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Abstract—In computer algebra there are different ways of
approaching the mathematical concept of functions, one of which
is by defining them as solutions of differential equations. We
compare different such approaches and discuss the occurring
problems. The main focus is on the question of determining
possible branch cuts. We explore the extent to which the
treatment of branch cuts can be rendered (more) algorithmic,
by adapting Kahan’s rules to the differential equation setting.
Keywords: computer algebra, differential equation, branch cut

I. INTRODUCTION

In Mathematics, the standard definition of a function is

given, e.g., by Bourbaki [Bou68, §3.4]: it consists of the

domain and codomain, and requires that a function be total
and single-valued. Mathematical practice is usually looser, and

tends to define functions locally, or “in a suitable open subset

of C”. Usually, therefore, users of computer algebra systems

will use notations such as “ln(x)” without bothering too much

about the actual domain and codomain of the function ln
they have in mind, hoping that the designers of the system

have implemented what they need. An essential and important

problem in any such definition is the determination of possible

branch cuts (also known as slits), see [DF94].

A simple way to define a function is by composing

previously defined functions, provided their domains and

codomains are compatible. This is perhaps best exemplified

by
√
z := exp

(
1

2
ln z

)
,

which implies that the branch cuts of
√
z are inherited from

the definition of ln z.

The challenge is, of course, to decide which formula we

should take. For instance, as reported in [Kah87, pp. 210–

211], the classic handbook [AS64] changed its interpretation

of the branch cuts for arccot from the original first printing

(here denoted as arccot1) to that of the ninth (and subse-

quent) printings, and [fST10] (here denoted as arccot9). Both

versions of arccot are related to arctan by the formulae:

arccot1(x) = π/2− arctan(x),

arccot9(x) = arctan(1/x).

The rationale for the “correct” choice is discussed further in

Section III-B.

Difficulties occur also when dealing with functions without

having precise definitions for them. One of the early successes

of computer algebra was symbolic integration. This area

is largely based on differential algebra [Bro05]. There, the

expression ln(x) is not even a function, but some element θ
in a differential field, such that θ′ = 1/x. But both ln(x) and

− ln(1/x) have the same derivative so that their difference is

a constant in the sense of differential algebra: its derivative

is 0. However, with the definition of ln from [AS64], the

function ln(x) + ln(1/x) is 0 for all x in C except for real

negative x, where it is 2iπ. Thus early versions of integrators

would wrongly compute
∫ 2

−2
2x dx/(x2 − 1) as 0 by first

computing correctly the indefinite integral as ln(x2 − 1) and

then subtracting its values at both end points.

The definition of functions is obviously relevant to identities

between functions: the functions involved should have, as

a minimum, the same domain and codomain. For instance

[Kah87, pp. 187–188], the function

g(z) := 2 arccosh

(
1 +

2z

3

)
− arccosh

(
5z + 12

3(z + 4)

)
(1)

is not the same as the ostensibly more efficient

q(z) := 2 arccosh

(
2(z + 3)

√
z + 3

27(z + 4)

)
, (2)

unless they are defined over an identical domain that avoids

the negative real axis and the area{
z = x+iy : |y| ≤

√
(x+ 3)2(−9− 2x)

2x+ 5
∧−9/2 ≤ x ≤ −3

}

(and an identical codomain). Clearly, this last statement itself

depends on the definitions taken for the functions arccosh
and

√
. Here, the function

√
is defined over C \R−, while

arccosh is defined over C \ (1 +R−). In other words, these

functions have branch cuts located on horizontal left half-lines.

In general, the location of branch cuts for classical func-

tions follows very much from the mathematical tradition, as

recorded in tables like [AS64]. We discuss here the possibility

of automating the choice of these locations for a large class of

functions “defined” by linear differential equations. We show

that this is impossible in general. Therefore, we consider a

heuristic approach that gives correct results for the special
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functions listed in [AS64] and is applicable to newly encoun-

tered functions. As a guide, we use Kahan’s discussion of this

question for inverse trigonometric functions [Kah87].

We are concerned here with automating the choices made,

historically by table-makers, and now by the compilers of

resources like [fST10] or the authors of systems such as

[DDMF], for functions defined by linear differential equations

and their inital conditions. A particular context for the use
of the functions may impose special constraints, and may

even require different choices at different points of the same

application [Dav10, section 4(ii)], but that is a different issue.

II. ANALYTIC CONTINUATION

In complex analysis, analytic functions are often defined

first on a small domain and then extended by analytic

continuation. Two large families of examples are discussed

below: inverse functions and solutions of linear differential

equations. The basic property underlying this approach is that

two analytic functions defined over a connected domain and

coinciding over an open subset of it coincide over the whole

domain and thus are identical (here we assume the codomain

to be C). Another way of discussing branch cuts is thus in

terms of connected domains where the function of interest is

to be defined.

A. Riemann Surfaces

A radical approach is to use Riemann surfaces as domains.

They are maximal connected surfaces where the function is

analytic. While theoretically appealing, the use of Riemann

surfaces is not trivial in a computer algebra context (see,

e.g., [Hoe05]). Since the domain is not a subset of C, but

paths in the complex place, an ad hoc language for specifying

its elements has to be designed. One possibility is to restrict

the domain to paths that are piecewise-straight lines starting

from the origin. This is also the approach taken in the Dynamic

Dictionary of Mathematical Functions [DDMF]. Such a path is

specified as a list of its “vertices”, for example, (0, 1+i, 2, 1−
i, 0) denotes a diamond-shaped, clockwise path around 1. Thus

for instance, one can define
√

so that it takes the value 1 at

(0, 1), while it is equal to −1 at (0, 1, i,−1,−i, 1) and to 1
again at (0, 1, i,−1,−i, 1, i,−1,−i, 1).

B. Positioning

In many applications however, users are interested in re-

stricting the domain of their functions to the complex plane

or a subset of it. In that case, the role of branch cuts is to define

a connected domain where the function is analytic. Where to

put the branch cuts is the positioning question. Apart from the

connectivity and analyticity constraints and as long as only

one function is involved, the location of the branch cuts is

quite arbitrary. The situation is completely different as soon

as several functions are involved and identities are considered:

the domains have to coincide. Thus branch cuts have to be

chosen in a consistent way inside a corpus of functions of

interest.

C. Adherence

It is customary to extend the domain of definitions to include

the branch cuts, so that the function can be defined on the

branch cut itself. There, the value of the function is taken as

the limit of its values at points approaching the branch cut from

one of its sides. In the numerical context, Kahan shows that

using signed zeroes avoids having to make a choice [Kah87].

In the symbolic computation context a choice has to be made

and the boundary of the domain is closed on one side and

open on the other one. Making the choice of which side is the

closed one is the adherence question [BBDP05]. For instance,

the definition of ln in [AS64] is taken so that ln(−1) is iπ.

Again, these choices have to be made consistently if several

functions are involved.

D. Inverse Functions

Inverse functions form a large class of functions that are

commonly defined by analytic continuation. Suppose that f :
C → C is analytic, that f(x0) = y0 and that f ′(x0) �= 0.

Then there is a trivial function

f̃ : {x0} → {y0}, x0 �→ y0

which clearly has an inverse. By the Inverse Function The-

orem, this can be extended to a neighbourhood of y0, and

ultimately to the whole of C apart from those points where

f ′(x) = 0.

Example 1: The basic example is
√

defined as the inverse

of

f : C→ C, x �→ x2.

Since f ′(1) = 2 �= 0, we can define a function f−1 in a

neighbourhood of 1 with f−1(1) = 1 and then extend it to

larger connected domains. However, f−1 cannot be continued

arbitrarily far round the unit circle, for otherwise we would

get the contradicting value f−1(1) = −1, see Section II-A.

III. KAHAN’S RULES

Branch cuts for
√
z, as well as other inverse functions

like ln z, zω , arcsin(z), arccos(z), arctan(z), arcsinh(z),
arccosh(z) and arctanh(z) are given in [AS64]. In all cases,

they can be deduced from that of ln once the function is

expressed in terms of ln (but even this expression is not

neutral, as the second author was initially taught logarithms

with a different branch cut). For these functions, Kahan

claims [Kah87]:

There can be no dispute about where to put the slits;
their locations are deducible. However, Principal
Values have too often been left ambiguous on the
slits.

In the terminology above, this means that the positioning

question is soluble, and the problem is the adherence question.

He states the following rules governing the location of the

branch cuts:

R1. These functions f are extensions to C of a real elemen-

tary function analytic at every interior point of its domain,

which is a segment S of the real axis.
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R2. Therefore, to preserve this analyticity (i.e. the conver-

gence of the power series), the slits cannot intersect the

interior of S .

R3. Since the power series for f has real coefficients, f(z) =
f(z) in a complex neighbourhood of the segment’s in-

terior, so this should extend throughout the range of

definition. In particular, complex conjugation should map

slits to themselves.

R4. Similarly, the slits of an odd function should be invariant

under reflection in the origin, i.e. z → −z.

R5. The slits must begin and end at singularities.

While these rules are satisfied by the branch cuts of the inverse

functions listed above, they do not completely specify their

location, unless one adds a form of Occam’s razor:

R6. The slits might as well be straight lines.

We shall interpret R4 in an extended way, by applying it as

well when f(z) + f(−z) is a constant, as will be motivated

by the example of inverse cotangent in Section III-B.

A. Worked example: arctan

Let us apply these rules to arctan, considered as the inverse

of tan. Writing

tan(z) =
eiz − e−iz

i(eiz + e−iz)

and solving a quadratic equation gives an expression for

arctan in terms of ln:

arctan(z) = − i

2

(
ln(1 + ix)− ln(1− ix)

)
.

From this expression one deduces that the singularities are

located at ±i, so that it is analytic on R. Moreover, as the

inverse of an odd function, arctan itself is odd. Hence we

need a cut which

(R5) joins i and −i,
(R3) is invariant under complex conjugation, and

(R4) is invariant under z → −z.

(R6) We have the choice between a line from −i to i
through 0 and two lines −i − ti and i + ti, t > 0,

meeting at infinity, but

(R2) the first of these two options is not admissible,

giving the classical branch cut z = 0 + iy, |y| > 1.

B. The arccot dilemma

The strange case of arccot described in the introduc-

tion is still consistent with these rules. The key point is

in R1: in fact arccot1 and arccot9 were defined as dif-

ferent functions over R: they agreed on R+ (in particular

limx→+∞ arccot1(x) = limx→+∞ arccot9(x) = 0), but not

on R−:

arccot1(−1) = 3π/4,

arccot9(−1) = −π/4.
Therefore the limits at −∞ are different, and in fact arccot9

is continuous at infinity (but discontinuous at 0). What should

the branch cuts of these functions be? For arccot1, most of

TABLE I
ALTERNATIVE DEFINITIONS OF FUNCTIONS

Function Linear o.d.e. Definition by inverse

exp y′ = y log−1

log y′ = 1/x exp−1

sin; cos y′′ = −y arcsin−1; arccos−1

tan; cot — arctan−1; arccot−1

sec; csc — arcsec−1; arccsc−1

arcsin; arccos y′ = ±1√
1−x2

sin−1; cos−1

arctan; arccot y′ = ±1
1+x2 tan−1; cot−1

arcsec; arccsc y′ = ±1

x
√

x2−1
sec−1; csc−1

sinh; cosh y′′ = y arcsinh−1; arccosh−1

tanh; coth — arctanh−1; arccoth−1

sech; csch — arcsech−1; arccsch−1

arcsinh; arccosh y′ = 1√
x2±1

sinh−1; cosh−1

arctanh; arccoth y′ = ±1
1−x2 tanh−1; coth−1

arcsech; arccsch y′ = ±1

x
√

1∓x2
sech−1; csch−1

the reasoning of Section III-A applies. Strictly speaking, the

function is not odd, but it is “odd apart from a constant”,

and hence the branch cuts should still be symmetric under

z → −z. Therefore it should have the same cuts as arctan,

i.e. z = 0 + iy, |y| > 1.

arccot9 is odd, so all that reasoning applies, except that R2

no longer rules out the cut passing through 0. Indeed, since

arccot9 is discontinuous at 0, we are left with z = 0+iy, |y| <
1 (the cut in [AS64, 9th printing]).

IV. LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Many of the elementary, trigonometric, inverse trigonomet-

ric functions and hyperbolic versions of those are part of the

very large class of solutions of linear differential equations1

(see Table I). Here, we set to extend the previous set of rules

to fix the location of the branch cuts in a way that is consistent

with that of the previous section. Also, we only consider the

case where the singularities are all regular singular points

(meaning that the solutions have only algebraic-logarithmic

behaviour in their neighbourhood).

Let us assume throughout that we are given a linear ordinary

differential equation

L(y) =

n∑
i=0

ci
di

dxi
y = d, ci, d ∈ C[x]. (3)

At the cost of dividing by d, one differentiation and some re-

normalisation, we can consider the homogeneous equivalent

L(y) =

n+1∑
i=0

ĉi
di

dxi
y = 0, ĉi ∈ C[x]. (4)

More generally, we can homogenize Equation (3) whenever

the inhomogeneous part d itself satisfies a linear o.d.e. of the

form (4), as is the case with all examples in Table I. Outside

the zeros of cn (or ĉn+1), knowing y and sufficiently many

1Nonlinear equations have the major complication that it may not be
obvious where the singularities are, and indeed they may not be finite in
number. Some entries of Table I do not satisfy a linear o.d.e., and this fact is
indicated by a dash.
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of its derivatives at some point x0 (the obvious meaning of

initial conditions) defines y as an analytic function in the

neighbourhood of x0:

y(x) = y(x0) + (x− x0)y
′(x0) + · · · , (5)

where higher derivatives of y beyond the initial conditions are

computed by applying (3) or (4) and their derivatives to the

initial conditions. If it weren’t for singularities, this would be

an excellent definition.

Example 2: The function
√

can also be defined by

xy′ − 1

2
y = 0, y(1) = 1.

Obviously, the leading coefficient x has a (regular) singularity

at 0.

A. Germs of branch cuts

In the vicinity of a regular singularity, the location of a

branch cut can be shown by the form adopted for the local

expansion.

For instance, the branch cut for arctan joins i to −i along

the imaginary axis via infinity (see Section III-A). The local

behaviour at i is therefore well described by

arctan(x) =
−i
2

ln(1 + ix) + i ln
√
2 +

1

4
(x− i) + · · · (6)

written in such a way that the branch cut “heads north”.

We can think of the precise formula used to encode the

expansion at the singularity as encoding the germ of the branch

cut, i.e. its local behaviour. The correct angle can always be

achieved by rotating the argument. This solves the positioning

problem as far as the germ of the branch cut is concerned. We

also need to consider the adherence problem. Eq. (6) inherits

the adherence from the logarithm, and therefore, for y > 1,

means that

arctan(0 + iy) = lim
x→0+

arctan(x+ iy),

which is the adherence described in [Kah87] as “counter-

clockwise continuity”. When we need the other adherence,

we simply use the fact that ln(1/x) = − ln(x) except on the

branch cut.

B. Heuristic rules

The adaptation of Kahan’s rules to an o.d.e. L(y) = 0
together with a starting point is as follows:

R2′. The branch cuts do not enter the circle of convergence.

R3′. Complex conjugation is respected.

R4′. Any symmetries inherent in the power series are re-

spected.

R5′. The branch cuts begin and end at singularities.

R6′. The branch cuts are straight lines.

R7′. The branch cuts are such that C less the branch cuts is

simply connected.

These subsume Kahan’s rules, at the cost of explicitly re-

quiring an initial value, which was implicit in his rules R1

and R2. He did nt need an equvalent of R7′ as his examples

only had two singularities. In general, it is required so that

the Monodromy Theorem (e.g. [Mar67, p. 269]]) applies and

guarantees uniqueness of function values.

These rules do not necessarily completely determine the

branch cut: a “random” differential equation with singularities

scattered in the complex plane and no special symmetries will

not be determined. Moreover, they do not give any guarantee

of consistency between different functions. For instance, both

functions g and q of (1) and (2) satisfy the same linear

differential equations. Our rules that lead only to straight

lines cannot be compatible with branch cuts that come from

compositions of solutions of simpler differential equations

with algebraic functions. However, they serve the simple

purpose of producing useful and correct branch cuts in a wide

variety of cases, including all those discussed before.

C. Worked example: arctan

We apply these rules to arctan, now defined by

y′ =
1

1 + x2
, y(0) = 0.

The singularities of this differential equation are clearly at

x = ±i, and the function so defined is odd. Hence we need a

cut which:

(R5′) joins i and −i,
(R6′) does it in a straight line,

(R3′) is invariant under complex conjugation,

(R4′) is invariant under z → −z,

(R2′) does not enter the unit disk.

Thus we find again the classical branch cut z = 0+iy, |y| > 1.

We then deduce expansions at the singularities that match the

germs of this cut as in (6).

D. 5 lnx or lnx5?

Once ln has been defined, the functions F1 = 5 lnx and

F2 = lnx5 are different: F1(i) = 5πi
2 while F2(i) = πi

2 .

Nevertheless, they are both solutions to xy′ − 5 = 0 with

y(1) = 0. Our approach would make the choice 5 lnx with

only one branch cut, while F2 has five branch cuts, at angles

of {1, 3, 5, 7, 9}π/10, thus making the domain not connected

(and violating R7′).

E. A harder example

Let us consider the functions f defined by

f ′ =
2x

1 + x4
,

or, if one prefers homogeneous equations,

x(1 + x4)f ′′ + (3x4 − 1)f ′ = 0.

In both cases, we assume we are given real initial conditions

at 0. This example is selected because it has two simple, lin-

early independent solutions—1 and arctan(x2)—to compare

with the result, but the method does not use this information

and would apply even if no such solution could be found. So

here is what we get:
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(R5′) The equation has four regular singularities at

z = ±√±i = ±1± i√
2

(one can check that 0 is just an apparent singularity

by exhibiting a basis of formal power series solutions

and that ∞ is not a singularity by changing x
into 1/x).

(R6′) These four singularities have to be connected by

straight lines.

(R2′) We cannot connect the singularities pairwise (in

either way!) without going to infinity.

(R4′) The symmetry f(ix) = −f(x) can be checked

directly from the equation, so that branch cuts should

be mapped to branch cuts by a rotation of π/2.

(R3′) Reality implies that branch cuts are also mapped to

branch cuts by horizontal symmetry.

We are thus left with only the following choice: Cuts that

“head northeast” from 1+i√
2

, “northwest” from −1+i√
2

etc., all

meeting at infinity. This is indeed consistent with arctan(x2).
It is worth noting that this function actually also admits

branch cuts that violate R2′ and R7’: for example we can

connect −1−i√
2

to +1−i√
2

, and −1+i√
2

to +1+i√
2

. This is a peculiarity

of our construction, and the fact that these are vlid follows,

not from the Monodromy Theorem, but from the fatc that the

residues at these branch points are equal and opposite.

V. CONCLUSIONS

When it comes to converting an analytic (be it linear

ordinary differential equation, inverse function, or possibly

other) definition of a function into a well-defined single-

valued one, so that one can answer questions such as “what

is ln(−1)?” or “what is arctan(2i)”, branch cuts may need

to be imposed on the locally analytic function. While the

definition of the function may stipulate the endpoints of the

cut, it does not, in general, specify the location of the cut

between its endpoints, nor indeed even the germ of the cut at

the singularities.

We have given a simple set of rules that is convenient

when nothing else is known about the function. This set of

rules is sufficient to recover the classical branch cuts of the

elementary inverse trigonometric or hyperbolic trigonometric

functions. However, it is important to remember that this is

only a useful heuristic, while there are cases where different

cuts are dictated by the application. In a specific context,

getting the right overall function defined by a formula can even

require inconsistent choices of the branch cuts of component

functions: see, e.g., the Joukowski map studied in [Hen74, pp.

294–8]) and reported on in [Dav10].
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