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On Research Gate, Feng Qi asked! for a proof of the identity
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Here, we define this sequence for 0 < ¢ < m — 1, implying that n — ¢ + 1 does
not vanish and is thus well defined.
Introduce
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and observe
fm,l = 9mt+1 — Gm,¢, (3)

provided all three terms are well defined. In view of Equation (2), gm, is
defined whenever d,, ¢ # 0. To analyze this constraint, setting n = 2m + p
and m = £ 4+ 1 + ¢ for nonnegative p and q yields
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which is then positive unless p = ¢ = 0. Consequently, g, ¢ is well defined
whenever 0 < £ < m — 1, and Equation (3) holds whenever 0 < ¢ < m — 2.

For m = 1, the sum in Equation (1) reduces to f1 ¢, which is seen to be zero.
We continue with m > 2. Isolating the term f, ,,—1 in the sum in Equation (1)
and evaluating the rest as a telescoping sum delivers
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The rational function g, ¢/ fm. ¢ is zero when ¢ = 0 and is —1 when £ = m — 1,
so that the three right-hand terms in Equation 4 add up to zero.
We have thus proved Equation (1).



