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Abstract. We report on case studies where Zeilberger's fast algorithm

and the other holonomy-based algorithms known so far for de�nite hy-

pergeometric summation fail to �nd the minimal annihilating recurrence

satis�ed by the sum. To explain the phenomenon we propose a new elim-

ination paradigm, together with a promising heuristic method which we

hope to turn into an algorithm in the future. The approach applies to

@-�nite functions as well and extends to the related algorithms.

An Ansatz that Zeilberger Missed

Zeilberger's fast de�nite hypergeometric summation algorithm [13] inputs

a holonomic hypergeometric sequence h

n;k

and outputs a linear recurrence

with respect to n for the sum

H

n

=

X

k2Z

h

n;k

:

More speci�cally the recurrence obtained is represented by a linear recur-

rence operator with coe�cients that are rational functions in n. Based on

the holonomic nature of the input, the algorithm searches for an annihilating

operator N of the special form

N = P + (S

k

� 1)B;(1)

where P is a non-zero k-free operator of the Ore algebra C (n)[S

n

;S

n

; 0] of

linear recurrence operators in the shift S

n

with rational function coe�cients

in n, and B is a rational function of C (n; k). Upon application of N to the

summand h

n;k

and summation over k, the method of creative telescoping [15]

proves (in the case of natural boundaries) that the sum H

n

is annihilated

by the operator P ; indeed, the part in S

k

�1 yields a telescoping sum which

turns out to be zero. Chyzak has extended the algorithm to the case of a

@-�nite summand [3] by replacing the rational function B with a general

operator of C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0].

In cases where Zeilberger's or Chyzak's algorithm applies, the operator P

is not garanteed to be of the smallest possible degree for an annihilating

operator of H. For instance, Paule and Schorn gave a parametrized family

of example where Zeilberger's algorithm and provably no other holonomy-

based algorithm that searches for an operator of the form (1) can compute

the minimal annihilating operator [10]. The order gap can furthermore be
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made as large as wished. This fact has a geometrical interpretation: the

operator P in (1) is taken from

(Ann h+ (S

k

� 1)C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0]) \ C (n)[S

n

;S

n

; 0];

where Ann h is the left ideal in C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0] of operators anni-

hilating h. This intersection does not contain any operator of the minimal

order in the case of the example by Paule and Schorn.

Based on the observation of the case studies in Part I, we propose to

replace the special form (1) for N by the new special form

N = P + (S

k

� 1)B + Z;(2)

where P is a k-free operator from C (n)[S

n

;S

n

; 0] and B and Z are rational

functions from C (n; k) with the essential constraint that

X

k2Z

Z(n; k)f

n;k

= 0:(3)

In the case of a @-�nite summand, Z is replaced with a general operator

of C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0]. Our observation is that non-minimality oc-

curs in the cases of Part I because there exists a non-zero Z modulo S

k

� 1

on the left. Such an operator Z is neither accomodated by Zeilberger's algo-

rithm [13] nor by Chyzak's algorithm [3]. As proved in Section 1, the order

gap between the minimal annihilating operator for the sum and the output

of Zeilberger's algorithm is exactly the order of the output of Zeilberger's

algorithm applied to sum Zf for suitable Z.

After Section 1, which provides with an interpretation of the order gap in

the form of a lemma, Part I reports on a few case studies which shed light

on the non-minimality behaviour of Zeilberger's algorithm; in Part II two

heuristics to obtain triples (P;B;Z) satisfying (2) are then detailed.
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1. Interpretation of the Order Gap

Lemma 1. Given a non-zero holonomic @-�nite summand f

n;k

for @-�nite-

ness with respect to the operator algebra C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0], let

P + (S

k

� 1)B + Z and P

0

+ (S

k

� 1)B

0

be two annihilating operators of f where P and P

0

are non-zero elements

of C (n)[S

n

;S

n

; 0], B, B

0

, and Z are elements of C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0]

with the constraint that the sums over k of

P � f; P

0

� f; (S

k

� 1)B � f; (S

k

� 1)B

0

� f; and Z � f



NON-MINIMALITY OF ZEILBERGER 3

are well-de�ned, and that additionally P is of minimal order amongst the

possible P in the tuples (P;B;Z), that P

0

of minimal order amongst the

possible P

0

in the tuples (P

0

; B

0

), and that

X

k2Z

(Z � f)(n; k) = 0:

Consider then an annihilating operator

P

1

+ (S

k

� 1)B

1

of Z �f where P

1

is a non-zero element of C (n)[S

n

;S

n

; 0], B

1

is an element

of C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0] with the constraint that the sums over k of

P

1

Z � f and (S

k

� 1)B

1

Z � f

are well-de�ned, and that additionally P

1

is of minimal order amongst the

possible P

1

in the tuples (P

1

; B

1

).

Then if f and Z �f generate the same C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0]-module,

the order gap between P

0

and P is exactly the order of P

1

.

Before proving this lemma, let us remark that (P

0

; B

0

) and (P

1

; B

1

) are

the outputs of the holonomy-based Zeilberger-Chyzak-like algorithms ap-

plied to f and Z � f , respectively. Furthermore, the last hypothesis

C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0] � f = C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0]Z � f

is equivalent to saying that Z is invertible modulo the annihilating operators

of f . This always holds when f is non-zero hypergeometric.

Proof. Since by construction both P and P

0

cancel

P

k2Z

f and P is of

minimal order, there exists Q in C (n)[S

n

;S

n

; 0] such that P

0

= QP . Then,

we obtain another annihilator of f ,

QZ + (S

k

� 1)(QB �B

0

);

and

P

k2Z

QZ � f = Q �

P

k2Z

Z � f = 0. By the inversibility of Z, there

exists H in C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0] such that

(QB �B

0

) � f = HZ � f:

Now, the operatorQ+(S

k

�1)H cancels Z�f , so that by the minimality of P

1

,

there exists Q

1

in C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0] such that Q = Q

1

P

1

. We con-

tend that Q

1

is invertible, i.e., is a non-zero rational function from C (n; k),

so that the order gap between P

0

and P , which is also the degree of Q, is

exactly the order of P

1

, as was to be proved.

Indeed, it follows from the de�nitions of P and P

1

that

P

1

P + (S

k

� 1)(P

1

B �B

1

Z)

annihilates f . Then, by the minimality of P

0

, there exists some Q

2

to be

found in C (n)[S

n

;S

n

; 0] such that P

1

P = Q

2

P

0

. Since P

0

= QP = Q

1

P

1

P ,

this entails that P

1

P = Q

2

Q

1

P

1

P . We thus have the relation 1 = Q

2

Q

1

,

whence that Q

1

is invertible.
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The following lemma shows that any multiplier Z that appears in (3),

and takes the role of L

0

below, has to be found in an annihilator N of

the form (2). It is a new form for the \Fundamental Lemma of Holo-

nomic Summation and Integration," already given in the hypergeometric

case in [11, 12], and whose essence is an elimination lemma in the Weyl

algebra [14, Lemma 4.1]. The kind of a result which is still missing is that

minimal order operator P that cancels a sum gives rise to a relation of the

form (2) for a suitable Z.

Lemma 2. Let f

n;k

be a holonomic @-�nite summand for @-�niteness with

respect to the operator algebra C (n; k)[S

n

;S

n

; 0][S

k

;S

k

; 0] and L

0

be any ele-

ment of C [n; k][S

n

;S

n

; 0][S

k

;S

k

; 0]. Then there exists a non-zero operator L

from C [n][S

n

;S

n

; 0][S

k

;S

k

; 0], free of k and such that L+ L

0

annihilates f .

Note that the result is obvious if L

0

is non-zero and already free of k (just

take L = �L

0

), and that any L in question can uniquely be rewritten in

the form P + (S

k

� 1)B, for a P which does not involve S

k

.

Proof. We proceed to prove that the map

� : C [n][S

n

;S

n

; 0][S

k

;S

k

; 0] 7! C [n; k][S

n

;S

n

; 0][S

k

;S

k

; 0] � f

de�ned by �(L) = (L + L

0

) � f is not injective, whence that there exists

an L that satis�es the claim. To this end, introduce the total degree �ltra-

tion (F

p

)

p�0

of the algebra C [n; k][S

n

;S

n

; 0][S

k

;S

k

; 0]. In other words, F

p

is

the vector space of all operators of total degree in (n; k; S

n

; S

k

) less than or

equal to p. For each p � 0, this induces a restriction map

�

p

: C [n][S

n

;S

n

; 0][S

k

;S

k

; 0] \ F

p

7! F

p

� f:

Now, C [n][S

n

;S

n

; 0][S

k

;S

k

; 0]\F

p

has dimension O(p

3

) as a C -vector space,

whereas F

p

� f has dimension O(p

2

) by the holonomy of f . So for large

enough p, the map �

p

is not injective, and neither is �.

Part I. Case Studies Showing the Non-Minimality Behaviour

The programs that have been used for these case studies are the Paule-

Schorn implementation zb of Zeilberger's algorithm [10], the Paule-Riese

implementation qZeilb of the q-analogue algorithm [9], and our packageMg-

fun for other interactive manipulations. The packages can be obtained: at

the URL http://www.risc.uni-linz.ac.at/software/ for zb and qZeilb;

at the URL http://algo.inria.fr/chyzak/mgfun.html for Mgfun.

2. A Non-Minimality Example by Paule and Schorn

2.1. Classical Approach. The identity

n

X

k=0

(�1)

k

�

n

k

��

tk

n

�

= (�t)

n

(4)
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for integers t � 2 and n � 0 is immediate from the summation theorem [6]

n

X

k=0

(�1)

k

�

n

k

�

X

i�0

c

i

�

k

i

�

= (�1)

n

c

n

;

after noting that

�

tk

n

�

= t

n

�

k

n

�

+ lower order terms.

Surprizingly enough, the �rst order operator S

n

+ t is not obtained by

Zeilberger's fast algorithm for t � 3 [10]. This corresponds to the fact

that the result of the application of S

n

+ t to the summand is not Gosper

summable for those values of t.

Throughout the remainder of this section, let

f

n;k;t

= (�1)

k

�

n

k

��

tk

n

�

and F

n;t

=

n

X

k=0

f

n;k;t

:

2.2. A Weird Contiguity Relation. Before treating identity (4) from

the point of view of our new paradigm, we proceed to rederive it by prov-

ing a mysterious contiguity relation that could well be related to a hidden

symmetry.

Distinguishing the k that appear in each of the binomials of f

n;k;t

, we

consider (�1)

k

0

�

n

k

0

��

tk

n

�

. Setting k

0

= k � p leads to the study of

f

n;k;t;p

= (�1)

k+p

�

n

k � p

��

tk

n

�

:

We proceed to prove that the bivariate sum

F

n;3;p

=

n

X

k=0

f

n;k;3;p

(5)

equals (�3)

n

independently from the integer p 2 Z. This extends the orig-

inal identity, which corresponds to the case p = 0.

The hypergeometric term f

n;k;3;p

being holonomic in (n; k; p), it is possible

to simulaneously eliminate the indeterminates k and S

k

from a description

of its annihilating ideal in the algebra

C [n; p; k][S

n

;S

n

; 0][S

p

;S

p

; 0][S

k

;S

k

; 0];

this can be performed by a Gr�obner basis calculation and it turns out that

f

n;k;3;p

is annihilated by the k-free operator

C = (n+ 1)S

n

+ (2n+ 3p+ 3)S

p

+ n� 3p:

At this point note that by setting S

p

to 1, this operator C becomes

(n+ 1)(S

n

+ 3);

a multiple of the annihilating operator of F

n;3

= F

n;3;0

which we are hunting

for. Thus, if we knew the independence of F

n;3;p

from p, we would have
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obtained the minimal annihilating operator of F

n;3

. Applying C to f

n;k;3;p

and summing over k yields the contiguity relation

(n+ 1)F

n+1;3;p

+ (2n+ 3p+ 3)F

n;3;p+1

+ (n� 3p)F

n;3;p

= 0:(6)

For any integer p 2 Z, the equality of (5) to (�3)

n

is easily veri�ed in the

case n = 0; it is then obtained by induction on n 2 N from the previous

contiguity relation.

Of course, the same k-free operator annihilates

(�1)

k

�

n

k

��

3(k + p)

n

�

:

On this form, the identity can also be obtained directly as an application of

the classical method of the previous section. Also note that the contiguity

relation (6) can easily be obtained by the variant of Takayama's algorithm

described in [4].

2.3. The New Paradigm. In the case t = 3 it was noted that Zeilberger's

algorithm fails to obtain the �rst order operator S

n

+ 3 for the sum (5).

However, it is recovered once one notices

n

X

k=0

~

f

n;k

=

n

X

k=0

(�1)

k

�

n

k

��

3k

n

�

(3k � n(n+ 2)) = 0;(7)

for the modi�ed summand

~

f

n;k

= (3k � n(n+ 2))f

n;k

= (�1)

k

�

n

k

��

3k

n

�

(3k � n(n+ 2));

and non-negative integers n, and that the operator N of the form (2) ob-

tained when

P = 2(n+ 1)(2n+ 1)(S

n

+ 3);(8)

B = �

27k

3

� 27(n+ 1)k

2

+ 3(3n

2

+ 6n+ 2)k � n(n+ 1)(n+ 2)

k � n� 1

;(9)

Z = 9(3k � n(n+ 2));(10)

annihilates the original summand f . On the other hand, note that the sum

in (7) is non-terminating and divergent for non-integer n.

We obtained the operator Z above from the knowledge of the operator P

and the heuristic described in Section 6. Conversely, the knowledge of Z

and the nullity of the modi�ed sum

~

F

n

=

n

X

k=0

~

f

n;k

su�ces to obtain the annihilating operator N , including the operator P

of minimal order; more speci�cally, modifying Zeilberger's algorithm by
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replacing the ansatz

L

X

i=0

�

i

(n)S

i

n

with the new form

9(3k � n(n+ 2)) +

L

X

i=0

�

i

(n)S

i

n

returns the values for the �

i

(n) when 0 � i � 1 = L and for the rational

function B. Applying to

~

f

n;k

and summing over k yields

0 =

n

X

k=0

�

N �

~

f

�

(n; k)

=

�

2(n+ 1)(2n+ 1)(S

n

+ 3) �

~

F

�

(n) + 0�

h

B(n; k)

~

f

n;k

i

k=n

k=0

;

where the last term actually is zero. For this summation to be over natural

boundaries, a crucial point is to argue that the denominator k � n � 1

of B actually introduces no singularity; this is readily proven in view of the

identity

B

~

f = �(3k � n� 1)(3k � n� 2)S

n

� f:

For this matter, any linear combination of f and

~

f with coe�cients that

are any di�erence operators with polynomial coe�cients would do for the

right-hand side.

Again, the modi�ed summand

~

f is not Gosper summable, so that Zeil-

berger's algorithm does not �nd the expected trivial recurrence operator

of order 0 satis�ed by the zero sum

~

F , namely the identity 1. Indeed, it

returns the operator

N

0

= 2(2n+ 1)S

n

+ 3(n+ 2)

of order 1, with \parasitic" solution

(�3)

n

(n+ 1)

�

2n

n

�

�1

:

Up to a polynomial left factor from C [n], the product N

0

P is the operator

2(2n+ 3)S

2

n

+ 3(5n+ 7)S

n

+ 9(n+ 1) = (2(2n+ 3)S

n

+ 3(n+ 1))(S

n

+ 3)

of order two which is obtained by Zeilberger's algorithm. This could in fact

be predicted:

N

0

N = N

0

P + (S

k

� 1)N

0

B +N

0

Z = N

0

P + (S

k

� 1)(N

0

B + CZ);(11)

where C is the rational function delivered by Zeilberger's algorithm together

with N

0

, and precisely such that

N

0

Z � f = N

0

�

~

f = (S

k

� 1)C �

~

f = (S

k

� 1)CZ � f:
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Since N

0

N annihilates h and N

0

P 6= 0, the right-hand side in (11) is the

operator obtained by Zeilberger's algorithm.

Remark: the equality of the modi�ed sum to zero rewrites

7

F

3

 

�n;�n(n+ 2)=3; 1=3; 2=3; 1; 1; 1

1=3� n=3; 2=3� n=3; 1� n=3

�

�

�

�

�

1

!

= 0

for n 2 N . Again, it is divergent for non-integer n.

2.4. The Case t = 4. Similarly when t = 4, Zeilberger's algorithm applied

to f

n;k;4

returns the operator

(12) 3(n+ 3)(3n+ 4)(3n+ 7)(3n+ 8)S

3

n

+ 4(n+ 3)(3n+ 4)(37n

2

+ 180n+ 218)S

2

n

+ 16(n+ 2)(n+ 3)(33n

2

+ 125n+ 107)S

n

+ 64(n+ 1)(n+ 2)(n+ 3)(3n+ 7)

of order three, instead of the order one operator P = S

n

+ 4.

Yet, to recover this �rst order operator, it su�ces to prove that

n

X

k=0

(�1)

k

�

n

k

��

4k

n

�

(64k

2

+ 4(4� 5n� 3n

2

)k � n(15 + 23n+ 10n

2

)) = 0;

and to consider the annihilator N of f = (f

n;k;4

) given in the form (2) by

P = S

n

+ 4;

B =

(4k � n)(4k � n� 1)(4k � n� 2)(4k � n� 3)

3(n+ 1)(3n+ 1)(3n+ 2)(n+ 1� k)

;

Z =

8(64k

2

+ 4(4� 5n� 3n

2

)k � n(15 + 23n+ 10n

2

))

3(n+ 1)(3n+ 1)(3n+ 2)

:

As in the case t = 3, we obtained this operator Z from the operator P by

using the heuristic described in Section 6. So far, we do not understand

whether the congruence modulo 3 in the above denominators has any sig-

ni�cance in relation to t = 4. To see that the singularity induced by B is

no problem, note that

Bf =

(4k � n� 1)(4k � n� 2)(4k � n� 3)

3(n+ 1)(3n+ 1)(3n+ 2)

S

n

� f:

The same singularity can be made obvious for P on the corresponding form:

P =

3n+ 4

n+ 1� k

mod Ann f:

Zeilberger's algorithm applied to Zf now returns the operator

3(3n+ 4)(3n+ 7)(3n+ 8)S

2

n

+ 20(n+ 2)(2n+ 5)(3n+ 4)S

n

+16(n+ 1)(n+ 2)(3n+ 7)

of order two, instead of the trivial identity operator (or order zero).
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Remark: another candidate for Z is

Z = 8k � n(3n+ 5)

and was obtained by the heuristic described in Section 7; Zeilberger's algo-

rithm applied to Zf now returns the operator

3n(3n+ 4)(3n+ 5)S

2

n

+ 4(n+ 3)(10n

2

+ 15n+ 2)S

n

+16(n+ 1)(n+ 2)(n+ 3)

of order two, instead of the trivial identity operator (or order zero). The

corresponding B is

B = �3

n(n+ 1)(3n+ 4)(4k � n)(4k � n� 1)(4k � n� 2)(4k � n� 3)

(k � n� 1)(k � n� 2)(8k � n(3n+ 5))

:

2.5. Hidden Symetry? For t = 3, let us apply the usual heuristic of cre-

ative symmetrizing to try and reduce the order of the ouputs of Zeilberger's

algorithm. To this end, introduce

�

f

n;k

=

1

2

(f

n;k;3

+ f

n;n�k;3

)

whose sum equals that of the original f

n;k;3

. Applying Chyzak's @-�nite

extension of Gosper's algorithm shows that (S

n

+ 3) �

�

f has no inde�nite

sum in the module (2-dimensional vector space) generated by

�

f , a failure

of the creative symmetrizing heuristic. However, this raises the question

of another hidden symmetry: it could still be possible that a symmetry be

hidden in the form of an expression

�

f

n;k

= P (n; S

k

) � f

n;k;3

+B(n; S

k

) � f

n;n�k;3

for which (S

n

+3)�

�

f would be inde�nitely summable by the @-�nite extension

of Gosper's algorithm (in the module generated by this

�

f).

2.6. Obvious But Useless Other Candicates For Z. Observing the

hypergeometric nature of f and starting from the identity

q(n; k)f

n;k+1;t

= p(n; k)f

n;k;t

for any two suitable polynomials p and q satisfying

f

n;k+1;t

f

n;k;t

=

p(n; k)

q(n; k)

;

one is tempted to introduce a generic (hypergeometric) term g

k

and the

multiplicative twister

Z

n;k

= p(n; k)g

k+1

� q(n; k � 1)g

k

;
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for then the sum of the hypergeometric summand Zf is zero:

n

X

k=0

Z

n;k

f

n;k

=

n

X

k=0

(p(n; k)g

k+1

� q(n; k � 1)g

k

)f

n;k;t

=

n

X

k=�1

(p(n; k)f

n;k;t

� q(n; k)f

n;k+1;t

)g

k+1

= 0;

after shifting the term in q and using the recurrence equation satis�ed by f .

In particular for g

k

= g

k+1

= 1, the twister

Z

n;k

= p(n; k)� q(n; k � 1)

�rst appears to be a good candidate to explain non-minimality, but is im-

mediately rejected in view of the fact that Zf is then Gosper summable:

Z

n;k

f

n;k

= (p(n; k)� q(n; k � 1))f

n;k

= q(n; k)f

n;k+1

� q(n; k � 1)f

n;k

:

2.7. Gould-Type Inverse Relations. The Gould class of inverse rela-

tions [7, Sec. 1.3] relates the de�nition

f

n

=

X

k2Z

(�1)

k

�

n

k

��

a+ bk

n

�

g

k

(13)

of a sequence f in terms of another sequence g and its inverse relation

g

n

=

X

k2Z

(�1)

k

�

a+ bn

n

�

�1

a+ bk � k

a+ bn� k

�

a+ bn� k

n� k

�

f

k

;(14)

which gives g in terms of f . For pairs (a; b) such that the denominator a+

bn� k could vanish, we use the variant relation

g

n

=

X

k2Z

(�1)

k

�

a+ bn

n

�

�1

a+ bk � k

a+ bn� n

�

a� 1 + bn� k

n� k

�

f

k

:

Composing both inverse relations in di�erent orders yields two associated

orthogonality relations,

(15)

X

k2Z

(�1)

m+k

�

a+ (b� 1)k

n� k

�

a+ bm�m

a+ bk � k

�

a� 1 + bk �m

k �m

�

= �

n;m

and

(16)

X

k2Z

(�1)

m+k

�

k

m

��

a+ bm

k

��

a+ bn

n

�

�1

�

a+ bk � k

a+ bn� n

�

a� 1 + bn� k

n� k

�

= �

n;m

:

Our focus is on the case (a; b) = (0; 3), and on the pair of sequences

de�ned by

f

n

= (�3)

n

and g

n

= 1:
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We observed that the Zeilberger's algorithm does not return the minimal

(order one) recurrence for the direct relation (13); on the other hand, study-

ing the sum

X

k2Z

t

k

for t

k

= 3

k

2k

3n� k

�

3n

n

�

�1

�

3n� k

n� k

�

involved in the reverse relation (14), we obtain that the summand t

k

is

Gosper summable:

t

k

= (S

k

� 1) �

�

�

3n� k

2k

t

k

�

:

The equality to 1 follows upon summation over k, but the interesting point

is that the annihilating operator obtained in this way is that of minimal

order, namely S

n

� 1. Turning to the orthogonality identities, we �rst note

that the summand s

k

in the �rst form (15) is Gosper summable, even for

generic a and b:

s

k

= (S

k

� 1) � �

(k �m)(a+ bn� k)

(a+ bk � k)(n�m)

s

k

;

on the other hand, the summand in the second form (16) is not Gosper

summable.

We run Chyzak's multivariate extension of Zeilberger's algorithm to per-

form the �rst summation summation (15) over k in the case (a; b) = (0; 3).

We obtain the Gr�obner basis

P

1

= 2(m+ 1)(m� n)(2m� 2n� 1) + 3m(m� n+ 1)(m� n)S

m

+2(n+ 1)(2n+ 1)(m+ 1)S

n

;

P

2

= 2(2m+ 1)(m+ 2)(m+ 1) + (m+ 2)(7m� n+ 5)(m� n+ 1)S

m

+3(m+ 1)(m+ 2� n)(m� n+ 1)S

2

m

;

which annihilates the sum. More speci�cally, the rational multipliers B

i

such that for each i, P

i

+ (S

k

� 1)B

i

annihilates the summand are:

B

1

=

(m+ 1)(3n+ 2�m)

n+ 1�m

B

0

and B

2

=

(m+ 1)(m+ 2)(2m+ 1)

m(n�m)

B

0

for

B

0

=

(k �m)(3k � n)(3k � n� 1)(3k � n� 2)

(3k �m� 1)(3k �m� 2)

:

This B

0

introduces no singularity, owing to the relation

B

0

(n;m; k)t

k

= (k � n� 1)(3k �m� 3)S

�1

k

� t

k

;

and therefore each (S

k

�1)�B

i

(n;m; k)t

k

can be summed over natural bound-

aries. However, the multipliers of B

0

in B

1

and B

2

contain denominators

that seemingly cannot be removed by combining shifts. It entails that the

system fP

1

; P

2

g is only valid when m(n�m)(n+ 1�m) 6= 0. As a conse-

quence, the sum can be proved to be zero for n > m, but the zone n < m
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seemingly cannot be related to the zone n � m. A natural problem still to

be understood is to understand if this relates to non-minimality.

2.8. q-Analogue. The identity (4) of this section

n

X

k=0

(�1)

k

�

n

k

��

tk

n

�

= (�t)

n

;

for positive integers t � 2 and n � 0, has the following q-analogue, that

was recently invented by Abramov, Paule, and Petkov�sek [1]: for positive

integers t and n, we have

n

X

k=0

(�1)

k

q

t

(

n�k

2

)

�

n

k

�

q

t

�

tk

n

�

q

= (�1)

n

q

(t�1)

(

n

2

)

(q

t

; q

t

)

n

(q; q)

n

where

(x; q)

n

= (1� x)(1� qx) � � � (1� q

n�1

x) and

�

n

m

�

q

=

(q; q)

n

(q; q)

m

(q; q)

n�m

:

The same non-minimality behaviour was observed in [1] for this q-case

when t = 3. It should be possible to study this q-identity the way we

do for the Rogers-Ramanujan identity in Section 4 of the present paper.

3. Hagen's Identity

3.1. Origin of the Problem. The identity

n

X

k=0

1

tk + 1

�

tk + 1

k

��

t(n� k)

n� k

�

=

tn + 1

(t� 1)n+ 1

�

tn

n

�

=

�

tn+ 1

n

�

for integers t � 0 and n � 0 is known as Hagen's identity [5, p. 80]; it is

also mentioned in [11, p. 117]. When t = 3, Zeilberger's algorithm applied

to the summand

g

n;k;t

=

1

tk + 1

�

tk + 1

k

��

t(n� k)

n� k

�

=

1

(t� 1)k + 1

�

tk

k

��

t(n� k)

n� k

�

returns the recurrence operator of order 2

4(n+ 2)(2n+ 3)(2n+ 5)S

2

n

� 12(2n+ 3)(9n

2

+ 27n+ 22)S

n

+81(n+ 1)(3n+ 2)(3n+ 4)

= (2(n+ 3)S

n

� 27(n+ 1))(2(n+ 1)(2n+ 3)S

n

� 3(3n+ 2)(3n+ 4));

(17)

whereas a recurrence of order 1 only is expected.

Of course, the summand g

0

n;k;t

= (g

n;k;t

+g

n;n�k;t

)=2, which by construction

is symmetric about k = n=2, shares the same sum as the original g

n;k;t

.



NON-MINIMALITY OF ZEILBERGER 13

Petkov�sek additionally noticed that g

0

is again hypergeometric:

g

0

n;k;t

=

g

n;k;t

+ g

n;n�k;t

2

=

(t� 1)n+ 2

2

1

(t� 1)(n� k) + 1

�

t(n� k)

n� k

�

1

(t� 1)k + 1

�

tk

k

�

;

and that applying Zeilberger's algorithm to the symmetrized version g

0

n;n;3

now returns the right-hand factor of order 1 in the factorization (17) above.

3.2. New Ansatz. For t = 3, we derived the annihilating operator N =

P + (S

k

� 1)B + Z of the summand

g

n;k

=

1

3k + 1

�

3k + 1

k

��

3(n� k)

n� k

�

for

P = S

n

�

3(3n+ 2)(3n+ 4)

2(n+ 1)(2n+ 3)

;

B =

3k(18k

3

� 9(4n+ 1)k

2

+ (18n

2

� 5)k + (3n+ 1)(3n+ 2))

2(n+ 1)(2n+ 3)(k � n� 1)

;

Z = �

3(2k � n)(18k

2

� 18nk � (8n+ 3))

2(n+ 1)(2n+ 3)(2k � 2n� 1)

:

These operators were obtained by a derivation following the heuristic of

Section 6. This time, Z is not a polynomial in k, but a rational function.

However, its only pole introduces no singularity at integer points (n; k) 2 Z

2

.

One veri�es that the sum of Zg is zero, or in other words,

n

X

k=0

�

3(2k � n)(18k

2

� 18nk � (8n+ 3))

2(n+ 1)(2n+ 3)(2k � 2n� 1)(3k + 1)

�

3k + 1

k

��

3(n� k)

n� k

�

= 0:

This is obtained for instance by using Zeilberger's algorithm, which returns

a recurrence of order one only, and by checking a single initial conditions.

Note that the summand Zg satis�es the antisymmetry relation:

(Zg)(n; n� k) = �(Zg)(n; k):

In this case, going from the non-minimal recurrence of order one to the

minimal recurrence of order zero is thus a degenerate instance of creative

symmetrizing.

As a last remark, also note that operating the heuristic of Section 6 in the

localized algebra L described there is essential to get the rational function Z

above with numerator of degree 2: working in the usual algebra C (n)[k] of

polynomials in k yields a di�erent candidate Z with numerator of higher

degree.
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3.3. Another Candidate. Again for t = 3, another candidate for Z is

Z = (2k + 1)(2k � n)

and was obtained by the heuristic described in Section 7 with the ansatz

of a polynomial in n and k of total degree 2; Zeilberger's algorithm applied

to Zg now returns the operator

2(2n+ 1)S

n

� 27(n+ 1)

of order one, instead of the trivial identity operator (or order zero).

Additionally, Z is a good candidate, and we found the triple solution:

P = 2(n+ 1)(2n+ 3)S

n

� 3(3n+ 2)(3n+ 4);

B = �

3k(2k + 1)(3k � 1� 3n)(3k � 2� 3n)(4k � 5� 6n)

(2n+ 1)(k � 1� n)(2k � 1� 2n)

;

Z =

27(2k + 1)(2k � n)

2n+ 1

;

with the property that Bf is summable over natural boundaries, owing to

Bf = �

1

9

(3k � 1)(3k � 2)(4k � 5� 6n)S

k

� f:

4. A Finite Version of Rogers-Ramanujan Identity

n

X

k=�n

(�1)

k

q

(5k

2

�k)=2

(q; q)

n�k

(q; q)

n+k

=

n

X

k=0

q

k

2

(q; q)

k

(q; q)

n�k

for an integer n 2 N .

4.1. Creative Symmetrizing. The q-version of Zeilberger's algorithm ap-

plied to the sum

n

X

k=�n

(�1)

k

q

(5k

2

�k)=2

(q; q)

n�k

(q; q)

n+k

(where (x; q)

n

= (1�x)(1�qx) � � � (1�q

n�1

x)) returns a recurrence operator

of order 5, although the sum also satis�es an operator of order 2 only.

Paule's creative symmetrizing makes it possible to obtain this operator of

order 2 by noting the antisymmetry of the summand when k goes to �k,

and therefore that the initial sum equals the other sum

n

X

k=�n

(�1)

k

q

(5k

2

�k)=2

(q; q)

n�k

(q; q)

n+k

1 + q

k

2

:

Now, the q-version of Zeilberger's algorithm applied to this last sum returns

the operator

�

1� q

n+2

�

S

2

n

�

�

1 + q � q

n+2

+ q

2n+3

�

S

n

+ q;

which is of the desired order [8].
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A consequence of the equality between the sum and its symmetrized ver-

sion is the nullity

n

X

k=�n

(�1)

k

q

(5k

2

�k)=2

(q; q)

n�k

(q; q)

n+k

(q

k

� 1) = 0:

This suggests q

k

� 1 as a candidate for Z in the new ansatz.

4.2. New Ansatz. With a variant heuristic not described in Part II but

better suited to the q-case, we got the following values

P =

�

1� q

n+2

�

S

2

n

�

�

1 + q � q

n+2

+ q

2n+3

�

S

n

+ q;

B =

q

2n�2k+4

(1� q

n+k+2

)B

0

(1 + q

n+2

)(1� q

2n+3

)(1 + q

2n+1

)

S

2

n

mod Ann h;

Z =

q

n+3

Z

0

1

(1 + q

n+2

)(1� q

2n+3

)(1 + q

2n+1

)

S

n

+

q

n+3

Z

0

0

(1 + q

n+2

)(1� q

2n+3

)(1 + q

2n+1

)

mod Ann h;

where h is the original summand h

n;k

= (�1)

k

q

(5k

2

�k)=2

(q; q)

�1

n�k

(q; q)

�1

n+k

and

B

0

= q

5n+6

� q

4n+k+5

+ q

3n+5

� q

4n+k+4

+ q

3n+4

+ q

3n+2k+3

+ q

3n+k+3

� q

2n+k+3

+ q

3n+k+2

� q

2n+k+2

� q

2n+2

� q

2n+1

� q

2n+2k+1

+ q

n+k+1

+ q

n+k

� 1;

Z

0

0

= �1 + q

n

� q

2n+3k+3

+ q

n+3k+1

+ q

n+1

� q

2n+1

+ q

3n+2

� q

2n+2

;

Z

0

1

= 1 + q

4n+3

� 2q

3n+2

+ 2q

2n+2

+ q

2n+1

+ q

5n+5

� q

5n+4

+ q

3n+4

� q

3n+3

� 2q

n+1

+ q

3n+3k+2

� q

4n+3k+4

� q

n

+ q

2n+k+2

+ q

4n+k+3

� q

5n+k+5

� q

3n+k+4

+ q

2n+2k+2

+ q

5n+2k+5

� q

3n+k+3

+ q

2n+k+1

� q

3n+2k+2

� q

n+2k+1

:

(Here to avoid length, we do not explicitly show the rational functions B

and Z, which are uniquely determined by the above relations.) It is obvious

on this presentation of P , B, and Z that no cancellation of any denominator

arises of any value of n and k, so that the summation over all k is possible.

Beside this, one proves

n

X

k=�n

Z

(�1)

k

q

(5k

2

�k)=2

(q; q)

n�k

(q; q)

n+k

= 0:

Using Riese's implementation of the q-variant of Zeilberger's fast algorithm,

we obtained a recurrence of order 3 and no recurrence of order 2, as was

hoped.

So far, we have been unable to relate the multiplier Z in this zero sum

with the \predicted" multiplier q

k

� 1; nor have we found any symmetry of

the summand Zg which would explain the nullity of the sum.
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5. Andrews' Identity (Pfaff's Method)

The identity

5

F

4

 

�2n� 1; 2x+ 2n+ 2; 2x� z + 1=2; 2x+ n+ 1; z + n+ 1

x+ 1=2; x+ 1; 2z + 2n+ 2; 4x� 2z + 1

�

�

�

�

�

1

!

= 0

for an integer n � 0 is proved by contiguity methods in [2, Eq. (1.6)] (with

(i; x=2) replaced with (n; x)). There it is used as a key step to derive a new

evaluation of the Mills-Robbins-Rumsey determinant by Pfa�'s method.

Introduce

u

n

=

5

F

4

 

�2n� 1; 2x+ 2n+ 2; 2x� z + 1=2; 2x+ n+ 1; z + n+ 1

x+ 1=2; x+ 1; 2z + 2n+ 2; 4x� 2z + 1

�

�

�

�

�

1

!

:

Then for 2n + 1 2 N , the series u

n

is terminating, therefore over natural

boundaries; it evaluates to 0 for n 2 N , and to a non-zero rational function

of x and z for n 2 N+1=2. Certainly, the recurrence obtained by Zeilberger's

algorithm cannot make the distinction between these two cases. It follows

that the recurrence has to be of order 1 at least, which is non-minimal for

the case n 2 N . Indeed, Zeilberger's algorithm fails (in short time) to �nd

any recurrence of order 1 and 2; as to the order 3, it seems to be beyond

the computational capability of our computer.

We have not been able so far to decide if this example can be explained

by our new paradigm. However, it suggests one reason for the occurence of

non-minimality.

Part II. Heuristics

6. Rational Heuristic by a Singularity Analysis

For this heuristic, we assume to be given a hypergeometric term f for

which the Zeilberger algorithm fails to obtain a minimal order operator.

We also start with a known annihilator P (n; S

n

) of the sum

P

k2Z

f

n;k

of

lower order than what the Zeilberger algorithm gets. The goal is to obtain

rational functions B and Z in C (n; k) such that

(P + (S

k

� 1)B + Z) � f = 0 and

X

k2Z

Zf

n;k

= 0:

Additionally, we need to check that both Bf and Zf can be summed, i.e.,

that the rational functions B and Z do not introduce any nasty singularity.

In the remainder of the section, the variable n will only be viewed as

a parameter, which will not be shifted, so that we freely drop the depen-

dency in n in all the rational and hypergeometric functions. Since f is

hypergeometric, write

S

k

� f =

�(k)

�(k)

f and P � f =

(k)

�(k)

f
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for polynomials �, �, , and � such that both rational functions �=� and �=

are reduced. In this way we obtain Z as a rational function modulo the

annihilator of f . We introduce

�

B = B � =�, so that (modulo Ann f):

Z = �B(k + 1)S

k

+B(k)� P

= �

�(k)

�(k)

�

�

B(k + 1) +

(k + 1)

�(k + 1)

�

+

�

B(k)

= �

�(k)

�(k + 1)

�

�(k + 1)

�

B(k + 1) + (k + 1)

�(k)

�

+

�

B(k):

We view Z as depending on

�

B.

To avoid nasty singularity, we try to satisfy the constraint that each of

the three rational functions

�

B;

�(k)

�(k + 1)

; and

�(k + 1)

�

B(k + 1) + (k + 1)

�(k)

(18)

is a polynomial in k, or at least introduces no pole which would disallow

the evaluation of the summand for some values of k and n. To this end,

we slightly change the notation to incorporate the \nice" poles into the

numerators � and  and keep the \nasty" poles only in the denominators.

Consider the localization L = S

�1

C (n)[k] where S is the multiplicatively

stable set consisting of the polynomials s 2 C (n)[k] such that for each su�-

ciently large integer n, the polynomial s(n; k) 2 C [k] has no integer root k.

(This set L contains more general objects than polynomials in C (n)[k] but

less general that rational functions in C (n; k): while 2n � 2k � 1 is in S,

2n� 3k is not, so that (2n� 2k� 1)

�1

is in L, whereas (2n� 3k)

�1

is not.)

Now, we assume that � and  are in L, but that � and � are in C (n)[k] nS.

We ensure that the entries of (18) are elements of L by making the two

following assumptions, observed to hold in all of the cases studied so far.

Assumption for the rational heuristic:

1. �(k + 1) 2 C (n)[k] divides �(k) 2 L (as elements of the

ring L);

2. the gcd of �(k) and �(k + 1) (as polynomials of C (n)[k])

divides (k + 1) (as elements of the ring L).

The �rst assumption ensures that the second element of (18) wears no nasty

pole. Considering the third element of (18), let us write

�(k)�(k) = �(k + 1)

�

B(k + 1) + (k + 1)

where we wish � to be in L, and use the second assumption to get the

B�ezout relation:

u(k)�(k) + v(k)�(k + 1) =

(k + 1)

�(k)

2 C (n)[k](19)

for polynomials u and v in C (n)[k], and � in L. Setting

�

B(k+1) = ��(k)v(k)

yields

�(k)u(k)�(k) = �(k + 1)

�

B(k + 1) + (k + 1);
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whence the relation � = �u 2 L by identi�cation.

As a conclusion, both assumptions 1 and 2 above combined with the

minimal order operator P yield good candidates for Z, in the sense that

both summations of Bf and Zf are with no singularity and over natural

boundaries. There only remains to decide by inspection whether Zf sums

to 0. In a situation where Zeilberger's algorithm fails to return an operator

of minimal order and where the preceding heuristic succeeds in returning

a non-zero Z for which

P

k2Z

Zf = 0, Zf cannot be viewed as the �nite

di�erence of a term B

0

f for another rational function B

0

2 C (n; k): this

would contradict the failure of Zeilberger's algorithm. In this case, Lemma 1

in Section 1 implies that Zeilberger's algorithm applied to Zf returns an

operator whose order is exactly the gap between the order of P and the

order of the operator returned when applied to f .

Special Case. By working out an example, we deal with the special case

when the gcd in the second assumption is 1, so that �(k) = (k + 1), and

when additionally �, therefore also v, are polynomials of degree 1. Explicit

computation are of course easier in this setting.

For an integer t � 2, consider the hypergeometric term

f

n;k

= (�1)

k

�

n

k

��

tk

n

�

:

Its sum over k is (�t)

n

, which is cancelled by P = S

n

+ t. We obtain:

� = t(tk + 1) � � � (tk + t� 1)(k � n);  = tn� n+ t;

� = (tk � n+ 1) � � � (tk � n+ t); � = n+ 1� k:

Since �(k) and �(k+1) = n�k are relatively prime, we set �(k) = (k+1)

and look for cofactors u and v of degree 0 and t � 1, respectively. Thus,

u is a constant: u(k) = u(n). Evaluating (19) at k = n yields:

u(k) =

1

�(n)

; whence v(k) =

�(k)� �(n)

�(n)(k � n)

:

Then,

�

B(k) = �(k)v(k � 1) = (k)

�(k � 1)� �(n)

�(n)�(k)

;

B(k) =

�

B(k) +

(k)

�(k)

=

�(k � 1)(k)

�(n)�(k)

=

�(k � 1)

�(n)

P;

Z(k) = �

�(k)

�(k + 1)

(k + 1)u(k) +

�

B(k)

= �

�(k)(k + 1)

�(n)�(k + 1)

+

�(k � 1)(k)

�(n)�(k)

�

(k)

�(k)

:

Remark that despite the equality

�

�(k)(k + 1)

�(k + 1)

�

�(k � 1)(k)

�(k)

�

f

k

=

�(k)(k + 1)

�(k + 1)

f

k+1

�

�(k � 1)(k)

�(k)

f

k

;
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the corresponding sum is not telescoping (over natural boundaries) because

of the singularity induced by the pole 1=�(k).

Observation: for small t, the sum over k of Z(k)f

k

is zero for all n, i.e.,

n

X

k=0

(�1)

k

�

n

k

��

tk

n

��

t

tk + 1

tn� n+ 1

� � �

tk + t� 1

tn� n+ t� 1

+

tn� n+ t

n+ 1� k

�

tk � n+ 1� t

tn� n+ 1

� � �

tk � n

tn� n+ t

� 1

��

= 0:

Additionally, the term in the long parenthesis is by construction a polyno-

mial in k, so that the above summation is over natural boundaries; similarly,

the last expression given for B, in terms of P , shows that the sum of B(k)f

k

is also over natural boundaries.

7. Polynomial Heuristic by Evaluation of Sums

For each example in Part I it has been possible to �nd an operator Z which

is in fact a polynomial in n and k. This suggests the following heuristic to

�nd candidates Z:

1. choose a maximal degree d and introduce Z under undetermined coef-

�cient form:

Z(n; k) =

X

i+j�d

c

i;j

n

i

k

j

2 C [n; k];

2. choose a maximal order r and evaluate the sums

s

n

(c) =

X

k2Z

Z(n; k)h

n;k

for n between 0 and r;

3. solve the linear system consisting of the equations s

n

(c) = 0 for values

of the c

i;j

's;

4. if solvable, return the corresponding value for Z(n; k).

Note that the system will always be solvable if 2n > (r+1)(r+2); also note

that in case the system is solvable, the output is generally parametrized by

some of the c

i;j

's. This parametrization has to be kept so as to allow more

exibility in the modi�ed version of Zeilberger's and Chyzak's algorithms

described in Part I.
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