for expansion as 7 — 00 +. Then applying the change of varnable
t= 0 o) to the integral computes the acceleration "a la Euler”
[Lutz et al.]
-]
~ < J

zx=| e y(o(y(n))ad.

| =

We note

: .
y(¢(z))=zd,,z”ﬂnd qlz)= E( ) dr,

=1
0

where 15 the functional inverse of the rational function ¢. In

terms of formal power series, the product z x* equals the Taylor
expansion of
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Z qn d.r] ®
n=10
where the integrals g, are independent of x.

This process 1s illustrated in the present worksheet using a simple
mapping function ¢ on the double confluent Heun equation. The
Heun equation 1s the genenc differential equation with four
regular singular points located at (0, 1, ¢, and oo, see [DuLoR192].
The double confluent Heun equation 1s obtained by letting the
singularity located at ¢ tend to the one located at ==, and the
singulanty located at 1 tend to (). The equation obtained then has
two 1regular

singular points located at 0 and oo. The example we study 1s the
- double confluent Heun equation in the form

=

d
f(z) ]+ (z+0z7+a) [; f'{:}]

S

. . 2
> heun_infp:=7"| —
dz dz

2 .
[211:3[5,+|:-::3+u‘:—2“,f:+2n:[j_,—n.]f[:]

_|_
27z

| > readlib(gfun):

Since the point of interest 1s infinity and the gfun package works

_ at the origin, we first change the vanable (using gfun):

> heunp:=gfunl[algebraicsubs] (heun_infp,z*f-1
L(z));

heunp := (=2 7 o3, roz - o z+2yz-2af, —w)f(z)
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. dJ o’
+(27+27 EI+EEEI][a—f(E)J—Ef [—J’(z]]
d dz”

- We concentrate on the following set of special values for the
. parameters:

1 I l
> paramform = |:El'. ==1.p_, = B, === ;]

' Substitution of these parameters in the differential equation gives
| > heun:=subs (paramform, heunp) ;

(5o 2-2-20 (300
heun = —§¢+2 Hz)+ (-2 -27-=-2z2)| —1f(z2)

dz
aE
-27 [—3 fiz ]
o

' From this equation, we obtain a recurrence equation for the

. Taylor senes coetficients

| » recheunseries:=gfun[diffeqgtorec] (heun, £ (z)
r(n));

recheunseries ;= |
—b6nun)y+{(=7-12n _{3”3} wn+l)+(6-6n)uin+2),
u(0) =0}

' This recurrence yields an efficient procedure to evaluate the

- coethicients recursively:

> heundiv:=gfun[rectoproc] (recheunseries
union {u{l)=1/2},u{n), remember);

heundiv := proci(n)
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option remember:;

— ( 12#procname(n — 2 ) — T#+procnamei{n — 1) +{(
—O#procname(n — 2 ) + 12#procname{n — 1)

— OFprocname(n — 1 prn e ) (6 — 6%n )

end
#(l)=1/2
#(0)=0

' From this procedure, the divergence is clear from the growth of
- the first coetficients:

[ =
|

*

2

seq (heundiv(i),i=1..15);
-7 139 -6637 598753 -B6588791 18250889947

12 1447 25927 62208~ 1866240 = 67184640
-5271793461229 285349416100951 -960609947353470343

2821754880 = 19349176320 = 7313988648960
571502026077983064331 -412023777148221194533837

438839318937600 28963395049881600
353911104407615639043543169
2085364443591475200
-357083839712993494956732905527
162658426600135065600
418134484182977410016133713165083
13663307834411345510400

Page 5



' The generating function associated with the sequence heundivin )
1s divergent. It is possible here to approach the corresponding
function using summation to the least term. This method consists
in summing the terms heundiv(n) 7" up to the smallest one. Under
certain conditions that are fulfilled here, the total differs from the
function by the value of this smallest term.
> calculheundiv := proc(heundiv, z)
local total, previous, last, n;
previous := heundiv( 1 J#z;
total .= previous;
last := heundiv( 2 )#z"2:
for n from 3 while abs( last) < abs( previous) do
total .= rotal + last;
previous = last;
last := heundiv(n )*z"n
od:
userinfol 1, “heundiv’, n, last):
evalll total )

. end
> plot('calculheundiv’ (heundiv, z),z=0..0.3);
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0.08
0.06
0.04 ’

0.02

0 0.020.040.060.08 0.1 0.120140.160.18 0.2 0.220.240.260.28 0.3
z

As z tends to infimity, the imprecision of this summation grows
- quickly.

2. Differential equation satisfied by the
‘Borel transform
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' The class of solutions of linear differential equations enjoys many
closure properties which are implemented 1n the gfun package for
the case of equations with polynomial coefficients. One of them
15 closure under Borel transtorm. Here 1s the differential equation
satisfied by the Borel transform of the divergent solution of the

Heun equation:
| > bdeqgp:=op(select(has,gfun[borel] (heunp, f(z
), "diffeq’ ), 2));

. d
bdegp =(2op,—o)flz)+(2za+a +2-27) (E: f(E]]

a] . a.?
4{63+2uﬁr—3u]agﬂz]+{25—23u]§3ﬂz]

o o

and the equation specialized at the parameters
| > bdeg:=subs (paramform,bdeqgp) :

From this follows the recurrence satistied by the Taylor

- coethicients of the Borel transtorm:
> collect (gfun[diffegtorec] (bdeqgp,f(z),a(n))
a, factor) ;

(2P, +1+2n)a(n)

+(n+1)(2n°+4n+a’+2-2y)a(n+1)
—a(n+1)(n+2)(2n-2P,+3)a(n+2)
' Check:

> 115:=gfun[rectoproc] ({subs(paramform, %), a |
0)=0,a(l)=1/2},a(n),list) (15);
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1 -7 139 -6637 598753 -86588791
=] 0 2" 24" 864" 62208 7464960° 1343692800
18250889947 -5271793461229  285349416100951
338610585600 113773156761600° 7021429103001600°
-960609947353470343  571502026077983064331
26541002009346048000° 17517061326168391680000°
-412023777148221194533837
13873512570325366210560000°
353911104407615639043543169
12985607765824542773084 160000
-357083839712993494956732905527
14180283680280400708207902720000°
418134484182977410016133713165083

1T7867157437153304892341957427200000

' This list corresponds to the list above, the kth element being

I
scaled by ;

' This differential equation and this recurrence can be used to
compute (but not necessarily fast) the analytic continuation of the
Borel transform,

3. The coefficients of the composition
with an algebraic function satisfy a linear
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recurrence

' This is another closure property of solutions of linear differential
equation that we exploit here. The coefficients 4, are defined by

y(0(2) =) d, 2"

n=0
where ¢ 1s a rational function and y 1s defined by
oo _n
Y-
y(z)= o
g N

|
(1—1)

On the example of the Heun equation, with ¢ = — 1 we

obtain

> oeqi=(1-2) (f+1)—1
> dneqgp:=gfunl[algebraicsubs] (bdeqgp,eq, f(z));

dnegp=(4u-8uf ) fz)+(4+4y+060p, +482
— 602670 —9a+60 z— 1277 — 198 2
+600 B, +12Y7 +4697 a0+ 83z 0+ 4067 —300 P, z

—495 A a+309 7 - 105 a+2 0 2+ 157 o —465 7

+3037 105" +157 -60 07’ B, -4y -6 07 B,
, (9 .
+3{}z4[::[5| —Eu‘][a—f{z]J+(—2uB|— 12 24162 o 7~
il

+3004907 =300z B, -3847 a-36z0-2767
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+120B, 245407 00— 4687 o+ 246" a+9 0 +9 7’
—727 a+4537 —4327 +240° =727 +40 o 7 B,

aE
+12a7B,-307 a B, -2az’ B,][;f‘(z]]ﬂi—]ﬁ oz

'
A9 42704247 917w+ 1057 00— 772
+7-9 -9 +3577 a-61 7 +857-702°4+34 7

a_?
+z“ﬂ)[jf'[z)]

-—

iy

" and the equation when the parameters are specialized:
| > dneg:=gfun[algebraicsubs] (bdeqg,eq, f(z));

j 9
dneg:==(9z7 -367 +61 7 — 5{}z+4](a— ﬂ:z]J
Z

3 4 5 2 J
+(14l 7 =752 + 157 - 123 7+482-6) ;ﬂ:z]

4

a.?
+(427-487 -187 43 %+ z?f—ﬁg)[;f{g)]
. z
: The linear recurrence satisfied by the d, follows directly
> dnRec:=op(select (has,gfun[diffegtorec] (dne
q,f(z),aln)),n));
dnRec ::({in3+3n3}ﬂ(n}

+(-93n-36-T75nm —18n")a(n+1)
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+(568n+404+267n" +42n Ya(n+2)
+(=1193n-1176 -411 n* =48’y a(n + 3)
+(1042 0 + 1240+ 291 n* + 27 n Y a(n + 4)

+ (=78 n" —336n—480—-6m ) a(n+5)

4. The integrals g, satisfy a linear

recurrence
The property above does not depend on the specific divergent

series ¥ that one is resumming. This allows one to precompute
efficiently the integrals g ( z ) given the mapping function §.
Indeed the general theory of holonomic function has recently led
to symbolic summation and integration algorithms that turn out to
apply to the integral representation of g (7). The goal of these
algorithms 1s to derive (systems of) linear functional equations,
differential or difference, satisfied by a sum or an integral. We
now proceed to use a prototypical implementation of them in the
package Mgfun to obtain a recurrence on the g,(z). Then, we
prove a theorem that by-passes the general theory of holonomic
functions, and recover the same recurrence in a more direct way,

&l (This section uses a version of Mgfun
that is not distributed yet.)

> readlib (Mgfun):
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> ‘= -1
’ (1-1)

Py
[}

SRt
> Fi=e ':“{—q;]

dt

> cf := Mgfun ( F, n::shift, r:diff)

ct:=[(z+nz) Hnt)y+(3z+3nz) Hn+21)

creative_telescoping

+{(—nz—z) Hin+3,1)+(3nz-3z-2) Hn+1.1),
2t (=143t=30+r) fin )]
> hin](t):=%[1];
hi(t)=(z+nz) Hnt)+(3z4+3nz) _tn+2,1)
+(-nz-z2) fin+3.0)+(Bnz-3z-2) fin+1.1)
> Hln](t) :=%%[2];
H(t)y=zt(=143t=3r+r)_f(n.1)
The meaning of the previous computation 1s that the
differential equation

d

hn(r]+(£h’n(r]]={}

holds. This can be viewed as a differential-difference relation
satistied by the integrand f ( z, r). Now, integrating between

—1 and 1 returns a non-homogeneous differential equation in
the integral

|
q,(z)= J‘f,,(za 1) dt,
-1
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namely

|
J hitydt+H(1)-H(-1)=0,
-1
where the integral rewrites in terms of g ( z) as
> Int{(h[n](t),t=-1..1)=eval (subs (_f=unapp
ly(gln] (z),n,t),ct[1]));

1
J[z+nz]_f{n,r]+[3 z+3nz) fin+2,1)
-1

+(—nz—z) Hin+3.1)+{(-3nz-3z-2) Hin+1l.1)dt
=(z+nz)glz)+(3z+3nz)q, ,(2)

+(-nz-2)q,,5(2)+(3nz-32-2)q,,,(2)

As to the non-homogeneous part H (1) — H (-1), we readily
evaluate 1t, verifying that it 1s 0 by chance.

> H[n] (t) :=factor (eval (subs (_f=unapplyv (F,
n,t),H{n](t))));

H()=zt(=1+1)f
> assume (z>0); assume(n, integer);
factor (simplify(limit (op(2,%),t=1)-1imi
t(op(2,%),t==1))):
non hom:=subs({[z="z',n="n"],%); z:="z":
n:="n’:
non_ _hom =2
Consequently, we have obtained the following recurrence on
the integrals g ( z).
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> collect (eval (subs (_f=unapply(g[n] {(z),n,
t),ct[l])),q,factor)=0;

{_BH‘:_B:—_E]{E]+I{:]_;{H+]]q.l:|+_'i{:-]

+3z(n+l)g, A2)+z(n+1)g(z)=0
> collect (subs(n=n-4,%),q,factor);

~z(n=3)g,_ (z)+3z(n-3)q,_-2)
+z(n=3)q, (2)+(3nz+9z-2)gq, 4(2)=0

More generally, a differential equation with respect to z, or
even a system of mixed differential-difference equations
could be obtained by the same algorithms.
The following result had not been noticed by Lutz et al.. but
might prove useful in numerical computations.

Theorem. With the above notations, let

K
ZF’J” yaln+ k)=0
k=0
be the linear recurrence satisfied by the Taylor coefficients at the
origin of a power series solution of the first-order linear
differential equation

s 9
3 i a;azq’[” a{fb[r) .
arfﬂrl— 3 T (1).
a—¢'(r}
I

Then the integrals g, satisty the recurrence
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K
2 pi-n) g, (2)=0
k=0
Proof. The differential equation in the statement above is
satisfied by the function

ST J

€ — Ol u
o
Since the integrals g (7 ) rewrite as
ol
Ol i)
) (2
e u | —0(u) |du,
du
"0
by integration by parts and differentiation under the integral sign,

 they satisfy the announced linear recurrence.
The following one-line procedure computes a recurrence on the

integral
4

g(z)=| e y(r)di

0
where W 15 the functional inverse of a rational function ¢. It takes

as input ¢ 1), ¢, g. n, z where all the arguments except the first one
are symbols that appear in the output linear recurrence relating

the g,(z).
> recgnofz = proc(
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O::ratpoly, t:name, g::name, n.:name, 7.:name)
local gf, a:
op( select( has, eval( subs(n = —n,
a=subs(_A =g, procix) A{-x—1)end),
gfun| diffeqiorec | it gt(r), 1)
+ (ditt( @, 1)/ z = dift( @, 1, 1)/ dAfE( D, £ ) ygh(r). gl 1),
a(n)))).n))
end
|

2
| (1=1)
> gnRec:=recgnofz(l/(1-t)"2-1,t,q,n,z);

Example: ¢ = -1

gnRec:={-nz+3z)gn—=1)+(-9z+3nz)gin-2)
+(3nz+9z-2)gn=-3)+(nz-3z)qln—-4)

| We have obtained the same recurrence as when using Mofun,

> gnRec:=applyop({factor, [2,2],applvop(collec
t, [2,1],readlib(isclate) (subs (n=n+1, gnRec)
rg(n)),g,normal));

gnRec:=q(n)=—={{6z-3nz)gin-1)
+(Oz+3nz+)gn-2)+(2z—-nz)gln=3)11{
z(n=12))

5. Numerical experiments

We know the recurrence followed by the g, and we now have to
compute imitial conditions. By applying the change of variable
t=0(u), we obtain
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el
qg,= | e w | —0(u) |du

o

- which gives the following initial condition
> phi:=subs(z=u,scolveleq, f));

o (=2+4+u)

C (u—1Y

> assume(z>0):
[ > g0:=int (exp(-phi/z)*diff (phi,u),u =0..1);

.:=- gl :=subs(z="z",qg0); z:="z":

gl =z
' Note that this initial value is a posteriori obvious.
Thus we now have both recurrence and imitial condition. The
solution g, to the recurrence equation gnRec 1s a dominated
solution, which means that any numerical error grows
exponentially. To avoid this, we run the recurrence backwards
from any non trivial initial conditions. The dominating solution
disappears quickly, and we obtain the solution g, because when
the recurrence 1s run backwards 1t becomes a dominating solution.
We therefore add a parameter NN indicating from where we start
running backwards.
| > eval (collect (op(2,isolate (subs (n=n+3, gnRec
)ra(n))),q,normal),g=proc(n) qi(n,z,NN)
end) ;
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qgin+3, 2 NN)-3qin+ 2 2 NN)
(3z+3nz+2)g(n+1, z, NN)

z{n+1)

+

> gnprocrev = subs(_REC =%, g = gnprocrev, procin, 7, NN)
option remember:;
if n = NN then 0
elif n=NN -1 then0
elif n = NN - 2 then |
else REC
fi
end )

gnprocrev ;= procin, 7, NN)
option remember,
if n = NN then 0
elifn = NN — 1 then
elif n = NN - 2 then 1
else gnprocrevin + 3, z, NN} — 3#qnprocrevin + 2, z, NN)
+((F3#z 4+ F3#n+z + 2 peqnprocrevin+ 1, 2 NN ) )/ (
zi(n+1))
fi

cend

Here is a procedure to compute g, numerically.
> ‘evalf/g/digits*:=0:
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> evalf/g := procin, z, NN)
eglobal evall/g, ‘evalf/g/digits";
option remember;
if “evalf/g/digits* < Digits then
‘evalf/g/digits .= Digits;
evalf/g = subsop(4 = NULL, op( evalfiq))
fi:
if n = NN then 0
elif n = NN -1 then 0
elif n = NN - 2 then 1.0
else procname(n + 3, 2 NN ) + (2 + 3#7 4+ 3&pkn
procname(n+ 1, 2. NN) [ (z¥(n+ 1))
— 3¥procnamei{n + 2, 7, NN)
fi
end
> dnRec =
_ ‘gfundmmmm_( ldneqg, DU D) =1L H0)=0},f(z), aln))
> dnproc:=gfun[rectoproc] (dnRec,a(n), remembe
_ r):
Here is a procedure to compute d, numerically.
> ‘evalf/d/digits‘:=0:
> evalf/d := procin)
global evalf/d, ‘evalfid/digits*;
option remember;
if 5 < n then
if ‘evalf/d/digits* < Digits then
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‘evalf/d/digits” .= Digits;
evalf/d := subsop(4 = NULL, op( evalf/d))

fi

evalf{ — (= 225*procname(n — 3 )
— TO#procname(n — 1)
+ 804#procname(n — 4
— 101 I*#procname(n — 3)
+ S1d#procname(n —2) + (
165#procname(n — 5 ) — 693+procname(n — 4)
+ 1048+procname(n — 3)
— 683#procname(n —2)
+ 157#procname(n — 1)+ (
— 39#procname(n — 3 )+ 195*procname(n —4)
— 363*procname(n — 3)
+ 309+procname(n — 2
— 1l4#procname({n — 1)+ {
— 18*procname(n — 4 ) + 42+procname(n — 3)
— d8+procname(n — 2 ) + 3*procname(n —3)
+ 27#procname(n — 1) yn )#n jEn )/ (
(=6 4+ (12 —6%n)*n)*n))

elif n = 0 then 0

elif n =1 then 1

elif n = 2 then evalf(1/3)

elif n = 3 then evalf(— 23/ 108)
else evalf(— 2749 / 3888)

fi
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end
' Finally, the following procedure computes values of the double

confluent Heun function as follows. First, an upper value of NN 1s
selected and 2 NN 1s used 1n the backward recurrence to compute
the scaling to use for g (z) in view of the actual imtial condition.
Then the summation 1s performed up to the NNth term. If the
relative error of the last term 1s larger than 1 Peits }, then NN 1s
doubled and the computation starts again. Note that option

remember has been used in gnprocrev so as to avold duplicating
- some of the work,
> time (evalf(g(0,10.2,3000),21));

_ 399
> valheun:=subs (_g0=qgq0,proc(z)
local tot,i,N,HNN,lambda, st,D;

MN:=10;
st:=time () ;
do

N:=floor (2*N) ;
NN:=N+flocor (sgqrt (N) ) +10;
D:=Digits+3*1loglD(N) +floor(log(N));
lambda:=_g0/evalf(g(0,z,NN),D);

tot:=add(evalf (d(1i),D) *evalf (g(i,2z,NN),D),
1=1..N)*lambda;
if
abs (evalf (d(N),D) *evalf (g (N, z, NN) ,D) *1lambd
a)<abs(teot)*10” (-Digits) then break fi;
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od ;

userinfo(l,valheun, "N=",N,"z=",1.0*%z, "time
:",time ()-st, "digits:",D});

tot;
end) :

- We print information on the number of terms and time used for
each point 1n a plot of the solution from 0 to 15:

: > infolevel

werlhienn

=1

> plot (valheun,0..50);

valheun: "HN="
.141 "digits:™
valheun: "N="
L2710 "digits:™
valheun: "N="
.979 "digits:™
valheun: "N="
.571 "digits:™
valheun: "HN="
L0299 "digits:™
valheun: "HN="
1.221 "digits: ™
valheun: "HN="
1.080 "digits:"
valheun: "N="
1.129 "digits:"
valheun: "N="
1.240 "digits:"
valheun: "N="
1.201 "digits:"™
valheun: "HN="
2.520 "digits: "™
valheun: "HN="
2.369 "digits: ™

g0
17
160
21
320
21
320
21
320
21
640
22
640
22
640
22
640
22
640
22
1280
26
1280
26

"o

"o

"N

"o
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1.08%857705

Z2.038137074

3.1045786397

4,.178084772

5.24645%0950

6.237040242

T.2626966509

H.323431552

9.3807865534

10.46836305

11.42631552

12.50475163

"Lime:™

"Eime:"

Iltlme « 1

"time: ™

"time ™

"time ™

"tlI’[’lE « 1

"Eime:"

"time: "

"time: ™

"Lime:™

"Lime:™



valheun:
2.601
valheun:
2.750
valheun:
2.800
valheun:
3.110
valheun:
1.219
valheun:
3.340
valheun:
T.290
valheun:
B.091
valheun:
B.440
valheun:
9.180
valheun:
9.710
valheun:
10.209
valheun:
10.941
valheun:
11.225
valheun:
11.5961
valheun:
12.589
valheun:
12.810
valheun:

npg=m
"digits:"
npy="
"digits:"
np=n
"digits:"
npg="
"digits:"
npg="
"digits:"
npg=m
"digits:"
npg=m
"digits:"
npy="
"digits:"
np=n
"digits:"
npg="
"digits:"
npg="
"digits:"
npg=m
"digits:
npg=m
"digits:
npg="
"digits:
np="
"digits:
npg="
"digits:
npg="
"digits:
npg=m

1280
26
1280
26
1280
2B
1280
26
1280
26
1280
26
2560
26
2560
26
2560
2B
2560
26
2560
26
2560

26

2560

26

2560

26

2560

26

2560

26

2560

26

2560

13.58761188

14.63114838

15.578775940%

16.70560455

17.66017317

18.77056341

1%.753446592

20.83182591

21 .858865773

22,93013074

23.91404071

24 97532053

2607769200

27.037309e0

2B.07372290

29.14443926

30.159192632

31.20542392

"Lime:™

"Lime:™

"Eime:™

Ilt lmE « 10

"time: ™

"Lime:™

"Lime:™

"Lime:™

"Eime:™

"time:™

"time: ™

"Lime:™

"Lime:™

Ilt lITlE « 10

"Eime:™

"time:™

Ilt lmE « 1B

"Lime:™



13.741
valheun:
20.060
valheun:
12.880
valheun:
15.039
valheun:
17.241
valheun:
19.520
valheun:
21.760
valheun:
24,110
valheun:
26.450
valheun:
28.740
valheun:
31.479
valheun:
33.841
valheun:
16.099
valheun:
19.000
valheun:
40.981
valheun:
43 .800
valheun:
45.850
valheun:
48 .260

"digits:" = 26
"N=" 5120
"digits:" 27
"N=" 5120
"digits:™ 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" 27
"N=" 5120
"digits:™ 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" 27
"N=" 5120
"digits:™ 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" = 27
"N=" 5120
"digits:" = 27
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32.33074020

33.34188693

34 ,4215018%

35.39975350

36.465932464

37.47567008

38.52759104

39.55603605

40, 63272287

41 . 66965985

42 .73015878

43.78183659

44 ,74821926

45,.85580287

46 .84643H85

47 .90266342

48.91360511

"Lime:™

Ilt lITlE « 00

"time:™

"time: ™

"Lime:™

"Lime:™

"Lime:™

"Eime:™

"time:™

"time: ™

"Lime:™

"Lime:™

"Lime:™

"Eime:™

Ilt lmE « 10

"time: ™

"Lime:™



valheun: "N=" 5120 fz=" 20.0 "Lime:" 50.6
B9 "digits: ™ 27

valheun: "N=" 1e0 fz=" 1.5635073052 "Lime:"
1.450 "digits:" 21

1001 /
B0 A
60 _,.-";

4ﬂ§ ;ff

201 e

' This curve is to be contrasted with the irregular plot we got from
_ the same series using summation to the least term.
Sections 1 and 2 of this worksheet only depend on the Heun

Page 26



differential equation, and can easily be adapted to any linear
differential equation. Sections 3 and 4 compute the recurrences
satisfied by the coefhicients g, and d ., which depend on the choice
of the mapping function ¢ only for g, and on the differential
equation as well for d . Section 5 details the numerical

computations. It depends on ¢ and on the recurrences found in the
previous sections. This worksheet can be adapted to another
mapping function and to another linear differential equation,

References

[Lutz et al.] On the convergence of Borel approximants, by W.
Balser, D. A. Lutz and R. 5chiitke, (2000). Prepnint.
[DuLoRi92] Kovacic’s Algorithm and Its Application to Some
Families of Special Functions, by Anne Duval and Michele
Loday-Richaud, Applicable Algebra in Engineering,
Communication and Computing, (1992), vol. 3, p. 211-246.
[Durand] On the convergence of Borel approximants [summary
of a talk by Donald Lutz], by Marianne Durand, (2001). To
appear 1n: Algorithms Seminar, 2000-2001, INRIA Research

. Report.

Page27



