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Abstract

We extend Zeilberger’s fast algorithm for de�nite hypergeometric summation to non-hypergeo-
metric holonomic sequences. The algorithm generalizes to the di�erential case and to q-calculus
as well. Its theoretical justi�cation is based on a description by linear operators and on the
theory of holonomy. c© 2000 Elsevier Science B.V. All rights reserved.

R�esum�e

Nous �etendons l’algorithme rapide de Zeilberger pour la sommation hyperg�eom�etrique d�e�nie
au cas des suites holonomes non hyperg�eom�etriques. L’algorithme se g�en�eralise aussi au cas
di��erentiel et du q-calcul. Sa justi�cation th�eorique se fonde sur une description par op�erateurs
lin�eaires et sur la th�eorie de l’holonomie. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: @-�nite functions; Holonomic functions; Symbolic integration; Symbolic summation;
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In [33], Zeilberger initiated an algorithmic treatment of special functions that led to
e�cient algorithms for summation and integration [24]. In this approach, he considered
a large class of functions and sequences that enjoys numerous closure properties, the
class of holonomic functions. He also suggested how special functions and sequences
from q-calculus are amenable to a similar treatment. Simple de�nitions of holonomy
in the classical continuous and discrete cases are as follows.

De�nition. A function f(x1; : : : ; xn) is holonomic when its derivatives span a �nite-
dimensional vector space over the �eld of rational functions in the xi’s; a sequence is
then holonomic when its multivariate generating function is holonomic.
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Complete de�nitions of the q-calculus counterparts are too involved to be recalled
here. Indeed, holonomic and q-holonomic functions and sequences are classically in-
troduced in a di�erent way, adopting a module-theoretic approach. More speci�cally,
Zeilberger’s de�nition [33, Section 2.2.4] is based on Bernstein’s theory of holonomic
modules [8,9], i.e., D-modules with a certain dimension property; this theory was gen-
eralized to a notion of holonomic modules in the q-case by Sabbah [26, De�nition
2.3.1]. We refer the reader to [10,15] for textbooks on holonomy. In the case of (con-
tinuous) functions, both de�nitions are in fact equivalent owing to [33, Lemma 4.1,
27, Theorem 2.4 and Appendix 6]. In the case of sequences, they are equivalent owing
to [33, Section 3.3.2]; a third alternative de�nition is provided by Lipshitz [22].
As to the q-case, we only remark at this point that for a constant q that is not a

root of unity, the q-dilations f(q�1x1; : : : ; q�nxn) for �i ∈N of a q-holomonic function
f(x1; : : : ; xn) span a �nite-dimensional vector space over the �eld of rational functions
in the xi’s, and that similarly the shifts uk1+�1 ;:::; kn+�n for �i ∈N of a q-holonomic se-
quence uk1 ;:::; kn span a �nite-dimensional vector space over the �eld of rational functions
in the qki ’s. We generically use holonomic function to refer to either of the four cases
above.
Algorithms for the summation of holonomic sequences rely on the method of creative

telescoping [34]. Given a bivariate sequence u= (un; k), this method computes a linear
recurrence satis�ed by the de�nite sum Un =

∑
k∈Z un; k . The calculation is as follows:

assume that another sequence v= (vn; k) and rational functions �i in n only satisfy the
identity

L∑
i=0

�i(n)un+i; k = vn; k+1 − vn; k ; (1)

summing over k and considering technical assumptions on v then yields a linear recur-
rence satis�ed by (Un). The method extends to the di�erential case and to q-calculus
[5,21,23,25]. Note that, for it to work, the rational functions �i must not depend on k.
On the other hand, the sequence u to be summed is usually described in applications
by linear recurrences whose coe�cients do involve k. In this regard, Eq. (1) can be
viewed as the result of a sort of elimination of k from the description of u. This could
be made more precise in terms of polynomial elimination in skew algebras of operators
(see Section 1).
A univariate sequence (un) such that un+1=un is a rational function in n is called hy-

pergeometric. Similarly in the multivariate case, a sequence (un1 ;:::;nr ) is hypergeometric
when each quotient un1 ;:::;ni+1;:::;nr =un1 ;:::;nr is a rational function in the ni’s. Equivalently,
hypergeometric sequences are de�ned by linear �rst-order recurrences. Hypergeometry
does not imply holonomy, as exempli�ed by the sequence u given by un; k=(n2+k2)−1

(see [30]).
To perform the elimination problem of determining an equation like (1), Zeilberger

�rst gave a general but theoretical algorithm based on the calculation of a skew re-
sultant [33]. He himself called this algorithm the slow algorithm, and proposed his
fast algorithm [32] for a restricted class of sequences: this algorithm is guaranteed
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to terminate on sequences which are simultaneously hypergeometric and holonomic.
Such sequences are called holonomic hypergeometric. Zeilberger’s theory extends to
multiple summations of holonomic hypergeometric sequences, with counterparts for
(possibly multiple) integrals and their q-analogues [30,31]. As an example of applica-
tion, Zeilberger’s algorithm computes the following sum in closed form:

2n∑
k=0

(−1)k
(
2n
k

)(
2k
k

)(
4n− 2k
2n− k

)
=
(
2n
n

)2
:

In [13], we described uni�ed but rather slow algorithms based on skew Gr�obner ba-
sis calculations to perform creative telescoping in general classes of functions and
sequences, including the class of holonomic functions. This can be viewed as a gen-
eralization of Zeilberger’s slow algorithm. Our main contribution in the present article
is to extend Zeilberger’s fast algorithm to a class of @-�nite functions, i.e., functions
de�ned by linear equations of any order, in the uni�ed setting of Ore operators. For
instance, our algorithm rediscovers identities like

∞∑
n=0

Pn(x)yn =
1√

1− 2xy + y2
;

∞∑
n=0

J2n+1=2(x) =
∫ x

0

cos t√
2�t

dt;

where the Pn(x)’s are the Legendre orthogonal polynomials and the J�(x)’s are the
Bessel functions of the �rst kind. In each case, we start from a description of the
summand s in the left-hand side in terms of linear operators which vanishes at s, and
we obtain an operator that vanishes at the right-hand side. Note that in both cases,
the summand is not a hypergeometric term, nor does it satisfy any �rst-order linear
ordinary di�erential equation.
Zeilberger’s fast algorithm for de�nite hypergeometric summation is based on an

algorithm for inde�nite hypergeometric summation due to Gosper [17,18]. For se-
quences u=(uk) and U =(Uk) such that Uk+1−Uk=uk , U is called an inde�nite sum
of u. Gosper’s algorithm recognizes whether there exists a hypergeometric inde�nite
sum U of a hypergeometric sequence u, and if so computes such a U . When a solution
is found, the sum

∑k−1
j=0 uj is Uk −U0. The sequences u and U are related by an equa-

tion of the form Uk=�(k)uk with � a rational function, so that the summation problem
reduces to computing �. It turns out that � satis�es a linear recurrence with polynomial
coe�cients, which can be solved for rational solutions � by Abramov’s algorithm [1].
Alternatively, Gosper’s clever remark is that it su�ces to solve a derived equation for
polynomial solutions, which is done by a method of undetermined coe�cients (see [3]
for a re�nement). As an example of application, Gosper’s algorithm computes

k∑
j=0

4j(
2j
j

) = 2
3
(k + 1)4k(

2k
k

) +
1
3
:

If a positive integer L and rational functions �i were known to be such that the left-hand
side of Eq. (1) admits a hypergeometric inde�nite sum, Gosper’s algorithm would
apply to compute this sum. Based on this observation, Zeilberger’s fast algorithm
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introduces undetermined coe�cients for the �i’s and uses an extension of Gosper’s
algorithm to solve for a hypergeometric inde�nite sum (vk) together with rational �i’s.
This process is run with increasing values of L until the inde�nite summation prob-
lem becomes solvable. When u is a holonomic hypergeometric sequence, the termina-
tion of the algorithm is guaranteed by holonomy. The algorithm then yields Eq. (1)
from which creative telescoping computes a linear recurrence satis�ed by the de�nite
sum U .
In this article, we generalize Zeilberger’s algorithm to the case when the linear equa-

tions satis�ed by (un; k) have orders larger than 1, and are not necessarily recurrences.
The de�nition of @-�nite functions [13] is recalled in the next section. In contrast
with Zeilberger’s algorithm which is based on Gosper’s approach to hypergeometric
inde�nite summation, our extension of Zeilberger’s algorithm relies on an alternative
approach based on Abramov’s algorithm. In Section 2, we modify Abramov’s algo-
rithm to obtain an algorithm for inde�nite @-�nite summation and integration. This �rst
algorithm always terminates. Then, we extend Zeilberger’s algorithm to @-�nite func-
tions in Section 3. More speci�cally, this second algorithm is guaranteed to terminate
for the subclass of holonomic @-�nite inputs only; although, it may also terminate for
some non-holonomic @-�nite inputs, it is to be viewed as a heuristic method in this
case. In the same section, we show how the algorithm extends to the iterated calcula-
tion of multiple sums. We next detail in Section 4 how the normal forms for @-�nite
functions used in those algorithms are obtained by methods of Gr�obner bases. In Sec-
tion 5, we �nally de�ne certi�cates and companion identities in the context of @-�nite
identities.

1. Algebras of operators and @-�nite functions

A di�erential counterpart to Zeilberger’s slow algorithm for sequences is available
in the case of functions [27,33] and the method extends to q-analogues [30]. All
these algorithms are very similar in their structures and behaviours, and a uni�ed
description is in terms of linear operators. To this end, we introduced [13] a large
class of operator algebras which are well suited to accommodate linear di�erential
and di�erence operators, their q-analogues and numerous other generalized di�erential
operators. In [13], we described various methods based on Gr�obner basis calculations
to solve the elimination problem of determining the relevant analogues to Eq. (1). In
the following, we set up notation so as to consider linear operators with coe�cients in
a ring A, and over a �eld of constants K.
Let A be a ring endowed with a ring endomorphism �. Following [14], a

�-derivation � on A is an additive endomorphism that satis�es the skew Leibniz law
(ab)�=a�b�+a�b for all a; b ∈ A. (By analogy with the prime notation for derivatives,
we denote the application of �’s and �’s by powers.) Since the corresponding gener-
alized di�erential operators are those of interest to our study, we often simply call a
�-derivation a derivation.
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De�nition. Let K be a commutative �eld, A be a K-algebra and @ be a tuple (@1; : : : ; @r)
of indeterminates. We assume that A is endowed with injective ring endomorphisms
�i’s and additive endomorphisms �i’s, one pair for each i = 1; : : : ; r, such that each �i

is a �i-derivation. We assume further that �i and �j; �i and �j; �i and �j commute for
i 6= j. The Ore algebra A[@; �; �], which we also denote A[@1; �1; �1] : : : [@r; �r; �r], is
the ring of polynomials in @ with coe�cients in A, with usual addition and a product
de�ned by associativity from the commutation rules

@i@j = @j@i and @ia= a�i@i + a�i

between the @i’s, and between the @i’s and elements a ∈ A, respectively.

It follows from the commutation rules above that each element p of an Ore algebra
has a unique representation in the form p =

∑
�1 ;:::;�r c�1 ;:::;�r @

�1
1 : : : @�r

r for coe�cients
c� ∈ A. For each i, the degree of p in @i is de�ned using this form as the largest �i

such that there exists a non-zero c�, or as −∞ when none exists. The injectivity of
the �i’s is crucial to recover the usual properties of the degree with respect to sums
and products of polynomials.
An Ore algebra O is clearly a K-algebra. In order to view it as an algebra of linear

operators, we assume that a commutative K-algebra F is given, whose elements we
call functions, and we require F to be a left O-module containing K. Usually in ap-
plications, F even contains A. In any case, this makes it possible to consider operators
with coe�cients in A. For instance, in the case of the Ore algebra O=K(z)[@; 1; d=dz]
and linear di�erential operators, the algebra of Laurent formal power series K((z)) is
a left O-module for the action (@·f)(z) = f′(z) and (z·f)(z) = zf(z); in the case of
the Ore algebra O=K(n)[@; Sn; 0] and linear recurrence operators, the algebra KN of
sequences for term-wise addition and term-wise product is a left O-module for the
action (@·u)(n)= un+1 and (n·u)(n)= nun. By an abuse of notation, in the applications
we freely use the name of the operator instead of the indeterminate @. For example,
both Ore algebras above are also denoted K(z)[d=dz; 1; d=dz] and K(n)[Sn; Sn; 0]. This
is justi�ed by the fact that neither d=dz nor Sn satis�es any algebraic relation that holds
globally on F.
When viewed as operators, elements of Ore algebras are called Ore operators. By

a derivative of a function f ∈ F, we mean the result of the action of @i on f, which
we denote @i·f. More generally, any @�·f, where @� = @�1

1 : : : @�r
r with �i ∈ N, is also

called a derivative. For a function f ∈ F, the left ideal

Annf = {P ∈ O |P·f = 0}
describes much of the structure of the derivatives of f. It is called the annihilating
ideal of f and satis�es O=Annf ' O ·f as left O-modules.
Of particular interest are @-�nite functions, which correspond in applications to func-

tions and sequences de�ned by a �nite number of equations and initial conditions. To
de�ne @-�nite functions, we focus on Ore algebras whose K-algebra A of coe�cients
is in fact a �eld F.
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De�nition. Let O= F[@; �; �] be an Ore algebra over a �eld F. A function f in a left
O-module is called @-�nite when its derivatives span a �nite-dimensional vector space
O ·f over F. A left ideal I such that O=I is a �nite-dimensional F-vector space is
also called a @-�nite ideal.

Here, ‘@’ is a mere symbol which bears no relation to the indeterminates @i on
which the Ore algebra O is built. It follows from the de�nition that a function f
is @-�nite if and only if its annihilating ideal Annf is @-�nite. For the Ore algebra
O = F[@1; 1; d=dx1] : : : [@n; 1; d=dxn] built on di�erential operators @i’s over the �eld
F = C(x1; : : : ; xn), we recover the de�nition of holonomy, so that @-�niteness extends
holonomy of (continuous) functions. In contrast, @-�nite sequences (with respect to
ordinary shifts) need not be holonomic: in particular, all hypergeometric sequences
would otherwise be holonomic.

2. Inde�nite @-�nite @−1

For an Ore algebra O= F[@; �; �] over a �eld F, let @ be any of the @i’s and F be
a left O-module of functions. We call a function F ∈ F an anti-derivative of f ∈ F

when @·F = f. Alternatively, we write @−1·f to denote any of those anti-derivatives.
We develop an algorithm to compute all the anti-derivatives of a @-�nite function f
that lie in O ·f. The algorithm always terminates, detecting when no @−1·f exists in
O ·f and returning the special symbol ⊥ in this case. In the case of hypergeometric
sequences (and Ore algebras built on shift or di�erence operators), we recover the
variant of Gosper’s algorithm that solves the linear recurrence for rational solutions by
Abramov’s algorithm.
Let us insist on the algorithm not requiring holonomy of the input function f, but

merely @-�niteness; in contrast, the algorithm of Section 3 will require both. On the
other hand, neither @-�niteness nor holonomy is su�cient to ensure the existence of
anti-derivatives in the module O ·f, as exempli�ed by the holonomic function 1=x and
by the holonomic hypergeometric sequence 1=n.

Algorithm 1. Inde�nite @-�nite summation

Input: a basis B for the annihilating ideal of a @-�nite function f.
Output: a basis for all operators Q such that Q·f = @−1·f, or ⊥.
(1) from B, compute a Gr�obner basis G and get the �nite basis {@�}�∈I of O=Annf

canonically associated to G (see Section 4);
(2) introduce undetermined coe�cients �� for � ∈ I and rewrite @

∑
�∈I ��@

� − 1
in this basis by reduction by G;
(3) solve the corresponding system of �rst order linear equations for all systems of

solutions �� ∈ F;
(4) if solvable, return all the Q =

∑
�∈I ��@

�; otherwise return ⊥.
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2.1. The algorithm

Algorithm 1 reduces the problem to that of solving a system of linear Ore operators
for rational function solutions. Those rational functions are then viewed as the coef-
�cients of operators Q such that @−1·f = Q·f. We proceed to establish the following
theorem.

Theorem. Let F[@; �; �] be an Ore algebra over the �eld F and @ be any of the @i’s.
Assume that F admits a decision algorithm to solve linear equations L·� = 0 where
L ∈ F[@; �; �] for all solutions � in F, and that � is invertible. Then; Algorithm 1 is a
decision algorithm to compute a basis of all the anti-derivatives of a @-�nite function
f in O ·f.

Note that the requirement in Algorithm 1 that the input be the whole annihilating
ideal Annf of a @-�nite function f can be weakened: the algorithm also terminates
on any @-�nite subideal of Annf; however, it may fail to �nd some anti-derivatives
with an incomplete input. This change of ideals corresponds to a change of @-�nite
functions by introducing parasitic solutions.
The key point is to make the action of the derivation operator @ on the �nite-dimen-

sional vector space O ·f explicit. Let F be any function in O ·f. We �x an F-basis of
O ·f of the form {@�·f}�∈I for a �nite set I of indices. Equivalently, this yields the
F-basis {@�}�∈I of O=Annf. Then F =Q·f where Q ∈ O=Annf can be written Q=∑
�∈I ��@

�. With the assumption F=@−1·f, i.e., @·F=f, we have @Q=1mod Annf,
i.e.,

@Q =
∑
�∈I

��
�@

�@+
∑
�∈I

��
�@

� = 1: (2)

Now, 1 and each @�@ in this equation can be rewritten in the basis (@�)�∈I . From the
computational point of view, this rewriting is performed by methods of Gr�obner basis
and with a particular choice of basis of O ·f. For the sake of clarity, we postpone the
description of these ingredients to Section 4.
Next, for each � ∈ I , extracting the coe�cients in @� yields an equation∑

�∈I

��;���
� + ��

� = ��;

where the ��;� and �� are rational functions in F. Denoting vectors and matrices by
capital letters, we get the following linear di�erential system:

��� + �� =M: (3)

We next solve this system in a way which depends on the algebra of operators under
consideration. Either the system is solvable, and each Q yields an anti-derivative Q·f
in O ·f; or it is not, and no anti-derivative exists in O ·f.
Let us detail how to solve (3). Each equation of the system may involve several

unknown functions. Excluding ongoing research still to be further developed [7], we do
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not know of algorithms to solve this kind of linear system directly; the �rst step is there-
fore to ‘triangularize’ the system, when possible, so as to obtain an equation in a single
unknown function together with a system to be solved step by step. More precisely,
the point is to put the system under the triangular, more generally trapezoidal, shape

|I |∑
j=i

Ti; j(@)· j = �i i = 1; : : : ; d; d6|I |

for operators Ti; j ∈ F[@; �; �], rational functions �i ∈ F and unknown functions  j that
are linear combinations of the ��’s and such that the latter can be computed once the
 j’s are known. This can be achieved for any Ore operator @, provided that � be in-
vertible, by appealing to an algorithm due to Abramov and Zima [4]. Indeed, introduce
the new Ore algebra F[@∗; �∗; �∗] where �∗ = �−1 (the inverse of �) and @∗ acts on
F by �∗ =−�−1�. Applying �−1 to (3) yields the system

��−1
�− @∗·�=M�−1

;

where ��−1
and M�−1

are known and � is the unknown. This is exactly the input
form of the algorithm in [4]. Once the system has been ‘triangularized’, we have to
solve successive linear equations in a single unknown function for rational solutions
��. This resolution in turn depends on the operator @∗.
The case of (ordinary or q-) recurrences: Recurrences are an instance of the more

general case when @ acts by �=�−1 (where 1 is the identity). We then usually work
with the operator � of (ordinary or q-) shift instead of the operator � of (ordinary or q-)
di�erence, because both operator algebras F[�; �; �] and F[�; �; 0] are isomorphic when
�=�−1. After the triangularization step described above, we are led to linear equations
in the shift or q-shift operator. In each case, an algorithm of Abramov’s applies [1,2].
The case of (ordinary) di�erential equations: In the di�erential case, the application

� is the identity, so that the change of Ore operators in the triangularization step above
is trivial (@∗ = −@). We next solve the successive di�erential equations by another
algorithm of Abramov’s [1].
Finally, note that the value 1 on the right-hand side of Eq. (2) was inessential.

Changing (2) into the more general equation

@Q =
∑
�∈I

��
�@

�@+
∑
�∈I

��
�@

� = H (4)

for H ∈ O=Ann f makes it possible to detect if H ·f has an anti-derivative in O ·f.
This a�ects the vector M in system (3) in a linear way only, which will be used in
the algorithm for creative telescoping of the next section.

2.2. Example: harmonic summation identities

Harmonic summation identities like
n∑

k=1

(
k
m

)
Hk =

(
n+ 1
m+ 1

)(
Hn+1 − 1

m+ 1

)
;
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where Hn denotes the harmonic number
∑n

k=1 k
−1, are classically obtained by sum-

mation by parts or by techniques of generating functions. (See also Karr’s general
algorithm [19,20].) One can alternatively �nd closed-form evaluations for harmonic
sums using our algorithm. Introducing fn = (

n
m)Hn, we show the following equivalent

form of the identity above:

Fn =
n∑

k=1

fk =
(n+ 1)2

(m+ 1)2
fn − (n− m)(n− m+ 1)

(m+ 1)2
fn+1: (5)

To this end, let us compute the �rst two shifts of f:

fn+1 =
n+ 1

n+ 1− m

( n
m

)[
Hn +

1
n+ 1

]
=

n+ 1
n+ 1− m

fn +
1

n+ 1− m

( n
m

)
;

fn+2 =
n+ 2

n+ 2− m
fn+1 +

n+ 1
n+ 2− m

[
1

n+ 1− m

( n
m

)]
:

Taking the appropriate linear combination of the above equations, one gets the follow-
ing linear homogeneous recurrence with coe�cients in Q(n; m):

(n− m+ 1)(n− m+ 2)fn+2 − (2n+ 3)(n− m+ 1)fn+1 + (n+ 1)2fn = 0:

In the case of more complex expressions, one would appeal to the closure properties
of @-�nite functions under addition and product and use algorithms described in [13].
As a consequence of the above relation, the sequence f is a @-�nite function with
respect to the Ore algebra O = Q(n; m)[Sn; Sn; 0], where Sn is the shift operator with
respect to n. Since O ·f is a two-dimensional vector space with basis {f; Sn·f}, we
introduce a generic operator Q = �n + �nSn and compute (Sn − 1)Q − 1. Then, system
(3) takes the form

(2n+ 3)�n+1 + (n− m+ 2)(�n+1 − �n) = 0;
(n+ 1)2�n+1 + (n− m+ 1)(n− m+ 2)(�n + 1) = 0:

Uncoupling this system so as to get rid of � yields the recurrence

(n+ 2)2

(n− m+ 2)(n− m+ 3)
�n+2 − 2n+ 3

n− m+ 2
�n+1 + �n + 1 = 0;

which is solved for rational solutions by Abramov’s algorithm. Replacing in the system
and eliminating �n+1 between both equations, we �nd

�n =
(n+ 1)2

(m+ 1)2
− 1 and �n =− (n− m)(n− m+ 1)

(m+ 1)2
:

The sum F satis�es (Sn−1)·(F−f)=f=(Sn−1)·(Q·f), whence Fn− [(Q+1)·f](n)
is a constant seen to be 0 at n= 1. This proves Eq. (5).
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The same algorithm would �nd evaluations of other harmonic sums like
n∑

k=1

(−1)k
(mk )

Hk =
(−1)n
(mn )

[
n+ 1
m+ 2

Hn +
m+ 1− n
(m+ 2)2

]
− m+ 1
(m+ 2)2

;

n∑
k=1

(2k + 1)H 3
k = (n+ 1)

2H 3
n − 3

2
n(n+ 1)H 2

n +
3n2 + 3n+ 1

2
Hn − 3

4
n(n+ 1);

n∑
k=1

k2Hn+k =
n(n+ 1)(2n+ 1)

6
[2H2n − Hn]− n(n+ 1)(10n− 1)

36
:

(For the second identity, note that the iterated application of the shift operator on H 3
n

spans a vector space with basis {1; Hn; H 2
n ; H

3
n }; for the third identity, compute the

inde�nite sum
∑n

k=1 k
2Hm+k , then set the parameter m to n.) However, the method

cannot �nd
n∑

k=1

H 3
k = (n+ 1)H

3
n − 3

2
(2n+ 1)H 2

n + 3(2n+ 1)Hn +
1
2
H (2)

n − 6n;

where H (2)
n =

∑n
k=1 k

−2 denotes generalized harmonic numbers, unless the presence of
the term in H (2)

n is guessed, together with its exponent, and the method slightly modi�ed
to perform Gr�obner basis calculations and reductions in the module O ·H 3

n +O ·H (2)
n .

3. Fast de�nite @-�nite @−1



For an Ore algebra O = A[@; �; �], let again @ be one of the @i’s and F be a
left O-module of functions. To extend the case of de�nite summation and integration
operators like

∑b
k=a and

∫ b
a dx, we assume that there is a linear operator @

−1

 de�ned

on F such that @@−1
 = 0. Here, the notation @−1
 must be viewed as a single symbol,
where 
 refers to no speci�c mathematical object, simply standing as a remembrance of
the notation

∫

 used to indicate an integration over a domain 
. (In [13], we used a less

general de�nition for @−1
 , requiring that @−1
 @ also be 0. This corresponds to analytical
assumptions on F which are irrelevant here.) In this section, we build an Algorithm 1
to perform the elimination step of creative telescoping on @-�nite functions. In other
terms, we solve Eq. (1). This in turn allows us to perform de�nite (q-)summation
or (q-)integration of a (q-)holonomic function; in the case of a @-�nite function of a
more general type, the algorithm can sometimes be fruitfully used in a heuristic way
to compute a de�nite anti-derivative.
Zeilberger’s fast algorithm is guaranteed to terminate on holonomic hypergeometric

sequences only. Similarly, in the case of (possibly mixed, possibly q-) di�erential or
di�erence operators, we call a simultaneously @-�nite and holonomic function holo-
nomic @-�nite. We already described the connection between @-�niteness and holon-
omy: except in the case of sequences, both concepts are equivalent (up to a minor
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technical condition). Our phrasing may thus seem redundant; the analogy to the case of
holonomic hypergeometric sequences and the fact that it refers to a restricted set of op-
erator types make its raison d’être: our algorithm inputs a description of the annihilating
ideal of any @-�nite function; we prove its termination for holonomic @-�nite functions.

3.1. The algorithm

Let us �rst vindicate our algorithm by the case of holonomic functions in the dif-
ferential case. A (continuous) holonomic function f(x; y) is a @-�nite function with
respect to the Ore algebra O=C(x; y)[Dx; 1; d=dx][Dy; 1; d=dy] built on (ordinary) dif-
ferential operators. (Here, Dx and Dy act by �x = d=dx and �y = d=dy, respectively.)
The original description of holonomy in the framework of D-modules [8,9] implies
that there exists a non-zero operator in

AnnO f ∩ C(x)[@; 1; �]
(see [33, Lemma 4:1]). As a result, there is a non-trivial identity of the form

L∑
i=0

�i(x)Di
x·f = Dy·[Q(x; y; Dx; Dy)·f]:

Algorithm 2. De�nite @-�nite summation

Input: a basis B for the annihilating ideal of a @-�nite function f.
Output: a pair of operators (P;Q) satisfying (6).
(1) from B, compute a Gr�obner basis G and get the �nite basis {@�@′ �}(�;�)∈I of

O=Annf canonically associated to G (see Section 4);
(2) for L= 0; 1; : : ::

(a) introduce undetermined coe�cients ��;� for (�; �) ∈ I and �i for i=0; : : : ; L
and rewrite @

∑
(�;�)∈I ��;�@�@′ � − ∑L

i=0 �i@′ i in this basis by reduction
by G;

(b) solve the corresponding system of �rst order linear equations for all systems
of solutions �i ∈ F and ��;� ∈ F(x);

(c) if solvable, return all the solutions (P;Q) for P=
∑L

i=0 �i@i and Q=
∑

(�;�)∈I

��;�@�@′�; otherwise loop.

mimicking Eq. (1) for Q ∈ O. This existence property transfers to the discrete case
through generating functions and similar results hold for q-analogues [26].
More generally, for a @-�nite function f with respect to an Ore algebra

F(x1; : : : ; xs)[@; �; �][@′; �′; �′]

in two operators @ and @′ and such that @ commutes with elements of F but not with
the xi’s, we look for solutions of

P(@′)·f =
L∑

i=0

�i@′i·f = @·[Q(x; @; @′)·f]; (6)
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where P 6= 0 and the �i’s do not depend on x. The existence of a non-trivial pair
(P;Q) is not guaranteed in general, but it is owing to [33, Lemma 4:1] in the (classical)
holonomic setting and mutatis mutandis in the q-holonomic case [26]. We summarize
the result of this section in the following theorem.

Theorem. Let F(x)[@; �; �][@′; �′; �′] be an Ore algebra and assume that F(x) admits
a decision algorithm to solve linear equations L·�= 0 where L ∈ F(x)[@; �; �] for all
solutions � in F(x). Assume further that � is invertible. When there exists a pair
(P;Q) that satis�es (6); Algorithm 2 terminates and returns such a pair. This is
guaranteed to happen when f is holonomic @-�nite.

Whenever we know an operator P that makes Eq. (6) solvable for Q, we can
use Algorithm 1 to get Q. Indeed, it was noted that the value of H in Eq. (4) is
inessential; letting H = P (where @′ replaces @) makes it possible, after reduction
modulo Ann f, to apply Algorithm 1, the vector M in (3) depending linearly on the
�i’s. However, we do not want to solve for Q uniformly in the parameters �i’s; we
need to �nd for which values of the �i’s Eq. (6) is solvable for Q. Therefore, we
use a variant of Algorithm 1 to solve system (3) for � and M simultaneously. This
corresponds to re�nements of Abramov’s algorithms that mimic Zeilberger’s extension
[34] of Gosper’s algorithm.
Thus, our algorithm for the de�nite case proceeds like Zeilberger’s fast algorithm: we

make a choice for L, introduce undetermined coe�cients �i’s and apply our inde�nite
summation algorithm; if system (3) is solvable, we have �nished, otherwise we increase
L. Note that even in the holonomic case, no bound on L is known except for the case
of (q-)proper-hypergeometric terms designed by Wilf and Zeilberger [30] (see [28]
for an improvement).

3.2. Example: Neumann’s addition theorem

We illustrate the previous algorithm with Neumann’s addition theorem

1 = J0(z)2 + 2
∞∑
k=1

Jk(z)2

for the Bessel functions of the �rst kind Jk(z). The latter are de�ned as @-�nite functions
by the operators

z2D2z + zDz + z2 − k2; zDzSk + (k + 1)Sk − z and zDz + zSk − k

in the Ore algebra O=Q(k; z)[Dz; 1; Dz][Sk ; Sk ; 0]. This relates to the previous section by
setting @=�=Sk−1, �=Sk , @′=�′=Dz and �′=1. An important fact whose signi�cance
will only become clear in Section 4 is that the three operators above constitute a
Gr�obner basis of Ann Jk(z) (with respect to a total degree order 4 satisfying Dz 4
Sk). This Gr�obner basis can be obtained from the classical pure di�erential equation
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and pure recurrence equation satis�ed by Jk(z). It follows from an algorithm from [13]
that the squares Jk(z)2 are also @-�nite and are described by the Gr�obner basis

zD2z + (−2k + 1)Dz − 2Skz + 2z;

zDzSk + zDz + (2k + 2)Sk − 2k;
z2S2k − 4(k + 1)2Sk − 2z(k + 1)Dz + 4k(k + 1)− z2:

The module O ·Jk(z)2 has to contain Jk(z)2 and its �rst two derivatives, or equivalently
Jk(z)2, Jk(z)J ′

k(z) and J ′
k(z)

2, which are linearly independent. Thus, the system above
generates the ideal Ann Jk(z)2 in O and the module O=Ann Jk(z)2, which is isomorphic
to O ·Jk(z)2, is a three-dimensional vector space, with basis {1; Dz; Sk}. Knowing the
generating function of the Jk(z), one could prove that Jk(z) and Jk(z)2 are holonomic
in (k; z), so that Algorithm 1 has to terminate on Ann Jk(z)2; else, the algorithm has
to be run in a heuristic way. To this end, we introduce a generic Q=uk+vkSk+wkDz.
Next, we let L = 1 and introduce two parameters �0(z) and �1(z) in Eq. (6) to get a
solution. System (3) then reads

uk =
k
z
�1(z); vk = 0; wk = 1

2�1(z)

and we obtain the constraint �0 = 0 (�1(z) is any rational function in z). We set �1(z)
to 1, so that

P = Dz and Q =−
(
k
z
+

Dz

2

)
:

With these values for P and Q, we have after creative telescoping:

P·
( ∞∑

k=0

Jk(z)2
)

− [Q·Jk(z)2]k=∞k=0 = 0;

from which follows by linearity that

Dz·
(
2

∞∑
k=0

Jk(z)2 − J0(z)2 − 1
)
= 2[Q·Jk(z)2]k=∞k=0 − Dz·(J0(z)2 + 1)

is identically zero since limk→+∞ Jk(z) = limk→+∞ J ′
k(z) = 0. Thus,

2
∞∑
k=0

Jk(z)2 − J0(z)2 − 1

is a constant, veri�ed to be 0 when z = 0. This proves Neumann’s theorem.

3.3. Extension to multivariate anti-derivatives — Application to iterated multiple
sums

So far in this section, we have described the (q-)summation and the (q-)integration
of bivariate functions f: starting from a system describing f in terms of two operators
@ and @′, we have used an algorithm to compute a single operator in @′ for the de�nite
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anti-derivative with respect to @. In fact, the dependency of the sum or integral in
a single variable is inessential and we can perform summations and integrations of
multivariate @-�nite functions f whose de�nite anti-derivatives with respect to @ are
still multivariate @-�nite. This stems from the fact that the requirement in Eq. (6) that
P and Q be polynomials in a single @′ (disregarding the dependency of Q in @) can
be relaxed. For a tuple @ of operators and another operator @ whose @−1
 is to be
computed, Eq. (6) then becomes

P(@)·f =
∑
(�;�)

��;�@
�@�·f = @· [Q(x;@; @)·f] ; (7)

where P 6= 0 does not involve @ and the ��;�’s do not involve x. Instead of running a
loop over univariate polynomials of increasing degree L, like in step (2) of Algorithm 2,
one runs a loop to allow polynomials P over more and more multivariate monomials in
@, in a way to be detailed below. Now, instead of stopping the loop in Algorithm 2 after
the �rst solution found, one continues so as to obtain a system of operators P − @Q,
until the P’s span a @-�nite ideal. Termination is proven in the case of holonomic
@-�nite functions in the same way as in the simpler univariate case, by appealing to
[33, Lemma 4:1].
More speci�cally, let F(x)[@; �; �][@; �; �] be an Ore algebra in the operators @ and

@ = (@1; : : : ; @r), @ being none of the @i’s. We still assume that F(x) admits a decision
algorithm to solve linear equations L·f=0 where L ∈ F(x)[@; �; �] for all solutions in
F(x). In order to consider polynomials P over more and more multivariate monomials
in @ instead of the polynomial

∑L
i=0 �i@′ i in step (2) of Algorithm 2, we propose

several options:
(1) Let {mi}i∈N be a sequence that runs over all monomials @� in @. Consider the

polynomial P =
∑L

i=0 �imi with undetermined coe�cients �i.
(2) Consider the polynomial P=

∑
|�|≤L ��@

� with total degree L and undetermined
coe�cients ��.
(3) Using a term order 4 on the monomials in @ (see the de�nition in [13]), an

extension of the FGLM algorithm [16] can be used to determine the successive sets of
monomials involved in the P’s. The key idea is that when a polynomial P has been
obtained, any multiple of its leading monomial m need not be considered any longer
in the next loops. In this way, we obtain an algorithm for de�nite anti-derivative that
is very close in spirit to the algorithms for addition and product of @-�nite functions
which are described in [13].
We now illustrate this algorithm by proving the double summation identity

∞∑
r=0

∞∑
s=0

(−1)n+r+s
(n
r

)(n
s

)(n+ r
r

)(
n+ s
s

)(
2n− (r + s)

n

)
=

∞∑
k=0

(n
k

)4
; (8)

which can be found in [24]. The di�cult part of the proof is to compute a recurrence
operator for the left-hand side. Such an operator was given by Wegschaider by a
direct evaluation of the double sum [28]. Here, we compute the left-hand side using
Algorithm 2 in an iterated way:
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(1) Starting from the system

(n+ 1)(n+ 1− r)(n+ 1− s)(n+ 1− r − s)Sn

+(n+ s+ 1)(n+ r + 1)(2n+ 1− r − s)(2n+ 2− r − s);

(r + 1)2(2n− r − s)Sr + (n+ r + 1)(n− r)(n− r − s);

(s+ 1)2(2n− r − s)Ss + (n+ s+ 1)(n− s)(n− r − s); (9)

which de�nes the summand in the double sum as a @-�nite function with respect to the
Ore algebra Q(n; r; s)[Sn; Sn; 0][Sr; Sr; 0][Ss; Ss; 0], we �rst compute the simple sum over
s. To this end, we apply the multivariate extension of Algorithm 2, setting @=(Sn; Sr)
and @ = Ss − 1, so as to perform the inner summation (with respect to s) �rst. We
select option (2); for L= 2, we introduce the polynomials

P = �0;0 + �1;0Sn + �0;1Sr + �2;0S2n + �1;1SnSr + �0;2S2r ;
Q = �(s)

under undetermined form. Reducing Z = P − (Ss − 1)Q by system (9) and solving
the reduced system for rational functions � and �i; j yields two operators P, one with
monomials S2n ; S2r ; Sn; Sr and 1, the other with monomials S2r ; Sn; Sr and 1, both with
large polynomial coe�cients in n and r. Solving the corresponding Eq. (7), it turns
out that the right-hand side vanishes so that both P’s in fact annihilate the sum over s.
(2) Moreover, these two P’s span a @-�nite ideal with respect to the Ore algebra

Q(n; r)[Sn; Sn; 0][Sr; Sr; 0]. Thus, we can apply the simple case of Algorithm 2 so as
to perform the summation over r. This yields the following operator R that annihilates
the double sum:

(n+ 2)3S2n − 2(2n+ 3)(3n2 + 9n+ 7)Sn − 4(4n+ 5)(4n+ 3)(n+ 1):
So far, we have computed an operator R which annihilates the left-hand side of
Eq. (8). Applying Algorithm 2 again to the right-hand side, we get the same second-
order operator. Since both sides of Eq. (8) agree at n = 0 and n = 1, where they are
1 and 2, respectively, and since the leading coe�cient (n+ 2)3 of R does not vanish
for n ∈ N, we get Eq. (8) by induction on n ∈ N.

4. E�ective calculations with @-�nite ideals

In the algorithms for hypergeometric summation, an important rôle is played by
the relation of similarity: two hypergeometric terms tn and t′n are called similar when
tn=t′n is a non-zero rational function in n. When summing a hypergeometric term tn,
Gosper’s algorithm therefore searches for an inde�nite sum similar to the summand;
the algorithm works in the one-dimensional vector space Q(n)·tn, so that each sequence
t′ under consideration can be represented by the single rational function r such that
t′ = rt.
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In our extension to the case of @-�nite functions with respect to an Ore algebra
O=F[@; �; �] over a �eld F, the rôle of F(n)·tn is undertaken by the �nite-dimensional
vector space O ·f =⊕�∈I F@

�·f for a �nite set I . Each function under consideration
in our algorithms are represented by its rational coordinates �� ∈ F in the basis of
the @�’s. Two problems arise naturally: one is to compute a set I which determines
a basis; another is to compute normal forms in O ·f. In particular, when an operator
P ∈ O is applied to a function

∑
�∈I ��@

�·f ∈ O·f, we need to normalize the result
(P
∑

�∈I ��@
�)·f in a form

∑
�∈I  �@

�·f. Both problems are solved using methods of
Gr�obner bases that are described in [13]. Any Gr�obner basis {G1; : : : ; G‘} of the left
ideal Annf⊂O with respect to a term order 4 (see de�nitions in [13]) determines a
suitable set I in the following way. Call hi=@

�i the leading term of Gi with respect to
4. Then, consider the set I = {� | ∀i hi 64 @�} of those terms @� greater than none of
the hi’s. This set de�nes a basis {@�·f}�∈I of O ·f which we have called canonically
associated to {G1; : : : ; G‘} in Algorithms 1 and 2. Moreover, the procedure of reduction
of operators in O with respect to 4 by the Gr�obner basis provides us with a procedure
of normal form in O=Annf ' O·f. Finally, note that (skew) Gr�obner bases can be
computed from any basis by a variant of Buchberger’s algorithm [13].

5. Holonomic certi�cates and companion identities

In the case of de�nite hypergeometric summation, the certi�cate of an identity
L∑

i=0

�i(n)Un+i = 0 where Un =
∑
k∈Z

un; k

is de�ned [29,31] as the tuple (Rn; k ; �0(n); : : : ; �L(n)), where Rn; k = vn; k =un; k for a hy-
pergeometric v in Eq. (1). In the case of functions speci�ed by operators in the Ore
algebra K(x)[@; �; �][@′; �′; �′], we de�ne the certi�cate of an identity

P·F =
L∑

i=0

�i@′
i·F = 0 where F = @−1
 ·f; (10)

as the tuple ((��)�∈I ; �0; : : : ; �L), where the ��’s are de�ned to satisfy Eq. (4) for H=P
(where @′ replaces @). As in the hypergeometric case, this certi�cate alone allows the
veri�cation of Eq. (10), and a multivariate extension is possible along the lines of
Section 3.3.
An extension of the companion identities described by Wilf and Zeilberger in the

hypergeometric case [29] is available in the generalized setting of @-�nite functions.
Starting from Eq. (6), we write the Euclidean division P=R+@′S(@′) of P by @′, and
we apply @′−1
 to get the following new form of a companion identity:

−@@′−1
 Q·f + @′−1
 R·f + @′−1
 @′S·f = 0:
Very often in applications, R = 0 or @′−1
 @′ = 0, which simpli�es the identity. The
second case happens, for instance, when summing over natural boundaries.
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As an example, we develop a companion identity obtained from a generating function
for the Bessel functions Jn(z). We have∑

n∈Z
Jn(z)un = e(uz=2)(1−1=u

2); (11)

which can be proved using the algorithms of the previous sections. More precisely,
proving the identity obtained after dividing by the right-hand side with our algo-
rithms, we get operators P = 2uDz and Q = 2uDz + Sn + u2 in the Ore algebra
K(u; z; n)[Dz; 1; Dz][Sn; Sn; 0], that satisfy Eq. (6) with @ = Sn − 1 and @′ = Dz. A
certi�cate for identity (11) could be derived from the pair (P;Q). Writing

fn = Jn(z)une−(uz=2)(1−1=u
2);

we have P·f+ (Sn − 1)Q·f=0. Summation of this equality with respect to n over Z
yields (11); integration with respect to z over (0;+∞) yields

[2uf]+∞0 + (Sn − 1) ·
∫ +∞

0
(Q·f) dz = 0

when u¿ 1 or −1¡u60. The left-hand term of the sum is zero when n¿1, so that
the integral is constant for n¿1. Evaluating it at n = 1 and after some rewriting, the
companion identity for n¿1; u¿ 1 or −1¡u60 reads∫ ∞

0
une−(uz=2)(1−1=u

2)[Jn(z) + uJn−1(z)] dz = 2u:

6. Conclusions

The value of the left factor @ in Eqs. (2) and (4) plays no important rôle in Algo-
rithm 1, and can in fact be changed to any L ∈ F[@; �; �]. As an application, this yields
an algorithm to compute particular solutions y0 of a non-homogeneous linear equation
L·y = H ·f for a @-�nite function f and H ∈ F[@; �; �] when a particular solution
exists in O ·f: solve LQ=H modAnnf by an obvious extension of Algorithm 1 and
set y0 =Q·f. This particular solution often has a nicer expression than that computed
by the method of variation of the constants. More generally, a problem solved by
Algorithm 1 is that of determining if the sum of a left ideal and a principal right
ideal LO for L ∈ F[@; �; �] contains a given element of an Ore algebra. This problem
of solving a mixed equation is also close to questions related to the factorization of
operators.
The crucial step of Algorithm 2 for de�nite summation and integration is the resolu-

tion of the linear system (3), which we perform by �rst uncoupling the system using an
algorithm from [4], before appealing to specialized algorithms [1,2] to solve equations
in a single unknown function. Other uncoupling algorithms are available [6,11], but we
emphasize the desire for an algorithm that works directly at the level of systems of Ore
operators. Indeed, from our �rst experiments, the uncoupling step is the computational
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bottleneck of Algorithm 2, in relation to the dimension of the vector space O·f; we
hope that avoiding it could allow calculations in vector spaces of higher dimensions.
Besides, the theory of holonomy is restricted to three types of operators (deriva-

tion, shift and q-shift). A challenging problem is to develop a holonomic theory for
other types of operators, which would extend the scope of Algorithm 2 by enlarging
the class of holonomic @-�nite functions. In the same vein, designing new classes of
(non-holonomic) functions for which Eq. (6) is a priori guaranteed to be solvable
for non-trivial pairs (P;Q) would turn the so far heuristic use of the algorithm into a
guaranteed method.
An extension of Algorithm 2 has been presented to compute a system of operators

that annihilate a multivariate sum or integral known to be @-�nite. We noted that there
is some freedom in the way the outer loop is run in step (2) of this algorithm. In
particular, the version based on the FGLM algorithm [16] seems the most interesting in
practice, because it refrains from introducing useless monomials. Elaborating on works
by P. Verbaeten, K. Wegschaider recently obtained a clever algorithm for hypergeo-
metric multiple summation [28]. The method dramatically reduces the number of terms
to be considered in recurrences in order to obtain an annihilating operator for the sum.
Trying to combine this approach with our algorithm for the @-�nite de�nite case is a
promising direction for research.
In the case of a sequence (un; k) with �nite support for each n, the operator Q in (6)

need not be computed to perform creative telescoping, since summing the right-hand
side of (6) clearly yields 0. More generally, the case of de�nite @−1
 when the right-hand
side of

P(@′)@−1
 ·f = @−1
 @·[Q(x; @; @′)·f]
can be predicted to be 0 is called de�nite @−1
 over natural boundaries. In [13], we
built on ideas of N. Takayama’s to develop an algorithm which takes advantage of this
situation to achieve e�ciency. When both sides of Eq. (6) are needed, this algorithm
from [13] used in conjunction with Algorithm 1 is an alternative to the fast algorithm
presented above: after computing P by our algorithm from [13], the application of
Algorithm 1 with H =P in Eq. (4) makes it possible to compute Q from P. However,
note that Algorithm 2 is more robust than this method in the sense that it does not
need more than a @-�nite description of the input to �nd a solution (see [13] for further
details).
As a last example, we point out that our algorithms allowed us to prove the following

identity due to Calkin [12]:

n∑
k=0


 k∑

j=0

(
n
j

)
3

= n23n−1 + 23n − 3n2n−2
(
2n
n

)

in only a few minutes of calculations. Using the algorithm for multivariate summation
that was developed by Wilf and Zeilberger basing on Sister Celine’s technique [31]
would require a not-so-easy four-fold summation.
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We �nish with a few words about the programs used and the timings obtained so
as to demonstrate the e�ciency of our algorithms. No integrated implementation of
them is available yet, so that we ran them step by step, using our package MGFUN

to compute the Gr�obner bases needed. (This package is available from the URL
http://algo.inria.fr/libraries/ and by anonymous ftp from ftp.inria.fr:/

INRIA/Projects/algo/programs; the part of the package concerning Gr�obner basis
calculations has been integrated into MAPLE V RELEASE 5.) The calculations of the ex-
amples in the previous sections were performed with the system MAPLE on a DecStation
3000 300X (Alpha); they required between a few seconds and a few minutes each:
a matter of seconds for each harmonic identity in Section 2, for Neumann’s addition
theorem in Section 3 and for the generating function of the Bessel functions and its
companion identity in Section 5; 195 s (and 12MB) for Calkin’s identity above, and
390 s (and 15MB) only for the double sum in Eq. (8). As a comparison, the latter two
identities could previously neither be obtained performing the elimination by Gr�obner
bases only, due to too long computations (over a month), nor even with our extension
of Takayama’s algorithm from [13], due to a run out of memory (over 300 MB used).
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