
OreModules:

A symbolic package for the study of

multidimensional linear systems

F. Chyzak ∗, A. Quadrat †, D. Robertz ‡

Keywords Multidimensional linear systems, effective algorithms, symbolic computation, Ore alge-
bras, Gröbner bases, parametrizations, controllability, autonomous elements, flatness, π-freeness.

1 Introduction

In the seventies, the wish to study transfer matrices of time-invariant finite-dimensional linear systems
has led to the development of the polynomial approach in which the canonical forms of matrices of
univariate polynomials were studied (e.g., Hermite and Smith forms, invariant factors, primeness).

In the middle of the seventies, while generalizing linear systems defined by ordinary differential
equations (ODEs) to differential time-delay systems, ordinary differential equations with parameters,
2-D and 3-D filters, systems over a ring. . . , one had to face the case of systems described by means of
matrices with entries in multivariate commutative polynomial rings. All these new systems were called
2-D or 3-D systems and, more generally, n-D systems or multidimensional linear systems with constant
coefficients. It was quickly realized that no canonical forms such as Hermite, Smith and Popov forms
existed for polynomial matrices with two and three variables (i.e., with entries in k[x1, x2, x3], where
k is a field such as Q, R, C). Moreover, more than only one type of primeness was needed in order to
classify n-D systems (e.g., factor/minor/zero primeness [23]). Hence, it is not very much surprising
that, in the eighties, Gröbner bases were introduced in the study of multidimensional linear systems
with constant coefficients. A Gröbner basis defines normal forms for polynomials with respect to a
certain ordering of the variables xi [1]. Given a Gröbner basis, there is a simple algorithm to compute
these normal forms effectively. In many ways, the computation of these normal forms can be seen as
an extension of the Gaussian elimination algorithm to commutative polynomial rings.

In a pioneering work, R. E. Kalman developed a module-theoretic approach to time-invariant or-
dinary differential linear systems. In the nineties, U. Oberst developed the idea of studying multi-
dimensional linear systems with constant coefficients by means of module theory and Gröbner bases
[12]. In particular, using module theory, he showed how to intrinsically reformulate and generalize the
different concepts of primeness used for 2-D or 3-D systems. Moreover, using some ideas of B. Mal-
grange, U. Oberst was able to develop a perfect duality between his module-theoretic approach to
multidimensional linear systems and the behavioural approach developed by J. C. Willems and his
school (see [14, 20] and the references therein). Since the end of the nineties, a behavioural approach
to multidimensional linear systems has been successfully developed in the literature. See [13, 22, 23]
for more details and references therein.

∗INRIA Rocquencourt, ALGO project, Domaine de Voluceau BP 105, 78153 Le Chesnay cedex, France. Email:
frederic.chyzak@inria.fr.

†INRIA Sophia Antipolis, CAFE project, 2004, Route des Lucioles BP 93, 06902 Sophia Antipolis cedex, France.
Email: Alban.Quadrat@sophia.inria.fr.

‡Lehrstuhl B für Mathematik RWTH - Aachen, Templergraben 64, 52056 Aachen, Germany. Email:
daniel@momo.math.rwth-aachen.de.

1

Also using module theory, the concepts of flatness and π-freeness were introduced in [8, 10] for
differential time-delay linear systems with constant coefficients. The detection of such structural
properties is important for the study of motion planning as it is shown in [10, 11] on different concrete
examples. Let us notice that the problem of flatness is also related to the problem of computing an
observable image representation of a multidimensional linear systems in the behavioural approach.

In the same years as [12], J.-F. Pommaret studied under-determined systems of partial differen-
tial equations (PDEs) coming from mathematical physics and differential geometry (e.g., elasticity,
electromagnetism, hydrodynamics, general relativity). In particular, he showed how his mathematical
approach was a generalization of U. Oberst’s module-theoretic approach for multidimensional (linear)
systems with varying coefficients. See [15] for more details and references therein. In particular, the
problem of checking whether or not a multidimensional linear system described by PDEs with varying
coefficients can be formally parametrized was solved using a differential operator approach. Moreover,
the work of M. Fliess on linear systems defined by ODEs with variable coefficients also illustrated the
need to pass from the commutative polynomial viewpoint to the differential operators one.

In the seventies, algebraic analysis was developed in order to study general linear systems of PDEs
with variable coefficients by means of differential module theory, algebraic geometry, homological
algebra [21] and functional analysis. Recently, algebraic analysis has been introduced in [18] for
the study of multidimensional linear systems defined by PDEs with varying coefficients. In particular,
using the formal theories of PDEs (Spencer’s, Riquier-Janet’s theories), it was shown in [15, 16, 17, 18]
how some structural properties of such systems could be checked by means of effective algorithms.

Finally, using the homological algebra approach developed in [18], we have recently shown in [5, 6]
how all the previous results could be generalized to most of the classes of multidimensional linear
systems with varying coefficients encountered in the literature (e.g., ODEs, PDEs, differential time-
delay systems, multidimensional discrete systems, partial differential delay systems, multidimensional
convolutional codes). In order to do that, the concept of multidimensional linear systems over Ore
algebras was introduced. An Ore algebra is a ring of non-commutative polynomials in functional
operators with polynomial or rational coefficients [4]. The characterization of structural properties
such as controllability, formal parametrizability and flatness were obtained. In particular, the following
methodology for the study of the multidimensional linear systems over Ore algebras was developed:

1. A linear system Σ is defined by means of a (q × p)-matrix R with entries in an Ore algebra
D, i.e., Σ corresponds to the system of equations Rz = 0, where z is composed of the system
variables.

2. Using the matrix R, we define the left D-module M = D1×p/D1×q R.

3. We develop a dictionary between the structural properties of the system Σ and the properties
of the left D-module M . Then, we use module theory in order to classify the properties of the
left D-module M .

4. Homological algebra permits to check these properties of the left D-module M .

5. Using Gröbner bases over Ore algebras (i.e., over non-commutative polynomial rings), we develop
some effective algorithms which check the properties of the left D-module M , and thus, of the
system Σ.

6. Implementations of these algorithms in computer algebra systems.

Hence, using the recent progress of Gröbner bases over Ore algebras (i.e., over some classes of non-
commutative polynomial rings) [4], we are now in position to effectively test the algebraic properties of
general multidimensional linear systems (e.g., controllability, observability, flatness, poles and zeros,
equivalences), to compute different types of parametrizations and to propose some feedback laws
(motion planning, tracking, poles placement, optimal controllers, diophantine equations). Finally, let
us point out that the link between the Ore algebra-theoretic approach to multidimensional systems
and the behavioural one, pioneered by J.C. Willems [14], has not been studied in details yet.

2

The purpose of this paper is to give an introduction to the new package OreModules for Maple
which offers symbolic methods to investigate the structural properties of multidimensional linear sys-
tems over Ore algebras. The advantage of describing these properties in the language of homological
algebra carries over to the implementation of OreModules: up to the choice of the domain of oper-
ators which occur in a given system, all algorithms are stated and implemented in sufficient generality
such that ODEs, PDEs, differential time-delay systems, discrete systems. . . are covered at the same
time. The cases of linear systems with constant, polynomial or rational coefficients can be coped
with. Hence, OreModules is the first implementation of homological methods in this generality
with regard to applications in control theory and engineering sciences.

2 Multidimensional linear systems over Ore algebras

The mathematical framework of this paper is built on Ore algebras which are rings of non-commutative
polynomials that represent linear functional operators in a natural way.

Definition 1. 1. [9] Let A be an integral domain (i.e., a b = 0, a 6= 0 ⇒ b = 0). The skew
polynomial ring A[∂;σ, δ] is the non-commutative ring consisting of all polynomials in ∂ with
coefficients in A obeying the commutation rule

∀ a ∈ A, ∂ a = σ(a) ∂ + δ(a), (1)

where σ is a k-algebra endomorphism of A, namely σ : A→ A satisfies

σ(1) = 1, ∀ a, b ∈ A, σ(a+ b) = σ(a) + σ(b), σ(a b) = σ(a)σ(b),

and δ is a σ-derivation of A, namely δ : A→ A satisfies:

∀ a, b ∈ A, δ(a+ b) = δ(a) + δ(b), δ(a b) = σ(a) δ(b) + δ(a) b.

2. [4] Let A = k[x1, . . . , xn] be a commutative polynomial ring over a field k (if n = 0 then A = k).
The skew polynomial ring D = A[∂1;σ1, δ1] . . . [∂m;σm, δm] is called Ore algebra if the σi’s and
δj ’s commute for 1 ≤ i, j ≤ m and satisfy σi(∂j) = ∂j , δi(∂j) = 0, j < i.

Example 1. In order to model a time-varying ordinary differential linear system, we use the Weyl
algebra A1 = k[t][∂;σ1, δ1] which is the non-commutative k-algebra generated by t and ∂, i.e., contains
all polynomials over k in t and ∂, where k is a field (e.g., k = Q, R) and the commutation rule of ∂
with polynomials a ∈ k[t] is defined by ∂ a = a ∂ + da

dt , expressing the product rule when ∂ acts as
differentiation on t. Therefore, in terms of Definition 1, we have σ = idk[t] and δ = d

dt .
More generally, for the study of partial differential linear systems, we shall use the Weyl algebra

An = k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂n;σn, δn], where σi and δi on k[x1, . . . , xn] are the maps

σi = idk[x1,...,xn], δi =
∂

∂ xi
, i = 1, . . . , n,

and every other commutation rule is prescribed by Definition 1. In particular, we have:

∂i xj = xj ∂i + δij , 1 ≤ i, j ≤ n, where δij = 1, if i = j, and 0 else.

Example 2. The algebra of shift operators with polynomial coefficients is another special case of an
Ore algebra. For h in the field k (e.g., k = Q, R), we define Sh = k[t][δh;σh, δ] by:

∀ a ∈ k[t], σh(a)(t) = a(t− h), δ(a) = 0.

The commutation rule δh t = (t − h) δh represents the action of the shift operator on polynomials.
Forming equations over Sh, we model time-delay (resp. time-advance) systems if h > 0 (resp. h < 0).

3

Example 3. For differential time-delay systems, we mix the constructions of the two preceding ex-
amples. For h ∈ k, we define the Ore algebra Dh = k[t][∂;σ1, δ1][δh;σ2, δ2], where:

σ1 = idk[t], δ1 =
d

dt
, ∀ a ∈ k[t], σ2(a)(t) = a(t− h), δ2 = 0.

If the considered system also involves the advance operator, then we may work with the Ore algebra

Hh = k[t][∂;σ1, δ1][δh;σ2, δ2][τh;σ3, δ3],

where σi, δi, i = 1, 2, are as above and:

∀ a ∈ k[t], σ3(a)(t) = a(t+ h), δ3 = 0.

Example 4. In order to study multidimensional discrete linear systems, we can define the following
Ore algebra D = k[z1, . . . , zn][∂1;σ1, δ1] . . . [∂n;σn, δn], where σi and δi on k[z1, . . . , zn] are the maps:

σi(a)(z1, . . . , zn) = a(z1, . . . , zi−1, zi + 1, zi+1, . . . , zn), δi = 0, i = 1, . . . , n.

Similarly as in Example 2, we can define an Ore algebra which combines the shift operator σi and the
inverse shift τi defined by τi(a)(z1, . . . , zn) = a(z1, . . . , zi−1, zi − 1, zi+1, . . . , zn). Such a construction
is then a generalization of the Laurent polynomial ring to non-commutative polynomials.

We refer to [4] for more examples of Ore algebras using for instance the difference, the divided
differences, the q-dilation, the q-difference functional operators. Of course, we can “concatenate”
different Ore algebras in order to combine different types of functional operators and, by this means,
we get Ore algebras for most of linear systems that appear in control theory.

In general, the linear systems studied in control theory are defined by means of systems of ordinary
(partial) differential equations, differential time-delay equations, discrete equations. . . These equa-
tions usually come from mathematical models. Hence, we can generally write a system as Rz = 0,
where R is a matrix with entries in a certain Ore algebra and z is a set of the system variables including
the input, the output, the state, the latent variables. . .

Example 5. • The system P (d
dt) y = Q(d

dt)u, where P and Q are two polynomial matrices in
the differential operator d

dt and with coefficients in k[t], can be rewritten as Rz = 0, where the
entries of the matrix R =

(
P (d

dt) : −Q(d
dt)

)
belong to the Weyl algebra A1 and z = (yT : uT)T .

• The differential time-delay system ẋ(t) = A(t)x(t) + B(t)u(t − h), where A and B are two
matrices with entries in k[t] and h > 0, can be rewritten as Rz = 0, where the entries of the
matrix R =

(
d
dt I −A(t) : −B(t) δh

)
belong to the Ore algebra Dh and z = (xT : uT)T .

• The partial differential equation (heat equation)

∂y(t, x)
∂t

=
∂

∂x

(
a(x)

∂y(t, x)
∂x

)
+ u(t, x),

where the conductivity of the bar a is assumed to be polynomial in x, can be rewritten as Rz = 0,
where the entries of the matrix R =

(
∂
∂t −

∂
∂x

(
a(x) ∂

∂x

)
: −1

)
belong to the Weyl algebra A2

with x1 = t, x2 = x and z = (y : u)T .

Finally, let us notice that real systems are generally nonlinear ones, and thus, they do not enter in
the theory developed in this paper. However, using a linearization around a (generic/given) trajectory
of the system, then the linearized system has varying coefficients. If these coefficients are polynomial
or rational, then we can use the approach developed in this paper in order to study the properties of
the linearized system and then use the information in order to come back to the nonlinear system.

4

3 Module-theoretic approach to linear systems over Ore algebras

In the sixties, R. E. Kalman showed that a module-theoretic approach to linear systems was a powerful
tool for the study of the structural properties of linear 1-D systems. More recently, the works of
U. Oberst [12], M. Fliess [8, 10] and J.-F. Pommaret [15], also based on module theory, have highly
contributed to the development of the use of module theory in control theory. This approach was
particularly fruitful for the study of n-D systems where the complexity in the classification of the
systems by means of primeness grows with the number n [23]. In particular, using some ideas of
B. Malgrange, U. Oberst has shown in [12] how the behavioural approach to multidimensional linear
systems, developed by J.C. Willems and his school (see [14, 20, 23] and the references therein), was
dual to the module-theoretic approach. See [13, 22] for more information and references. Moreover,
using also some ideas of B. Malgrange, it is explained in [17] how the theory of differential operators
with varying coefficients − mainly developed by D. C. Spencer and his school in the seventies − is dual
to the theory of algebraic analysis (also called D-modules theory) (see [15] for more details). The main
idea of algebraic analysis is to study a linear system of the form Rz = 0, where R ∈ Dq×p, by means
of the left D-module M = D1×p/D1×q R. Hence, in the past years, a classification of some properties
of multidimensional linear systems has been done in terms of the properties of the corresponding left
D-module M . For instance, let us summarize some of them in the following table.

Module M Structural properties Optimal control

Torsion Poles/zeros classifications

With torsion Existence of autonomous elements

Torsion-free No autonomous elements, Variational problem
Controllability, without constraints

Parametrizability, (Euler-Lagrange
π-flatness equations)

Reflexive Filter identification

Projective Internal stabilizability, Computations of the
Bézout identities, Lagrange parameters

Stabilizing controllers without integrations

Free Flatness, Poles placement, Optimal controller
Doubly coprime factorization,
Youla-Kučera parametrization

of all stabilizing controllers

See [8, 12, 10, 13, 15, 16, 17, 18, 20, 22, 23] and the references therein for more details. Some of these
properties were obtained for particular classes of multidimensional systems (e.g., differential time-delay
systems, multidimensional discrete systems, systems of PDEs, multidimensional convolutional codes).
Hence, using the concepts of linear systems over an Ore algebra developed in [5, 6], we can extend the
previous table to general linear systems over Ore algebras.

5

4 Homological tools

In the middle of the nineties, the classification of the properties of multidimensional linear systems
was almost completely obtained. However, even if the use of modules allowed us to intrinsically
characterize the structural properties of linear systems, i.e., without requiring special forms for the
systems such as state-space formulations, input-output formulations, Roesser or Fornasini-Marchesini
models. . . , the main issue of checking effectively the previous system properties via the properties of
modules was mainly open. Only the case of multidimensional linear systems with constant coefficients
defined by a full row rank matrix R with entries in the commutative polynomial ring k[x1, . . . , xn] was
known using the different concepts of primeness [10, 12] developed in the middle of the seventies.

In [18], using the concepts of syzygy modules, free resolutions, extension and torsion functors,
projective and homotopic equivalences, projective dimensions. . . developed in homological algebra
[21], new algorithms allowing us to check the first column of the previous table, and thus, the systems
properties of multidimensional linear systems, were obtained for systems of PDEs (see also [15, 16, 17]
and the references therein). We have recently shown in [5, 6] how these algorithms could be extended to
some classes of Ore algebras including all the main interesting ones used in control theory (e.g., ordinary
(partial) differential equations, discrete equations, time-delay systems, multidimensional convolutional
codes). The main steps of the algorithms developed in [5, 6, 18] are:

1. Computation of free resolutions of a finitely presented left module over an Ore algebra D,

2. Dualization of free resolutions of left D-modules using the homD(·, D) functor,

3. Use of involutions in order to pass from right to left D-modules,

4. Computation of the quotient module of finitely presented (f.p.) left D-modules.

Using the previous four points, we are then able to compute the extension functor of any left
D-module of the form M = D1×p/D1×q R with values in D, namely exti(M,D) for i ∈ Z≥0.

Let us recall that an involution θ of D is a k-linear map θ : D → D satisfying:

∀ a1, a2 ∈ D, θ(a1 · a2) = θ(a2) · θ(a1), θ ◦ θ = idD. (2)

For instance, if D = An is the Weyl algebra, then θ(R) is the classical formal adjoint of R obtained by
multiplying a column vector of test functions on the left of Rz and by integrating by parts [15, 16, 17].

Now, if R is a matrix with entries in an Ore algebra having an involution θ (e.g., An, Sh, Dh), then
we can define θ(R) = (θ(Rij))T and the leftD-module Ñ = D1×q/D1×p θ(R). The main idea developed
in [5, 6, 15, 17, 18] is that the elements of the first column of the previous table are characterized by
the triviality of exti(Ñ ,D) = 0 for certain i ≥ 0, as it is shown in the next table.

Module M exti
D(Ñ ,D) d(Ñ) Primeness

With torsion ext1D(Ñ ,D) ∼= t(M) n− 1 ∅

Torsion-free ext1D(Ñ ,D) = 0 n− 2 Minor left-prime

Reflexive exti
D(Ñ ,D) = 0, n− 3
i = 1, 2

Projective exti
D(Ñ ,D) = 0, -1 Zero left-prime
1 ≤ i ≤ n

6

The last column of this table explains the correspondence between some module properties and
some notions of primeness for a multidimensional system defined by a full row rank matrix R with
entries in the commutative polynomial ring D = k[x1, . . . , xn]. The third column generalizes the last
column to multidimensional systems defined by a full row rank matrix R with entries in the Weyl
algebra An. Finally, d(Ñ) denotes the Krull dimension of the characteristic variety of Ñ (see [17, 18]).

5 The package OreModules

The main difficulty in the computation of exti(Ñ ,D) is to be able to construct a free resolution for the
left D-module Ñ = D1×q/D1×p θ(R) (see point 1 in the previous section), namely an exact sequence
of the form (i.e., the kernel of any map of the sequence is equal to the image of the next one)

. . .
.R̃4−→ D1×q3 .R̃3−→ D1×q2 .R̃2−→ D1×q1 .R̃1−→ D1×q0 −→ Ñ −→ 0

where .R̃i : D1×qi → D1×qi−1 is defined by .R̃i(λ) = λ R̃i and with the notations R̃1 = θ(R), q0 = q,
q1 = p. Generally, the left D-module Si(Ñ) , ker .R̃i−1 = {λ ∈ D1×qi−1 |λ R̃i−1 = 0} is called the ith
syzygy module of Ñ . If D is a noetherian ring [21], which is the case for a large class of Ore algebras
(e.g., An, Sh, Dh and Hh) [5, 6], then Si(Ñ) is a finitely generated left D-module.

Let us notice that the computation of the matrix R̃i is in fact an elimination problem. Indeed,
for λ ∈ Si(Ñ), we have R̃i−1 y = u ⇒ λu = (λ R̃i−1) y = 0, which shows that, by using left D-linear
combinations of the equations of R̃i−1 y = u, we must eliminate y from the inhomogeneous system
R̃i−1 y = u. Hence, we need to find a family of generators of the compatibility conditions of R̃i−1 y = u
or, equivalently, a family {λj}1≤j≤qi of elements of D1×qi−1 satisfying Si(Ñ) = Dλ1 + . . . + Dλqi .
Then, if we define R̃i = (λT

1 : . . . : λT
qi

)T , then we obtain Si(Ñ) = Dλ1 + . . .+Dλqi = D1×qi R̃i.
This difficult problem has largely been studied for the linear systems of PDEs since the 19th

century [15], but it has only recently received some computational answers based on the concept of
Gröbner bases for the Weyl algebras. More recently, an extension of the theory of Gröbner bases to
some non-commutative polynomial rings and, in particular to the classes of Ore algebras [4], has made
manipulations of (one-sided) ideals and modules effective. For more details concerning Gröbner bases
for commutative and non-commutative polynomials, see [1, 4]. Moreover, the library Mgfun [3] of
the computer algebra system Maple has recently been developed for the symbolic manipulation of a
large class of special functions and combinatorial sequences. In particular, it has already offered the
implementation of Gröbner bases for some classes of Ore algebras (see [3] for more information).

Hence, the concept of Gröbner bases for the classes of Ore algebras that are encountered in control
theory was the missing point in order to effectively check the module properties, and thus, to analyze
the structural properties of the corresponding multidimensional linear systems. For this purpose,
using the library Mgfun of Maple, the authors of this paper have recently been developing the package
OreModules. The second release of OreModules as well as a library of examples are freely available
at http://wwwb.math.rwth-aachen.de/OreModules. This second release of OreModules mainly
focuses on the following problems:

• Compute free resolutions, extensions functors, adjoint, dual and bidual of a finitely presented
left D-module M over some classes of Ore algebras D,

• Recognize the algebraic properties of a finitely presented left D-module M ,

• Recognize the existence of the autonomous elements in the corresponding system [14, 15, 16, 22]
and, if so, compute a family of generators for them,

• Check whether or not a multidimensional linear system is controllable in the sense of [8, 10, 14,
13, 15, 16, 17, 22, 23].

• Check whether or not a multidimensional linear system is parametrizable in the sense of [8, 10,
15, 16].

7

• Check whether or not a multidimensional linear system is flat and, if so, compute an injective
parametrization of the system and the flat outputs [8, 10, 15, 16].

• Check whether or not a multidimensional system with constant coefficients is π-free and, if so,
compute the ideal of all the π-polynomials.

The list of the functions of OreModules is the following:

Main functions for the treatment of linear systems over Ore algebras D

Parametrization Find a parametrization of the system in terms of functions
MinimalParametrization(s) Find a (some) minimal parametrization(s) of the system
AutonomousElements Find generating set of autonomous elements of the system

(i.e., solve the system of equations for the torsion elements)
in case of Weyl algebras D = An (i.e., PDEs)

LeftInverse(Rat) Left inverse for matrices over D
LocalLeftInverse Given a 0 6= π ∈ k[x1, . . . , xn], compute a left inverse

for matrices over k[x1, . . . , xn, π
−1]

RightInverse(Rat) Right inverse for matrices over D
GeneralizedInverse(Rat) Compute a generalized inverse matrix over D
PiPolynomial Given a system matrix R over a commutative polynomial

ring D and a variable xi ∈ D, compute the ideal of
all the π-polynomials in xi for the given system

FirstIntegral In the case of ordinary differential equations,
find first integrals of motion

LQEquations Euler-Lagrange equations for linear quadratic problems
of optimal control (ordinary differential equations)

Module theory over Ore algebras D

TorsionElements Compute the torsion submodule of a left f.p. D-module
Exti(Rat) Given a f.p. left D-module M and j, compute extj

D(M,D)
Extn(Rat) Given a f.p. left D-module M and m, compute exti

D(M,D)
for 0 ≤ i ≤ m

Quotient(Rat) Compute the quotient module of two left D-modules
defined as images of two matrices

SyzygyModule(Rat) Compute the first syzygy module of a f.p. left D-module
Resolution(Rat) Given i, compute the first ith terms of a free resolution

of a f.p. left D-module
FreeResolution(Rat) Compute a free resolution of a f.p. left D-module
OreRank Compute the rank of a f.p. left D-module

Some low-level functions of OreModules

DefineOreAlgebra Set up an Ore algebra D in OreModules
Involution Apply an involution to a matrix over D
Factorize Factorize if possible one matrix over D by respect

to a second one having the same number of columns
Mult Multiply two or more matrices over D
ApplyMatrix Apply (matrices of) operators in D to (vectors of) functions

8

To conclude, OreModules is the first implementation in Maple of homological methods in this
generality with regard to applications in control theory.

6 Examples obtained using OreModules

OreModules comes with a library of examples which demonstrate the above features by means of
applications like two pendula mounted on a cart, differential algebraic systems, electric transmission
line, wind tunnel model, two reflector antenna, Einstein equations from theoretic physics, Lie-Poisson
structures from differential geometry. . . We only give four examples but we refer the reader to [5, 6]
and to http://wwwb.math.rwth-aachen.de/OreModules for more examples. All examples were run
on a Pentium III, 1 GHz with 1 GB RAM using Maple 8 (OreModules is available for Maple V release 5,
Maple 6, Maple 8, and Maple 9).

Example 6. We study a bipendulum [15], i.e., a system composed of a bar, where two pendula are
fixed, one of length l1 and one of length l2. The appropriate Ore algebra for this example is the Weyl
algebra Alg = A1, where D is the differential operator w.r.t. time t:

> Alg := DefineOreAlgebra(diff=[D,t], polynom={t}, comm={g, l1,l2}):

Note that we have to declare all constants appearing in the system equations (the gravitational constant
g, and the lengths l1, l2) as variables that commute with D and t. Next we enter the system matrix:

> R := evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]);

R :=

 D2 +
g

l1
0 − g

l1

0 D2 +
g

l2
− g

l2


We compute the formal adjoint of R:

> R_adj := Involution(R, Alg);

R adj :=


D2 +

g

l1
0

0 D2 +
g

l2

− g

l1
− g

l2


By computing ext1A1

(A1×2
1 /A1×3Radj), we check controllability and, equivalently, parametrizability of

the bipendulum:

> Ext := Exti(R_adj, Alg, 1);

Ext :=

[
1 0
0 1

]
,

[
D2 l1 + g 0 −g

0 D2 l2 + g −g

]
,

 l2 D2 g + g2

g2 + D2 l1 g
l2 D2 g + l2 l1 D4 + D2 l1 g + g2


From the output, we can see that the system is generically controllable because Ext[1] is the identity
matrix which means that there are no torsion elements in the leftA1-moduleM which is associated with
the system. The interpretation of this structural fact is that the system has no autonomous elements
in the generic case. There may be configurations of the constants g, l1, l2, in which the bipendulum is
not controllable. We will actually find the only configuration where it is not controllable below. Since
the bipendulum is generically a time-invariant controllable system, it is also generically a flat system.
A flat output of the system can be computed as a left-inverse of the parametrization Ext[3]:

9

> LeftInverse(Ext[3], Alg);[
l1

g2 (l1 − l2)
− l2
g2 (l1 − l2)

0
]

We remark that this flat output is defined only if l1 − l2 6= 0. Moreover, l1 = l2 describes the only
case in which the bipendulum may be uncontrollable. Let us finish the generic case by writing down
the parametrization Ext[3] in a more familiar way with a free parameter ξ1:

> Parametrization(R, Alg); g (l2 (d2

dt2
ξ1(t)) + g ξ1(t))

g (l1 (d2

dt2
ξ1(t)) + g ξ1(t))

l2 l1 (d4

dt4
ξ1(t)) + g (l1 + l2) (d2

dt2
ξ1(t)) + g2 ξ1(t)


We now turn to the case where the lengths of the pendula are equal:

> R_mod := subs(l2=l1, evalm(R));

R mod :=

 D2 +
g

l1
0 − g

l1

0 D2 +
g

l1
− g

l1


> Ext_mod := Exti(Involution(R_mod, Alg), Alg, 1);

Ext mod :=

[
D2 l1 + g 0

0 1

]
,

[
1 −1 0
0 D2 l1 + g −g

]
,

 g
g

D2 l1 + g


The computation of ext1A1

(A1×2
1 /A1×3Rmod) gives the torsion submodule t(M) of M : it is generated

by the row r of Ext mod[2] which corresponds to the row with entry l1D2 + g in Ext mod[1]. This
means that (l1D2 + g) r = 0 in M , and the difference of the positions of the pendula (relative to the
bar) is an autonomous element of the system. We can conclude that the bipendulum is controllable if
and only if l1 6= l2.

Let us point out that we can directly obtain the torsion elements of M as follows:

> TorsionElements(R_mod,[x1(t),x2(t),u(t)],Alg);

[
[
g θ1(t) + l1 (d2

dt2
θ1(t)) = 0

]
,
[
θ1(t) = x1(t)− x2(t)

]
]

We can also explicitly integrate this torsion element of M :

> AutonomousElements(R_mod,[x1(t),x2(t),u(t)],Alg)[2];[
θ1 = C1 sin(

√
g t

√
l1

) + C2 cos(
√
g t

√
l1

)
]

The fact that there exists an autonomous element in the system is equivalent to the existence of a
first integral of motion in the system. Indeed, let us recall that we have a one-to-one correspondence
between the torsion elements and the first integrals of motion. For more details, see [16]. We can
compute this first integral of motion by using the command FirstIntegral:

> V := FirstIntegral(R_mod, [x1(t),x2(t),u(t)], Alg);

10

V := −(−(d
dt x1(t)) C1 sin(

√
g t

√
l1

)
√

l1 − (d
dt x1(t)) C2 cos(

√
g t

√
l1

)
√

l1

+
√
g x1(t) C1 cos(

√
g t

√
l1

)−√
g x1(t) C2 sin(

√
g t

√
l1

)

+ (d
dt x2(t)) C1 sin(

√
g t

√
l1

)
√

l1 + (d
dt x2(t)) C2 cos(

√
g t

√
l1

)
√

l1

−√
g x2(t) C1 cos(

√
g t

√
l1

) +
√
g x2(t) C2 sin(

√
g t

√
l1

))
/√

l1

We let the reader check by himself that we have V̇ (t) = 0. For the explicit computations, see the
complete Maple worksheet available at http://wwwb.math.rwth-aachen.de/OreModules.

Finally, even if we have some autonomous elements in the system, we can parametrize all solutions
of the system in terms of one arbitrary function ξ1 and two arbitrary constants C1 and C2 (these
constants can easily be computed in terms of the initial conditions of the system):

> P := Parametrization(R_mod, Alg);

P :=


g ξ1(t)

− C1 sin(
√
g t

√
l1

)− C2 cos(
√
g t

√
l1

) + g ξ1(t)

l1 (d2

dt2
ξ1(t)) + g ξ1(t)


We can easily check that P gives a parametrization of some solutions of the system as we have:

> simplify(ApplyMatrix(R_mod,P,Alg));[
0
0

]
We can prove that we parametrize all the C∞-solutions of the system. For more details, see [19].

Example 7. Let us consider the differential time-delay system of a vibrating string with an interior
mass [11]. We define the Ore algebra Alg, where D is the differential operator w.r.t. t and σ1 and σ2

are two non-commensurate time-delay operators. Note that the parameters η1, η2, which are composed
of the tensions, densities and the mass [11], have to be declared in the definition of Alg:

> Alg := DefineOreAlgebra(diff=[D,t], dual_shift=[sigma1,y1],
> dual_shift=[sigma2,y2], polynom={t,y1,y2}, comm={eta1,eta2}):

We only study the case of position control on both boundaries [11]. For the case of a single control,
we refer to http://wwwb.math.rwth-aachen.de/OreModules. We enter the system matrix R:

> R := evalm([[1, 1, -1, -1, 0, 0],[D+eta1, D-eta1, -eta2, eta2, 0, 0],
> [sigma1^2, 1, 0, 0, -sigma1, 0], [0, 0, 1, sigma2^2, 0, -sigma2]]);

R :=


1 1 −1 −1 0 0

D + η1 D− η1 −η2 η2 0 0
σ12 1 0 0 −σ1 0
0 0 1 σ22 0 −σ2


We define the formal adjoint R adj of R:

> R_adj := Involution(R, Alg):

11

We check controllability of the system by applying Exti to R adj:

> st := time(): Ext1 := Exti(R_adj, Alg, 1): time()-st; Ext1[1];

1.191
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Since Ext1[1] is the identity matrix, we can see that the Alg-module M which is associated with the
system is torsion-free. This means that the vibrating string with interior mass is controllable and,
equivalently, parametrizable. A parametrization of the system is given in Ext1[3]:

> Ext1[3];

2σ2 η2 , −σ2σ1 η2 , −η2σ1 + σ1 η1− σ1 D
0 , σ2σ1 η2 , η2σ1 + σ1 D + σ1 η1
σ2 D + σ2 η2 + σ2 η1 , −σ2σ1 η1 , 0

−σ2 D + σ2 η2− σ2 η1 , σ2σ1 η1 , 2σ1 η1
2σ2σ1 η2 , σ2 η2− σ2 η2σ12 , −η2σ12 + η2 + η1σ12 − σ12 D + D + η1
D−Dσ22 + η2σ22 − η1σ22 + η2 + η1 , −σ1 η1 + σ1 η1σ22 , 2σ2σ1 η1


So, the system can be parametrized by means of three free functions. We want to check now whether
this parametrization is a minimal one [16]. In order to do that, let us compute the rank of M .

> OreRank(R, Alg);

2

Hence, we know that there exist some parametrizations of the system with only two arbitrary functions
[6, 16]. We find some minimal parametrizations of the system as follows:

> P := MinimalParametrizations(R, Alg);

P :=




2σ2 η2 −σ2σ1 η2
0 σ2σ1 η2

σ2 D + σ2 η2 + σ2 η1 −σ2σ1 η1
−σ2 D + σ2 η2− σ2 η1 σ2σ1 η1

2σ2σ1 η2 σ2 η2− σ2 η2σ12

D−Dσ22 + η2σ22 − η1σ22 + η2 + η1 −σ1 η1 + σ1 η1σ22

 ,


2σ2 η2 , −η2σ1 + σ1 η1− σ1 D
0 , η2σ1 + σ1 D + σ1 η1
σ2 D + σ2 η2 + σ2 η1 , 0

−σ2 D + σ2 η2− σ2 η1 , 2σ1 η1
2σ2σ1 η2 , −η2σ12 + η2 + η1σ12 − σ12 D + D + η1
D−Dσ22 + η2σ22 − η1σ22 + η2 + η1 , 2σ2σ1 η1

 ,


−σ2σ1 η2 −η2σ1 + σ1 η1− σ1 D
σ2σ1 η2 η2σ1 + σ1 D + σ1 η1
−σ2σ1 η1 0
σ2σ1 η1 2σ1 η1

σ2 η2− σ2 η2σ12 −η2σ12 + η2 + η1σ12 − σ12 D + D + η1
−σ1 η1 + σ1 η1σ22 2σ2σ1 η1




12

Let us continue the study of the module properties of M . Since R has full row rank (this fact can be
easily checked by computing FreeResolution(R, Alg)), we know that M is projective if and only
if R admits a right-inverse (see [6, 16] for more details).

> RightInverse(R, Alg);

[]

Hence, M is not projective, which implies that M is not free, i.e., the vibrating string with interior
mass is not a flat system [11]. Another way to verify this is to compute the ext2 and ext3 of R adj:

> Exti(R_adj, Alg, 2); 1 0 0
0 1 0
0 0 1

 ,
 σ2 η2 0 σ1 η1
η2 + η1 + D −σ1 η1 0

0 σ2 η2 η2 + η1 + D

 ,
 −σ1 η1
−D− η2− η1

σ2 η2


> Exti(R_adj, Alg, 3); σ2

σ1
η2 + η1 + D

 , [
1

]
, SURJ(1)


We see that ext2 of R adj is zero, but ext3 of R adj is different from zero. Therefore, M is a reflexive
but not a projective Alg-module (we remember that M is projective if and only if exti of R adj is zero
for i = 1, 2, 3). Let us find a polynomial π in the variable σ1 such that the system is π-free [8, 10, 11].

> PiPolynomial(R, Alg, [sigma1]);

[σ1]

Let us find a polynomial π in the variable σ2 such that the system is π-free [10].

> PiPolynomial(R, Alg, [sigma2]);

[σ2]

Hence, if we invert σ1 or σ2, i.e., we allow ourselves to have time-advance operators, then, by definition
of the π-polynomial, the system becomes flat. A flat output for this system can be computed from a
left-inverse of the minimal parametrization P , where we allow σ1 or σ2 to appear in the denominators.

Let us compute the annihilator of the cokernel of the minimal parametrization P [1]. We know
from the theory that M is a torsion Alg-module.

> Ann1 := AnnExti(linalg[transpose](P[1]), Alg, 1);

Ann1 := [σ2]

Let us compute a left-inverse of the minimal parametrization P [1] by allowing σ2 to appear in the
denominators.

> L1 := LocalLeftInverse(P[1], Ann1, Alg);

L1 :=

 0 0
1

2σ2 η2
1

2σ2 η2
0 0

0
σ1
σ2 η2

− σ1
σ2 η2

− σ1
σ2 η2

1
σ2 η2

0


13

We easily check that L1 is a left-inverse of P [1].

> simplify(evalm(L1 &* P[1])); [
1 0
0 1

]
Thus, if we can invert σ2, we obtain that a flat output of the system is defined by

(ξ1 : ξ2)T = L1 (φ1 : ψ1 : φ2 : ψ2 : u : v)T ,

where φ1, ψ1, φ2, ψ2, u, v are the system variables [11]. Let us point out that any multiplication of
(ξ1 : ξ2)T by a R(η1, η2)[d

dt , σ1, σ2, σ
−1
2]2×2 unimodular matrix gives a new flat output of the system

(e.g., (ξ′1 = 2 η2 σ2 ξ1 = φ2 + ψ2, ξ
′
2 = η2 σ2(ξ2 + 2σ1 ξ1) = σ1 ψ1 + u) [11]).

We can repeat the same procedure for P [2] and P [3].

> Ann2 := AnnExti(linalg[transpose](P[2]), Alg, 1);
> Ann3 := AnnExti(linalg[transpose](P[3]), Alg, 1);

Ann2 := [η2 + η1 + D]

Ann3 := [σ1]

The annihilator of P [3] only contains σ1. Let us compute a flat output by allowing the time-advance
operator σ−1

1 to appear in the basis. Let us remark that this fact is not a problem for the main
application of flatness, which is the motion planning problem. See [10] for more details.

> L3 := LocalLeftInverse(P[3],Ann3,Alg);

L3 :=

 0 0 0
σ2
σ1 η1

0 − 1
σ1 η1

0 0
1

2σ1 η1
1

2σ1 η1
0 0


L3 is a left-inverse of P [3] in the polynomial ring R(η1, η2)[d

dt , σ1, σ2, σ
−1
1], as we can check:

> simplify(evalm(L3 &* P[3])); [
1 0
0 1

]
Therefore, if we use the time-advance operator σ−1

1 , we obtain the following flat output of the system
(ξ1 : ξ2)T = L3 (φ1 : ψ1 : φ2 : ψ2 : u : v)T or, using trivial R(η1, η2)[d

dt , σ1, σ2, σ
−1
1]-linear combina-

tions of ξ1 and ξ2, we obtain that (ξ′1 = σ2 ψ2 − v, ξ′2 = φ2 + ψ2) is also a flat output of the system
over R(η1, η2)[d

dt , σ1, σ2, σ
−1
1].

Example 8. We define the Weyl algebra Alg = A4, where D[i] acts as a differential operator w.r.t.
x[i], i = 1, . . . , 4, and where x[1], x[2], x[3] are the spatial variables and x[4] is the time variable.

> Alg := DefineOreAlgebra(diff=[D[1],x[1]], diff=[D[2],x[2]],
> diff=[D[3],x[3]], diff=[D[4],x[4]], polynom={x[1],x[2],x[3],x[4]}):

We enter the system matrix of the first set of Maxwell equations, which is a matrix with entries in Alg.
The first three rows stand for the sum of the time derivative of the magnetic field and the rotation of
the electric field. The last row of the matrix is the divergence of the magnetic field.

14

> R := evalm([[D[4], 0, 0, 0, -D[3], D[2]],
> [0, D[4], 0, D[3], 0, -D[1]],
> [0, 0, D[4],-D[2], D[1], 0],
> [D[1], D[2], D[3], 0, 0, 0]]);

R :=


D4 0 0 0 −D3 D2

0 D4 0 D3 0 −D1

0 0 D4 −D2 D1 0
D1 D2 D3 0 0 0


To check whether the system of Maxwell equations is parametrizable, we compute ext1 of the formal
adjoint of R:

> st := time(): Ext1 := Exti(Involution(R, Alg), Alg, 1); time()-st;

Ext1 :=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


D4 0 0 0 −D3 D2

D1 D2 D3 0 0 0
0 −D4 0 −D3 0 D1

0 0 D4 −D2 D1 0

 ,


D3 D2 0 0
0 −D1 D3 0

−D1 0 −D2 0
0 0 −D4 −D1

D4 0 0 −D2

0 −D4 0 −D3




0.440

Since Ext1[1] is the identity matrix, we can see that the module M which is associated with R
is torsion-free. Equivalently, the first set of Maxwell equations is parametrizable and we find a
parametrization of the system in Ext1[3]. In what follows, we shall see that this parametrization
is not minimal. We compute a free resolution of M first:

> FreeResolution(R, Alg);

table([1 =


D4 0 0 0 −D3 D2

0 D4 0 D3 0 −D1

0 0 D4 −D2 D1 0
D1 D2 D3 0 0 0

 , 2 =
[

D1 D2 D3 −D4

]
, 3 = INJ(1)])

In particular, by summing alternately the number of columns of all the entries in this free resolution,
we find that the rank of M is 6− 4 + 1 = 3. This result can also be obtained using OreRank:

> OreRank(R, Alg);

3

Hence, a minimal parametrization of the system only involves three potentials. Let us compute some
minimal parametrizations of the system using MinimalParametrizations:

> P := MinimalParametrizations(R, Alg);

P :=





D3 D2 0
0 −D1 D3

−D1 0 −D2

0 0 −D4

D4 0 0
0 −D4 0

 ,


D3 D2 0
0 −D1 0

−D1 0 0
0 0 −D1

D4 0 −D2

0 −D4 −D3

 ,


D3 0 0
0 D3 0

−D1 −D2 0
0 −D4 −D1

D4 0 −D2

0 0 −D3

 ,


D2 0 0
−D1 D3 0

0 −D2 0
0 −D4 −D1

0 0 −D2

−D4 0 −D3




As a last example, we write the first of these minimal parametrizations in a more familiar way using
the free parameters ξ1, ξ2, ξ3 (see [6] for more details):

15

> ApplyMatrix(P[1], [xi[1](x[1],x[2],x[3],x[4]), xi[2](x[1],x[2],x[3],x[4]),
> xi[3](x[1],x[2],x[3],x[4])], Alg);

(∂
∂x3

ξ1(x1, x2, x3, x4)) + (∂
∂x2

ξ2(x1, x2, x3, x4))

−(∂
∂x1

ξ2(x1, x2, x3, x4)) + (∂
∂x3

ξ3(x1, x2, x3, x4))

−(∂
∂x1

ξ1(x1, x2, x3, x4))− (∂
∂x2

ξ3(x1, x2, x3, x4))

−(∂
∂x4

ξ3(x1, x2, x3, x4))
∂

∂x4
ξ1(x1, x2, x3, x4)

−(∂
∂x4

ξ2(x1, x2, x3, x4))


Example 9. This example deals with the problem of parametrizing a system of partial differential
equations with polynomial coefficients that appears in the study of the Lie algebra SU(2) [2]. We
define Alg as the Weyl algebra, i.e., D[i] acts as differential operator w.r.t. x[i], i = 1, 2, 3.

> Alg := DefineOreAlgebra(diff=[D[1],x[1]], diff=[D[2],x[2]], diff=[D[3],x[3]],
> polynom={x[1],x[2],x[3]}):

We enter the system matrix R:

> R := evalm([[x[3]*D[1]-x[1]*D[3], x[3]*D[2]-x[2]*D[3], -1],
> [-1, x[1]*D[2]-x[2]*D[1], x[1]*D[3]-x[3]*D[1]],
> [x[2]*D[1]-x[1]*D[2], -1, x[2]*D[3]-x[3]*D[2]]]);

R :=

 x3 D1 − x1 D3 x3 D2 − x2 D3 −1
−1 x1 D2 − x2 D1 x1 D3 − x3 D1

x2 D1 − x1 D2 −1 x2 D3 − x3 D2


Next, we define the formal adjoint Radj of R.

> R_adj := Involution(R, Alg):

Applying Exti to Radj , we check whether or not the system defined by R is parametrizable:

> st := time(): Ext1 := Exti(R_adj, Alg, 1): time() - st; Ext1[1]; Ext1[2];

0.500

x2 D3 − x3 D2 0 0
x1 D3 − x3 D1 0 0
x1 D2 − x2 D1 0 0

0 x2 D3 − x3 D2 0
0 x1 D3 − x3 D1 0
0 x1 D2 − x2 D1 0
0 0 1


 x1 x2 x3

D1 D2 D3

−1 x1 D2 − x2 D1 x1 D3 − x3 D1


We obtain a non-trivial torsion submodule t(M) of the Alg-module M which is associated with R.
So, we conclude that the system of partial differential equations given by R is not parametrizable.

By using TorsionElements, we can obtain a generating set of the torsion submodule t(M)
written in terms of the unknowns F , G, H of the system. The first matrix gives the relations that the
torsion elements θi satisfy, i = 1, 2, the second matrix defines θi in terms of F , G, H:

> TorsionElements(R, [F(x[1],x[2],x[3]),G(x[1],x[2],x[3]),H(x[1],x[2],x[3])],Alg);

16





−x3 (∂
∂x2

%2) + x2 (∂
∂x3

%2) = 0
−x3 (∂

∂x1
%2) + x1 (∂

∂x3
%2) = 0

−x2 (∂
∂x1

%2) + x1 (∂
∂x2

%2) = 0
−x3 (∂

∂x2
%1) + x2 (∂

∂x3
%1) = 0

−x3 (∂
∂x1

%1) + x1 (∂
∂x3

%1) = 0
−x2 (∂

∂x1
%1) + x1 (∂

∂x2
%1) = 0


,

[
%2 = x1 F(x1, x2, x3) + x2 G(x1, x2, x3) + x3 H(x1, x2, x3)

%1 = (∂
∂x1

F(x1, x2, x3)) + (∂
∂x2

G(x1, x2, x3)) + (∂
∂x3

H(x1, x2, x3))

]


%1 := θ2(x1, x2, x3)
%2 := θ1(x1, x2, x3)

Ext1[3] provides a parametrization of the torsion-free part M/t(M) of M :

> Ext1[3];  x3 D2 − x2 D3

x1 D3 − x3 D1

x2 D1 − x1 D2


Let us point out that we find again the same parametrization as in [2] (up to a mistake made in [2]
concerning the existence of the torsion elements):

> ApplyMatrix(Ext1[3], [xi(x[1],x[2],x[3])], Alg); x3 (∂
∂x2

ξ(x1, x2, x3))− x2 (∂
∂x3

ξ(x1, x2, x3))

−x3 (∂
∂x1

ξ(x1, x2, x3)) + x1 (∂
∂x3

ξ(x1, x2, x3))

x2 (∂
∂x1

ξ(x1, x2, x3))− x1 (∂
∂x2

ξ(x1, x2, x3))


7 Conclusion

We hope to have convinced the reader of the main interest of the Maple package OreModules for the
study the structural properties of multidimensional linear systems over Ore algebras. We hope that
OreModules will become in the future a platform for the implementation of different algorithms
obtained in the literature of multidimensional linear systems (see e.g., [7, 13, 14, 15, 16, 17, 18, 20, 22,
23] and the references therein). In particular, a library of examples is under development and further
developments of OreModules will be the object of forthcoming publications.

References

[1] Becker, T., Weispfenning, V. Gröbner Bases. A Computational Approach to Commutative Alge-
bra, Springer, 1993.

17

[2] Bender, C. M., Dunne, G. V., Mead, L. R. “Underdetermined systems of partial differential
equations”, J. Mathematical Physics, 41 (2000), 6388-6398.

[3] Chyzak, F. “Mgfun Project”, http://algo.inria.fr/chyzak/mgfun.html.

[4] Chyzak, F., Salvy, B. “Non-commutative elimination in Ore algebras proves multivariate identi-
ties”, J. Symbolic Computation, 26 (1998), 187-227.

[5] Chyzak, F., Quadrat, A., Robertz, D. “Linear control systems over Ore algebras: Effective al-
gorithms for the computation of parametrizations”, CDRom of the Workshop on Time-Delay
Systems (TDS03), IFAC Workshop, INRIA Rocquencourt (France) (08-10/09/03).

[6] Chyzak, F., Quadrat, A., Robertz, D. “Effective algorithms for parametriz-
ing linear control systems over Ore algebras”, INRIA Report 5181, available at
http://www.inria.fr/rrrt/rr-5181.html, submitted for publication.

[7] Cotroneo, T. Algorithms in Behavioral Systems Theory, PhD thesis, University of Groningen
(The Netherlands), 18/05/01.

[8] Fliess, M., Mounier, H. “Controllability and observability of linear delay systems: an algebraic
approach”, ESAIM COCV, 3 (1998), 301-314.

[9] McConnell, J. C., Robson, J. C. Noncommutative Noetherian Rings, American Mathematical
Society, 2000.

[10] Mounier, H. Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pra-
tiques, PhD Thesis, University of Orsay (France), 24/10/95.

[11] Mounier, H., Rudolph, J., Fliess, M., Rouchon, P. “Tracking control of a vibrating string with an
interior mass viewed as delay system”, ESAIM COCV, 3 (1998), 315-321.

[12] Oberst, U. “Multidimensional constant linear systems”, Acta Appl. Math., 20 (1990), 1-175.

[13] Pillai, H. K., Shankar, S. “A behavioral approach to control of distributed systems”, SIAM J.
Control and Optimization, 37 (1998), 388-408.

[14] Polderman, J. W., Willems, J. C. Introduction to Mathematical Systems Theory. A Behavioral
Approach, TAM 26, Springer, 1998.

[15] Pommaret, J.-F. Partial Differential Control Theory, Kluwer, 2001.

[16] Pommaret, J.-F., Quadrat, A. “Localization and parametrization of linear multidimensional con-
trol systems”, Systems and Control Letters, 37 (1999), 247-260.

[17] Pommaret, J.-F., Quadrat, A. “Algebraic analysis of linear multidimensional control systems”,
IMA J. Control and Optimization, 16 (1999), 275-297.

[18] Quadrat, A. Analyse algébrique des systèmes de contrôle linéaires multidimensionnels, PhD thesis,
Ecole Nationale des Ponts et Chaussées (France), 23/09/99.

[19] Quadrat, A., Robertz, D. “On Monge problem for uncontrollable linear systems”, in preparation.

[20] Rocha, P. Structure and Representation of 2-D systems, PhD thesis, University of Groningen
(The Netherlands), 1990.

[21] Rotman, J. J. An Introduction to Homological Algebra, Academic Press, 1979.

[22] Wood, J. “Modules and behaviours in nD systems theory”, Multidimensional Dimensional Sys-
tems and Signal Processing, 11 (2000), 11-48.

[23] Zerz, E. Topics in Multidimensional Linear Systems Theory, Lecture Notes in Control and Infor-
mation Sciences 256, Springer, London (2000).

18

