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Abstract

D-finite power series appear ubiquitously in combinatorics, number theory,
and mathematical physics. They satisfy systems of linear partial differential
equations whose solution spaces are finite-dimensional, which makes them enjoy
a lot of nice properties. After attempts by others in the 1980s, Lipshitz was the
first to prove that the class they form in the multivariate case is closed under the
operation of diagonal. In particular, an earlier work by Gessel had addressed the
D-finiteness of the diagonals of multivariate rational power series. In this paper,
we give another proof of Gessel’s result that fixes a gap in his original proof,
while extending it to the full class of D-finite power series. We also provide
a single exponential bound on the degree and order of the defining differential
equation satisfied by the diagonal of a D-finite power series in terms of the
degree and order of the input differential system.

Keywords: D-finite power series, diagonal theorem, order bound, degree
bound

1. Introduction

Diagonals of multivariate formal power series appear frequently in different
areas: diagonals of rational power series play an important role in enumerative
combinatorics, especially the lattice paths enumeration (see the books [21, 16,
18, 15] and the survey [17]); Christol’s number-theoretic conjecture, which
predicts that globally bounded D-finite power series are diagonals of rational
power series [6], remains largely open (see the nice recent survey [7] by himself);
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intensive studies on diagonals also appear in computer algebra with connection
to mathematical physics [1, 4, 5, 3].

In these contexts, formal power series are commonly given implicitly
as solutions to either algebraic or (linear) differential equations, and the
corresponding diagonals also satisfy such equations. This is in particular the
case for D-finite power series. Recall that these series are defined (Definition 1)
as multivariate formal power series in variables x1, . . . , xn whose infinite set of
higher-order partial derivatives generates a finite-dimensional vector space over
the field of rational functions in the variables. D-finite power series were first
introduced and studied by Stanley in 1980 in the univariate case [20] and later
systematically investigated by Lipshitz in the multivariate case [13, 14]. In the
early 1980’s, Gessel, Stanley, Zeilberger, and many combinatorists conjectured
that the diagonal of a rational power series in several variables is D-finite.
Zeilberger [23] in 1980 and Gessel [11] in 1981 independently claimed to have
proved this conjecture. Later in 1988, Lipshitz [13] pointed out that both proofs
were not complete and he gave a proof by basing on a different idea, thus
proving that D-finite power series are closed under taking diagonals. In 1990,
Zeilberger [24] then completed his own proof with the theory of holonomic D-
modules. Later, Wu and Chen [22] provided a similar result for the case of
bivariate rational functions as a follow-up of Gessel’s work.

The problem we address in this paper is to bound the degrees and orders
of linear differential equations satisfied by the diagonal of a given function in
terms of degrees and orders of the differential systems that define the given
function. We view this as a crucial preliminary step to the computational
complexity analysis of algorithms for computing diagonals, and to the longer-
term development of fast algorithms in a complexity-driven way.

Diagonals of multivariate series come in several flavors (see Definition 3):
first, primary diagonals collapse just two variables; next, complete diagonals
collapse all variables to a single one.

Starting with primary diagonals, we get a polynomial increase of the order
and degree bounds (Corollary 22). A naive iteration of primary diagonals
(Section 4.1.3) would thus lead to double-exponential bounds for complete
diagonal (Section 4.1.3). Our first and main contribution is therefore to derive
a single-exponential bound (Theorems 25 and 35). Note however that in the
bivariate case (n = 2), no iteration is necessary so that the double-exponential
bound is in fact just polynomial, and the bounds of Corollary 22 are better than
those of Theorems 25 and 35.

After Lipshitz’s work [13], the general belief was that the gaps in Gessel’s
proof do not seem easy to fill. As a secondary contribution, we however fully fix
and generalize Gessel’s proof [11] by elaborating on his original proof strategy
(Theorems 5 and 6). Because Gessel’s approach does not need any change of
variables, as opposed to Lipshitz’s, it leads more directly to explicit filtrations,
from which we benefit in our bound estimates of the Lipshitz way.

It is worth comparing the bounds we obtained in this paper with the situation
in positive characteristic. In that context, a result by Furstenberg [10] and
Deligne [9] states that the diagonal of any algebraic function is algebraic. A
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recent quantitative version of this theorem by Adamczewski and Bell [2] provides
bounds on the algebraic degree of a diagonal and on the maximal degree (height)
of a polynomial equation is satisfies, which, even in the case of the diagonal
of a rational function, is doubly exponential of the form O(pn

n

), where p is
the characteristic and n is the number of variables. As our bounds are singly
exponential and might be useful also in characteristic p, this is another instance
of the phenomenon [19] that representing an algebraic function by differential
equations is more compact than by a polynomial equation.

The remainder of this paper is organized as follows. We recall some basic
terminology about rings of differential operators and introduce D-finite power
series and their diagonals in Section 2. In Section 3, we first prove the Diagonal
Theorem (Theorem 5) on D-finite power series in the way suggested in Gessel’s
work and we then derive an explicit polynomial bound for annihilators of
diagonals in the bivariate case. Then, a single-exponential bound is given for
the general multivariate situation in Section 4 by analyzing Lipshitz’s proof.

2. Differential operators, D-finiteness, and diagonals

Throughout this article, we assume that K is a field of characteristic 0.
Let K[x] be the ring of polynomials in x = x1, . . . , xn over K and K(x) be
the field of rational functions in x over K. Let K[[x]] be the ring of formal
power series in x over K, which is a domain. Denote S := K(x) ⊗K[x ] K[[x]].
Let Dx1

, . . . , Dxn
denote the usual partial derivations ∂/∂x1, . . . , ∂/∂xn on S.

Those are the basic notations that we will use in Sections 1 and 3, but they will
need to be generalized in Section 4.

The Weyl algebra Wn := K[x]⟨Dx⟩ is the non-commutative polynomial ring
in the variables x = x1, . . . , xn and Dx = Dx1

, . . . , Dxn
, in which the following

multiplication rules hold: xixj = xjxi, Dxi
Dxj

= Dxj
Dxi

for all i, j ∈ {1, . . . , n}
and Dxi

f = fDxi
+ ∂f/∂xi for all i ∈ {1, . . . , n} and f ∈ K[x]. (Here and

throughout, we use angled brackets R⟨. . . ⟩ to denote a twisted extension of a
ring R, and the generators between brackets always commute with one another.)
The Weyl algebra can be interpreted as the ring of linear partial differential
operators with polynomial coefficients. Analogously, we define the rational Ore
algebra On as the ring K(x)⟨Dx⟩ of linear partial differential operators with
rational function coefficients. The elements ofOn act on S by interpretingDxi

as
∂/∂xi, which turns S into a left On-module. For a given f ∈ S, the annihilating
ideal of f in On is defined as the set AnnOn(f) = {L ∈ On | L · f = 0}. Note
that AnnOn

(f) is in particular a (left) vector space over K(x).

Definition 1 (D-finiteness). An element f ∈ K[[x]] is D-finite over K(x) if the
K(x)-vector space generated by the derivatives of f in S is finite-dimensional.

Note that, L(f) is also D-finite for any operator L ∈ On.

Definition 2 (Order and degree). Assume that f ∈ S is D-finite over K(x).
Then for each i ∈ {1, . . . , n}, there exists a non-zero operator Li in the
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subalgebra K[x]⟨Dxi⟩ of Wn such that Li(f) = 0. Write

Li = ℓi,0 + ℓi,1Dxi + · · ·+ ℓi,riD
ri
xi

with ℓi,0, . . . ℓi,ri ∈ K[x] and ℓi,ri ̸= 0. We call ri the order of the operator Li,
denoted by ord(Li). The degree of Li is defined by the maximum total degree of
its polynomial coefficients: deg(Li) := maxrij=0 tdeg(ℓi,j), where tdeg means the
total degree w.r.t. x1, . . . , xn. Let rf := maxni=1 ri and df := maxni=1 di where
di = deg(Li).

Definition 3. Let f =
∑

i1,...,in≥0 ai1,...,inx
i1
1 · · ·xin

n ∈ K[[x]]. We call the
power series

∆1,2(f) :=
∑

i1,i3,...,in≥0

ai1,i1,i3,...,inx
i1
1 xi3

3 · · ·xin
n ∈ K[[x1, x3, . . . , xn]]

a primary diagonal of f . Other primary diagonals ∆i,j are defined similarly,
so that ∆i,j(f) and ∆j,i(f) are the same series except for the variable names.
A diagonal is defined by any composition of the ∆i,j . The complete diagonal
of f , denoted by ∆(f), is defined as

∆(f) := ∆n,n−1∆n−1,n−2 · · ·∆2,1(f) :=
∑
i≥0

ai,...,ix
i
n ∈ K[[xn]]. (1)

By the diagonal of f , we mean its complete diagonal when no ambiguity arises.

For future reference, we recall here the following well-known consequence of
Cramer’s rules that will be used in the subsequent sections.

Lemma 4. Let A = (ai,j) ∈ K[x]n×m be a matrix with entries of total degree
at most d. Assume the inequality n < m, so that the matrix has a non-trivial
right nullspace. Then, there exists a non-zero vector v = (v1, . . . , vm) ∈ K[x]m

that solves Av = 0 and has total degree at most nd.

Proof. Let ρ denote the rank of A. Because ρ ≤ n, we can fix ρ linearly
independent rows of A and form a ρ×m submatrix B of A of rank ρ. In turn,
consider ρ linearly independent columns of B, thus forming a ρ×ρ submatrix C,
and an additional column c of B. The system Cw = −c admits a non-zero
solution w with tdeg(w) ≤ ρd that can be expressed by Cramer’s rules. Padding
w with zeros results in a non-zero v satisfying Av = 0 and tdeg(v) ≤ ρd ≤ nd
as wanted.

3. Diagonal theorem in the multivariate case

In this section, we give a proof of the following “Diagonal theorem” in the
spirit of Gessel [11].

Theorem 5 (Diagonal Theorem). Let f ∈ K[[x]] be D-finite over K(x). Then
∆(f) ∈ K[[xn]] is D-finite over K(xn).
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The proof of Theorem 5 is just an iteration of the following result for primary
diagonals.

Theorem 6. Let f ∈ K[[x]] be D-finite over K(x). Then ∆1,2(f) is D-finite
over K(x1, x3, . . . , xn).

The rest of the present section is devoted to the proof of Theorem 6.

The following objects will serve as generators in relevant algebras:

Dx1,x2
:= Dx1

Dx2
,

θxi
:= xiDxi

for each i ∈ {1, . . . , n},
Tx1,x2

:= θx1
− θx2

.

We use bold notation to abbreviate monomials: for example, xα denotes
xα1
1 . . . xαn

n and Dβ
x denotes Dβ1

x1
. . . Dβn

xn
. By [8, Proposition 2.1], the set

{xαDβ
x | α,β ∈ Nn} is a basis of Wn = K[x]⟨Dx⟩ as a vector space

over K. Similarly, Lemmas 7, 8, and 9 are basis lemmas for several
subalgebras of Wn: K[x1x2, x3, . . . , xn]⟨Tx1,x2

, Dx1,x2
⟩, K[x1, x3, . . . , xn]⟨Dx1

⟩,
and K[x1x2, x3, . . . , xn]⟨Tx1,x2 , Dxh

⟩ for h ∈ {3, . . . , n}.

Lemma 7. The set

{(x1x2)
ixk3

3 · · ·xkn
n T j

x1,x2
Dℓ

x1,x2
| i, j, ℓ, k3, . . . , kn ∈ N}

is a basis of K[x1x2, x3, . . . , xn]⟨Tx1,x2 , Dx1,x2⟩ as a vector space over K.

Proof. It suffices to show that the monomials (x1x2)
iT j

x1,x2
Dℓ

x1,x2
are linearly

independent over K. Suppose that

L =
∑

(i,j,ℓ)∈Λ

ci,j,ℓ · (x1x2)
iT j

x1,x2
Dℓ

x1,x2
= 0

for some non-empty finite set Λ and ci,j,ℓ ∈ K\{0}. Let ≻ be the lexicographical
order on the Weyl algebra W2 = K[x1, x2]⟨Dx1

, Dx2
⟩ with Dx1

≻ Dx2
≻ x2 ≻

x1. It can be proved by induction that there exist Q1 and Q2 in W2 such that

T j
x1,x2

= θjx1
+Q1 = xj

1D
j
x1

+Q2 and lm(Q1) < lm(θjx1
), lm(Q2) < xj

1D
j
x1
.

Then we have that there exists Q3 in W2 such that

(x1x2)
iT j

x1,x2
Dℓ

x1,x2
= xi+j

1 xi
2D

j+ℓ
x1

Dℓ
x2

+Q3 and lm(Q3) < xi+j
1 xi

2D
j+ℓ
x1

Dℓ
x2
.

Note that the map (i, j, ℓ) 7→ (i+ j, i, j + ℓ, ℓ) is injective. Since the set {x iD j
x |

i, j ∈ Nn} is a basis of Wn = K[x]⟨Dx⟩ as a vector space over K, this forces all
ci,j,ℓ = 0, which contradicts our assumption.

Lemma 8. The set

{xk
1x

k3
3 · · ·xkn

n Dℓ
x1

| k, k3, . . . , kn, ℓ ∈ N}

is a basis of K[x1, x3, . . . , xn]⟨Dx1
⟩ as a vector space over K.
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Lemma 9. For each h ∈ {3, . . . , n}, the set

{(x1x2)
ixk3

3 · · ·xkn
n T j

x1,x2
Dℓ

xh
| i, j, ℓ, k3, . . . , kn ∈ N}

is a basis of K[x1x2, x3, . . . , xn]⟨Tx1,x2
, Dxh

⟩ as a vector space over K.

We omit the proofs of Lemma 8 and 9 those are very similar to the proof
of Lemma 7. Next we present some commutation rules between the diagonal
operator ∆1,2 and the operators x1x2, Dx1,x2

, θxi
and Tx1,x2

.

Proposition 10. For any power series f(x) ∈ K[[x]], we have

1. ∆1,2(x1x2 · f) = x1∆1,2(f);

2. ∆1,2(Dx1,x2
(f)) = Dx1

θx1
(∆12(f));

3. ∆1,2(θx1
(f)) = θx1

(∆1,2(f));

4. ∆1,2(θx2
(f)) = θx1

(∆1,2(f));

5. ∆1,2(Tx1,x2
(f)) = 0;

6. Dx1,x2Tx1,x2 = Tx1,x2Dx1,x2 ;

7. Tx1,x2 · x1x2 = x1x2 · Tx1,x2 .

Proof. Given f =
∑

i1,...,in≥0 ai1,...,inx
i1
1 · · ·xin

n ∈ K[[x]], we have

∆1,2(x1x2 · f) = ∆1,2

( ∑
i1,...,in≥0

ai1,...,inx
i1+1
1 xi2+1

2 xi3
3 · · ·xin

n

)
=

∑
i1,i3,...,in≥0

ai1,i1...,inx
i1+1
1 xi3

3 · · ·xin
n = x1∆1,2(f),

which proves Point 1. Points 2, 3, and 4 are proved in [22, Lemma 4.3]. Point 5
immediately follows by linearity from Points 3 and 4. Taking the difference of
the two identities

Dx1,x2(x1Dx1) = Dx1(x1Dx1)Dx2 = (x1Dx1 + 1)Dx1,x2 ,

Dx1,x2(x2Dx2) = Dx2(x2Dx2)Dx1 = (x2Dx2 + 1)Dx1,x2 ,

we obtain Point 6. Similarly, taking the difference of the two identities

(x1Dx1)x1x2 = x1(x1Dx1 + 1)x2 = x1x2 · (x1Dx1 + 1),

(x2Dx2)x1x2 = x2(x2Dx2 + 1)x1 = x1x2 · (x2Dx2 + 1),

proves Point 7.

Lemma 11. Let f(x) ∈ K[[x]]. Then, there exists s ∈ N such that
T s
x1,x2

(f) = 0 if and only if there exists g in n − 1 variables such that
f(x) = g(x1x2, x3, . . . , xn).

Proof. If f(x) = g(x1x2, x3, . . . , xn), write

g(x1, x3, . . . , xn) =
∑

i1,i3,...,in≥0

bi1,i3,...,inx
i1
1 xi3

3 · · ·xin
n .
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Take s = 1, then

Tx1,x2
(f) = Tx1,x2

(g(x1x2, x3, . . . , xn))

=
∑

i1,i3,...,in≥0

(i1 − i1) bi1,i3,...,in xi1
1 xi1

2 xi3
3 · · ·xin

n = 0.

For the converse statement, assume there exists s ∈ N such that T s
x1,x2

(f) = 0. If

s = 0, then f = 0. Take g = 0. If s > 0, write f =
∑

i1,...,in≥0 ai1,...,inx
i1
1 · · ·xin

n .
Then

T s
x1,x2

(f) =
∑

i1,...,in≥0

(i1 − i2)
sai1,...,inx

i1
1 · · ·xin

n = 0.

Hence (i1 − i2)
sai1,...,in = 0 for all integers i1, . . . , in ≥ 0, so that ai1,...,in = 0

for all i1 ̸= i2. Take

g(x1, x3, . . . , xn) =
∑

i1,i3,...,in≥0

ai1,i1,i3,...,inx
i1
1 xi3

3 · · ·xin
n .

Then f(x) = g(x1x2, x3, . . . , xn).

Lemma 12. Let f(x) ∈ K[[x]] be D-finite over K(x). Let y = y1, . . . , ym and
let power series

g1(y), . . . , gn(y) ∈ K[[y]]

be algebraic over K(y). Assume that the substitution f(g1(y), . . . , gn(y)) makes
sense. Then f(g1(y), . . . , gn(y)) is D-finite over K(y). In particular, let f(x)
be D-finite and suppose that the evaluation of f(x) at x2 = 1 makes sense, then
f(x1, 1, x3, . . . , xn) is D-finite.

Proof. See [14, Proposition 2.3].

From the definition of On,

Dxi
f = fDxi

+Dxi
(f) for all f ∈ K(x).

More generally, we have the formulae: for all f ∈ K(x) and i ∈ {1, . . . , n},

Dk
xi
f =

k∑
ℓ=0

(
k

ℓ

)
Dℓ

xi
(f)Dk−ℓ

xi
(2)

and

fDk
xi

=

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
Dk−ℓ

xi
Dℓ

xi
(f). (3)

The relations (2) and (3) can be proved by a straightforward induction. In the
sequel, we merely use the facts that, for all f ∈ K[x] and i ∈ {1, . . . , n},

Dk
xi
f = fDk

xi
+ P and fDk

xi
= Dk

xi
f − P, (4)
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where P ∈ K[x]⟨Dxi⟩ with ord(P ) < k and deg(P ) ≤ deg(f). Denote by K[x]≤d

the set of polynomials in K[x] with total degree no more than d.
A number of similar arguments in the rest of the article will differ only by a

choice of variables. This is why we make a number of notations depend on a set S
in the following definition. The reader is invited to pay attention to this implicit
dependency in what follows. We will indeed use S = {1, 2} and S = {1, 2, h} in
the present Section 3, and we will additionally use S = {1, . . . , n} in Section 4.

Definition 13. Fix a subset S ⊆ {1, 2, . . . , n}. Recall Li ∈ Wn is fixed for
each i. We give the following definitions and notations:

1. Given β ∈ NS , write Dβ
S for the product

∏
j∈S D

βj
xj ,

2. C := lcmj∈S(lc(Lj)) ∈ K[x],

3. for each j ∈ S, L̃j := C/lc(Lj) · Lj ∈ Wn,
4. dC :=

∑
j∈S dj ,

5. B :=
∏

j∈S{0, 1, . . . ri − 1} ⊆ N#S ,

6. Fd,r :=
⊕

|β|≤r K[x]≤d D
β
S ,

7. Hd,r :=
⊕

|β|≤r orβ∈B K[x]≤d D
β
S ,

8. J :=
∑

j∈S WnL̃j ,

where the dependency in S is kept implicit in the notation.

Immediately we have

Lemma 14. For any non-empty set S ⊆ {1, 2, . . . , n}, consider the quantities
in Definition 13. Then

1. tdeg(C) ≤ dC ,
2. for each i ∈ S, L̃i(f) = 0 and deg L̃i ≤ dC ,
3. for each i ∈ S, CDri

xi
= (CDri

xi
− L̃i) + L̃i ∈ FdC ,ri−1 + J.

Continuing in analogy with [13, Lemma 3], we have the following lemmas:

Lemma 15. For all α ∈ NS, CDα
S is an element of FdC ,|α|−1 + J .

Proof. If α ∈ B, nothing needs to be proven. So suppose, for instance, n ∈ S
and αn ≥ rn. Then multiply Dα−rnen

S with CDrn
xn
, where en := (0, 0, . . . , 1),

which yields

Dα−rnen
S CDrn

xn
∈

rn−1⊕
j=0

Dα−rnen
S K[x]≤dC

Dj
xn

+ J

⊆
rn−1∑
j=0

(
K[x]≤dC

Dα−rnen
S + FdC ,|α|−rn−1

)
Dj

xn
+ J

⊆ FdC ,|α|−1 + FdC ,|α|−2 + J = FdC ,|α|−1 + J.

Hence

CDα
S ∈ (Dα−rnen

S C + FdC ,|α|−rn−1)D
rn
xn

⊆Dα−rnen
S CDrn

xn
+ FdC ,|α|−1

⊆ FdC ,|α|−1 + J.
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Lemma 16. For any t ∈ N, r ∈ Z, CHt,r ⊆ HdC+t,r−1 + J .

Proof. We have the chain of equalities and inclusions:

CHt,r = C
⊕

|β|≤r orβ∈B

K[x]≤t D
β
S =

⊕
|β|≤r orβ∈B

K[x]≤t CD
β
S

⊆
∑
β∈B

K[x]≤dC+tD
β
S +

∑
|β|≤r andβ/∈B

K[x]≤t FdC ,|β|−1 + J

⊆ HdC+t,r−1 + J,

where the first inclusion is by Lemma 15.

Lemma 17. For any u, t ∈ N, v ∈ Z, if u ≥ v, then CuHt,v ⊆ Ht+udC ,0 + J .
In particular, for all α ∈ NS, C|α|Dα

S ∈ H|α|dC ,0 + J .

Proof. Note that for all r′ ≤ 0, Ht,r′ = Ht,0. The result is obtained by making u
repetitions of Lemma 16.

Lemma 17 is specialized as follows.

Lemma 18. Set u := v + 1−mini∈S ri. Then CuHt,v ⊆ Ht+udC ,0 + J .

Proof. Observe that for any β ∈ NS , if |β| < min ri, then β ∈ B. Hence for any
r′ < min ri, Ht,r′ = Ht,0. Again, the result is obtained by repeating the use of
Lemma 16 u times.

Observation 19. For positive integers D and R, define N = 3D2R, then(
N + 3

3

)
−R

(
DN + 2

2

)
> 0.

Proof. The result follows from the equality(
N + 3

3

)
−R

(
DN + 2

2

)
= 9R2D3

(
D − 1

2

)
+R

(
11

2
D2 − 1

)
+ 1.

The following result provides structured annihilating operators of f whose
existence will be used in the proof of Theorem 6. It also provides degree bounds
for all the announced annihilating operators, of which only those concerning P
will be used, in the specific situation of Corollary 22 (n = 2).

Theorem 20. Let f ∈ K[[x]] be a D-finite power series over K(x). Then, there
exists a non-zero annihilating operator P of f that satisfies

• P ∈ K[x3, . . . , xn][x1x2]⟨Tx1,x2
, Dx1,x2

⟩,

• P is of degree O(d2fr
2
f ) in x1x2, of total degree O(d9fr

8
f ) in x3, . . . , xn, and

of total degree O(d2fr
2
f ) in Tx1,x2

, Dx1,x2
,
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and for each h ∈ {3, . . . , n}, there exists a non-zero annihilating operator Qh

of f that satisfies

• Qh ∈ K[x3, . . . , xn][x1x2]⟨Tx1,x2
, Dxh

⟩,

• Qh is of degree O(d2fr
3
f ) in x1x2, of total degree O(d9fr

12
f ) in x3, . . . , xn,

and of total degree O(d2fr
3
f ) in Tx1,x2 , Dxh

.

Proof. First we prove the existence of the operator P . We apply the counting
argument used in [11, 13]. Use Definition 13 with S = {1, 2}. For any positive
integer N , set

VN = spanK(x3,...,xn)

{
C2N (x1x2)

iT j
x1,x2

Dℓ
x1,x2

| i+ j + ℓ ≤ N
}

and
WN = spanK(x3,...,xn)H2N(d1+d2+1),0.

By degree considerations, for any integers i, j, ℓ satisfying i+ j+ ℓ ≤ N we have

(x1x2)
iT j

x1,x2
Dℓ

x1,x2
∈ Fj+2i, j+2ℓ ⊆ Hj+2i, j+2ℓ ⊆ H2N, 2N .

Note that tdeg(C) ≤ dC = d1 + d2. Hence by Lemma 17,

C2N (x1x2)
iT j

x1,x2
Dℓ

x1,x2
∈ H2N(d1+d2+1), 0 + J. (5)

Consequently, we have the inclusion VN ⊆ WN + K(x3, . . . , xn) J between
K(x3, . . . , xn)-vector spaces. Note the asymptotic estimates

dimK(x3,...,xn) VN =

(
N + 3

3

)
= Θ(N3),

where the first equality is by Lemma 7, and

dimK(x3,...,xn) WN = r1r2

(
2N(d1 + d2 + 1) + 2

2

)
= Θ(N2).

Choosing sufficient large N results in dim(VN ) > dim(WN ). So, some non-
zero element of VN is in K(x3, . . . , xn)J and without loss of generality we
can choose it in Wn ∩ VN . Observe that this operator has C2N as a left
factor. So, dividing by C2N yields a non-zero annihilating operator of f
in K[x1x2, x3, . . . , xn]⟨Dx1

, Dx2
⟩.

To control the degree and order of such an annihilating operator, we now
make a more specific choice that will lead to the announced operator P . To this
end, we make (5) explicit in the form

C2N (x1x2)
iT j

x1,x2
Dℓ

x1,x2
∈

∑
i1<r1, i2<r2,

k1+k2≤2N(d1+d2+1)

qi,j,ℓ,i1,i2,k1,k2
xk1
1 xk2

2 Di1
x1
Di2

x2
+ J,

10



for polynomials qi,j,ℓ,i1,i2,k1,k2 of K[x3, . . . , xn] of total degree bounded by
2N(d1 + d2 + 1), and we set up an ansatz of the form

C2NP =
∑

i+j+ℓ≤N

pi,j,ℓC
2N (x1x2)

iT j
x1,x2

Dℓ
x1,x2

∈
∑

i1<r1, i2<r2,
k1+k2≤2N(d1+d2+1)

qi1,i2,k1,k2
xk1
1 xk2

2 Di1
x1
Di2

x2
+ J,

(6)

where the pi,j,ℓ are undetermined polynomials from K[x3, . . . , xn] and the
resulting coefficients qi1,i2,k1,k2

are polynomials of K[x3, . . . , xn] given as linear
combinations of the pi,j,ℓ by

qi1,i2,k1,k2
=

∑
i+j+ℓ≤N

pi,j,ℓ qi,j,ℓ,i1,i2,k1,k2
.

After applying to f to obtain

C2NP (f) =
∑

i1<r1, i2<r2,
k1+k2≤2N(d1+d2+1)

qi1,i2,k1,k2x
k1
1 xk2

2 Di1
x1
Di2

x2
(f),

we can enforce P (f) = 0 by forcing each qi1,i2,k1,k2
to be zero. This gives a linear

system over K(x3, . . . , xn) with
(
N+3
3

)
variables and a number S of equations

that is

S := dimK(x3,...,xn) WN = r1r2

(
2N(d1 + d2 + 1) + 2

2

)
.

Set R := r1r2 and D := 2(d1 + d2 + 1) ≥ 2. By Observation 19, we can choose
N := 3D2R so as to get a system with more variables than equations and thus
a system with a non-trivial solution. Because the corresponding polynomial
matrix is of size S ×

(
N+3
3

)
with entries of total degree 2N(d1 + d2 + 1), by

Lemma 4 we have, for a suitable non-zero solution (pi,j,ℓ),

tdeg(pi,j,ℓ) ≤ 2N(d1 + d2 + 1)r1r2

(
2N(d1 + d2 + 1) + 2

2

)
= O(d9fr

8
f ),

where the total degree is with respect to x3, . . . , xn. This non-trivial solution
leads to a non-zero annihilator P ∈ K[x1x2, x3, . . . , xn]⟨Tx1,x2 , Dx1,x2⟩ of f .
From the ansatz form (6), P has its degree in x1x2 bounded by N = O(d2fr

2
f )

and its total degree in Tx1,x2
, Dx1,x2

not exceeding N = O(d2fr
2
f ). This leads to

the desired degree and order bounds for P .
For each h ∈ {3, . . . , n}, the proof of the existence of the operator Qh is

similar. Using Definition 13 with S = {1, 2, h}, we set

VN = spanK(x3,...,xn)

{
CN (x1x2)

iT j
x1,x2

Dℓ
xh

| i+ j + ℓ ≤ N
}
,

and
WN = spanK(x3,...,xn)HN(d1+d2+dh+2), 0.

11



This time we derive VN ⊆ H2N,N (not H2N, 2N ) and we have the additional
term dh in tdeg(C) ≤ dC = d1 + d2 + dh, so that the analogue of (5) is

CN (x1x2)
iT j

x1,x2
Dℓ

xh
∈ HN(d1+d2+dh+2), 0 + J.

Set R := r1r2rh and D := d1 + d2 + dh + 2 ≥ 2. We can still choose

N := 3D2R = 3 (d1 + d2 + dh + 2)2r1r2rh.

Then by Observation 19

dimK(x3,...,xn) VN − dimK(x3,...,xn) WN =

(
N + 3

3

)
−R

(
DN + 2

2

)
> 0.

Continuing as we did for P , we obtain that there exists a non-zero operator

Qh ∈ K[x1x2, x3, . . . , xn]⟨Tx1,x2
, Dxh

⟩

such that Qh(f) = 0. By a similar argument, we have that Qh is of degree at
most N = O(d2fr

3
f ) in x1x2, of total degree O(d9fr

12
f ) in x3, . . . , xn, and of total

degree at most N = O(d2fr
3
f ) in Tx1,x2

, Dxh
.

After the preparation above, let us prove the diagonal theorem.

Proof of Theorem 6. Let u1, . . . , un be new variables. Write K⟨⟨u1, . . . , un⟩⟩ for
the associative K-algebra over the free non-commutative monoid generated by
{u1, . . . , un}. Assume that f ∈ K[[x]] is D-finite over K(x). By Theorem 20,
there exists a non-zero operator P ∈ K[x1x2, x3, . . . , xn]⟨Tx1,x2

, Dx1,x2
⟩ and for

each h ∈ {3, . . . , n}, a non-zero operator Qh ∈ K[x1x2, x3, . . . , xn]⟨Tx1,x2 , Dxh
⟩

such that P (f) = 0 and for each h ∈ {3, . . . , n}, Qh(f) = 0.
We first show that there is a non-zero operator P̄ ∈ K(x1, x3, . . . , xn)⟨Dx1

⟩
such that P̄ (∆1,2(f)) = 0. Recall that Tx1,x2

commutes with x1x2 and Dx1,x2
.

Consider the maximal integer s such that

P = T s
x1,x2

· P̃ with P̃ =

m∑
i=0

T i
x1,x2

Ai(x1x2, x3, . . . , xn, Dx1,x2) (7)

for some Ai ∈ K⟨⟨u1, . . . , un⟩⟩, where Ai(σ1, . . . , σn) denotes the evaluation at
u1 = σ1, . . . , un = σn of Ai for elements σ1, . . . , σn ∈ Wn. The maximality of s
implies A0 ̸= 0. By Lemma 11, we have

P̃ (f) =

m∑
i=0

T i
x1,x2

Ai(f) = g(x1x2, x3, . . . , xn) (8)

for some power series g in n − 1 variables. Since ∆1,2Tx1,x2 = 0 and by
Proposition 10, taking the diagonal of the two sides of (8) yields

∆1,2P̃ (f) = A0(x1, x3, . . . , xn, Dx1θx1)(∆1,2(f)) = g(x1, x3, . . . , xn).

12



The operator H := A0(x1, x3, . . . , xn, Dx1θx1) is non-zero, since

x1, x3, . . . , xn, Dx1
θx1

are linearly independent over K by Lemma 8. Because f is D-finite over K(x),
the series P̃ (f) is also D-finite overK(x). Hence g(x1, x3, . . . , xn) = P̃ (f)|x2=1 is
D-finite over K(x1, x3, . . . , xn) by Lemma 12. Therefore there exists a non-zero
operator G ∈ K(x1, x3, . . . , xn)⟨Dx1⟩ such that G(g) = 0. Then the operator
P̄ := GH is non-zero and P̄ (∆1,2(f)) = 0.

The existence of a non-zero operator Q̄h ∈ K(x1, x3, . . . , xn)⟨Dxh
⟩ such that

Q̄h(∆1,2(f)) = 0 for each h ∈ {3, . . . , n} is proved similarly. The only difference
is the variation in the formula

∆1,2A0(x1x2, x3, . . . , xn, Dxh
)(f) = A0(x1, x3, . . . , xn, Dxh

)∆1,2(f)

= g(x1, x3, . . . , xn).

Hence we conclude that ∆1,2(f) is D-finite over K(x1, x3, . . . , xn).

The following result is very much inspired by [12], which we merely generalize
to the bivariate situation. The reader will pay attention that it combines bounds
about a function f provided by a system of equations, each in a single derivative
like in Definition 2, with bounds on a (potentially) partial differential operator L,
to derive bounds on equations in a single derivative for L(f).

Lemma 21. Fix n = 2 and a bivariate D-finite function f . Given a system
of linear differential equations with known order and degree bounds rf and df
exhibiting the D-finiteness of f , as well as an operator L of order rL and
degree dL, there exists a system of linear differential equations exhibiting the
D-finiteness of g = L(f), whose order rg and degree dg are bounded by

dg ≤ (dL + 2df (r
2
f + rL))r

2
f and rg ≤ r2f . (9)

Proof. Use Definition 13 when S = {1, 2}. We look for non-zero operators A ∈
K[x1x2]⟨Dx1

⟩ annihilating g, that is, such that (AL)(f) = 0. Write rA and dA
for the order and degree of a potential A. For l ∈ K[x1, x2], if deg(l) ≤ dL,
0 ≤ k ≤ rA, and 0 ≤ i+ j ≤ rL, then, by Lemma 17 we have

CrA+rLDk
x1
l(x1, x2)(D

i
x1
Dj

x2
) ∈ HdL+dC(rA+rL),0 + J,

hence for a potential A =
∑rA

k=0 ak(x1, x2)D
k
x1

we need to have

CrA+rL(AL)(f) =
∑

0≤i<r1, 0≤j<r2

rA∑
k=0

akqi,j,kD
i
x1
Dj

x2
(f)

for explicit polynomials qi,j,k ∈ K[x1, x2] of degree at most dL + dC(rA + rL).
Now, for this to be zero, the rA+1 polynomial coefficients of A need to cancel the
r1r2 = O(r2f ) equations obtained by equating the coefficients of the K[x1, x2]-

linearly independent elements Di
x1
Dj

x2
(f) that appear in the sum. Setting rA =

13



r1r2 ensures a non-zero solution exist, and Lemma 4 guarantees there exists
a solution with degree dA at most (dL + dC(rA + rL))rA. Looking for A ∈
K[x1x2]⟨Dx2

⟩ leads to the same bounds, which leads to (9).

Corollary 22. Let f ∈ K[[x1, x2]] be D-finite over K(x1, x2). Then ∆1,2(f)
is D-finite over K(x1). In addition, there exists a non-zero operator P̄ that
satisfies P̄ (∆1,2(f)) = 0 and

deg(P̄ ) = O(d3fr
4
f ) and ord(P̄ ) = O(d2fr

2
f ).

Proof. The first statement is just Theorem 6 in the case n = 2. For the degree
bounds, we continue in the context of the proof of Theorem 6. Specifically, we
have found:

• an operator P̃ = P̃ (x1x2, Tx1,x2 , Dx1,x2) that is a factor of an operator P
that we obtained by Theorem 20 and therefore satisfies that its degree
in x1x2 and its degree in Dx1,x2

are both O(d2fr
2
f ),

• a univariate power series g such that P̃ (f) = g(x1x2),

• a non-zero operator H = H(x1, Dx1
θx1

) such that H(x1x2, Dx1,x2
) is the

coefficient of T 0
x1,x2

in P̃ and H(∆1,2(f)) = g(x1).

By construction, both P̃ and H admit the same bounds on order and degree
as P , in particular, both ord(H) and deg(H) are in O(d2fr

2
f ). Now, Lemma 21

applies to the D-finite function f and the operator H to prove the existence of
a non-zero annihilator G ∈ K[x1]⟨Dx1⟩ of g satisfying

deg(G) ≤ (deg(H) + 2df (r
2
f + ord(H)))r2f = O(d3fr

4
f ) and ord(G) ≤ r2f

as a consequence of (9). Setting L̄ = GH and observing that H has lower
bounds than g gives the announced result.

Remark 23. It is unsatisfactory that we could not find and apply a one-stage
variant of Gessel’s approach, especially in view of the bivariate case in which
it outperforms Lipshitz’s approach that is developed in the next section. After
this work, it would still be of interest to derive such a direct variant.

4. Lipshitz’s method for bounds of diagonal

In this section, we analyze the method of Lipshitz [13] and we make specific
choices in it so as to construct annihilating operators of a diagonal and to derive
upper bounds on their order and degree.

Let us provide definitions that generalize those of Section 1. Given integers
n and m satisfying 0 ≤ m ≤ n−1, we use the notation s for s1, . . . , sm and x̂ for
xm+1, . . . , xn. In particular, the list s is empty if m = 0, which was the setting
in Section 1. The variable xm+1 is denoted by t if m ≥ 1: in this new situation,

14



our goal is to take a diagonal with respect to s, t = s1, . . . , sm, xm+1, keeping
x̂ = xm+2, . . . , xn as parameters. For primary diagonals there is a single si
(m = 1), and we more simply denote s1 by s. In other words, we have:

s, x̂ =


x1, . . . , xn if m = 0,

s, t (= x2), x3, . . . , xn if m = 1,

s1, . . . , sm, t (= xm+1), xm+2, . . . , xn if m ≥ 2.

The definitions of τ that will be needed, (12) in the present section and (41)
in Section 4.2, motivate that we accommodate series with negative exponents
by defining

M :=
⋃
k∈N

⊕
|α|+|β|≥−k

Ksαx̂β ⊆ KZm×Nn−m

,

where α := (α1, . . . , αm) ∈ Zm and β := (βm+1, . . . , βn) ∈ Nn−m. This set M
is a module over K[s, x̂]⟨Ds,D x̂ ⟩, but it is not a K(s, x̂)-vector space. If m = 0,
then x = x̂ and M is just the ring K[[x]] of formal power series.

Definition 24 (D-finiteness). An element F ∈ M is D-finite over K(s, x̂) if the
K(s, x̂)-vector space generated by the derivatives of F in T := K(s, x̂)⊗K[s ,x̂ ]M
is finite-dimensional, after identifying each element m ∈ M with 1⊗m ∈ T .

The reader will pay attention to the redefinition of a number of quantities
in Sections 4.1.1 and 4.1.2, including M , S, B, C, dC , R, N , GN , VN , WN , ϕ.

4.1. Bounds for primary diagonal

We analyze the behavior of the primary diagonal operator ∆2,1 and derive
the following theorem, which gives bounds on order and degree for linear
differential operators that annihilate ∆2,1(f). The rest of the section consists of
the proof of this theorem, with the bounds (10) proven by Lemma 32 and the
bounds (11) proven by Lemma 34.

Theorem 25. Let f ∈ K[[x]] be D-finite over K(x) and let di, fi, df , rf be as in
Definition 2. Then, there exists a non-zero annihilating operator Pα of ∆2,1(f)
in K[t, x3, . . . , xn]⟨Dt⟩ that satisfies

deg(Pα) ≤ 8(d1 + d2 + 1)2(r1r2)
2(8(d1 + d2 + 1)2r1r2 + 1) = O(d4fr

6
f ),

ord(Pα) ≤ 4(d1 + d2 + 1) r1r2 = O(dfr
2
f ),

(10)

and for each h ∈ {3, . . . , n}, there exists a non-zero annihilating operator Ph,αh

of ∆2,1(f) in K[t, x3, . . . , xn]⟨Dxh
⟩ that satisfies

deg(Ph,αh
) ≤ 8(d1 + d2 + dh + 1)2(r1r2 rh)

2(8(d1 + d2 + dh + 1)2r1r2 rh + 1)

= O(d4fr
9
f ),

ord(Ph,αh
) ≤ 4(d1 + d2 + dh + 1) r1r2 rh = O(dfr

3
f ).

(11)
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We specialize our setting by choosing m = 1, that is, we make s, x̂ =
s, t, x3, . . . , xn. We aim to refine Lipshitz’s proof [13, Lemma 3] of existence
of annihilating operators in K[x̂]⟨Ds, Dxi

⟩ for i = 2, . . . , n. Recall the notation
S = K(x) ⊗K[x ] K[[x]] from the introduction. We define two maps σ and τ
from S to M by

τ(h(x)) = h

(
s,

t

s
, x3, . . . , xn

)
and σ(h(x)) =

τ(h(x))

s
. (12)

Hence, τ is a ring morphism and we have

σ(gh) = τ(g)σ(h) for any g, h in S. (13)

Lemma 26. Let P be any non-zero operator

P = P (x̂;Dt, Ds) =

β∑
j=α

Pj(x̂;Dt)D
j
s ∈ K[x̂]⟨Dt, Ds⟩ (14)

for which Pα ̸= 0, and let g ∈
∑

i∈Z gi(x̂)s
i be any element of M . Then, the

coefficient of s−1−α in P (g) is Pα(g−1).
Similarly, for any h ∈ {3, . . . , n}, if Ph is a non-zero operator

Ph = Ph(x̂;Dxh
, Ds) =

βh∑
j=αh

Ph,j(x̂;Dxh
)Dj

s ∈ K[x̂]⟨Dxh
, Ds⟩, (15)

for which Ph,αh
̸= 0, then the coefficient of s−1−α in Ph(g) is Pαh

(g−1).

Proof. Note that

Dj
s(g) = Dj

s

(∑
i≤−2

gi(x̂)s
i

)
+ (−1)jj! g−1(x̂)s

−1−j +Dj
s

(∑
i≥0

gi(x̂)s
i

)
,

where the first term has all exponents less than −1 − j and the last has all
exponents at least 0: only the middle term contributes to the coefficient of s−1−j .
So, for j ≥ α, some contribution to the coefficient of s−1−α is only possible
if j = α, proving the result for the case P = P (x̂;Dt, Ds). The proof for the
other cases is the same.

Consider any non-necessarily D-finite series

f =
∑

i1,...,in≥0

ai1,...,inx
i1
1 · · ·xin

n ∈ K[[x]] (16)

and the corresponding element σ(f) of M ⊆ T . By Definition 3 (diagonals) and
because we write t for x2, the primary diagonal ∆2,1(f) is

∆2,1(f) =
∑

i1,i3,...,in≥0

ai1,i1,i3,...,int
i1xi3

3 · · ·xin
n ∈ K[[x̂]].

By the definition (12) of τ and σ, this diagonal is the coefficient of degree s−1

in σ(f). The following lemma immediately follows, as a consequence of
Lemma 26.
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Lemma 27. Let f be as in (16). If P (f) = 0 for P and Pα ̸= 0 as in (14),
then Pα annihilates ∆2,1(f). For any h ∈ {3, . . . , n}, if Ph(f) = 0 for Ph

and Ph,αh
̸= 0 as in (15), then Ph,αh

annihilates ∆2,1(f).

In the next two subsections, when f is D-finite we will construct operators
P and Ph to be used in the previous lemma.

4.1.1. Controlling and combining the Di
sD

j
t (σ(f))

We construct an operator P ∈ K[x̂]⟨Dt, Ds⟩ such that P (σ(f)) = 0. To this
end, we introduce two vector spaces depending on N ∈ N,

VN = AN · spanK(x̂){Di
sD

j
t | i+ j ≤ N} (17)

and
WN = spanK(x̂){sασ(D

β
xf) | α ≤ DN,β ∈ B}, (18)

where B is a finite set and AN is a polynomial, both to be determined (see
Lemma 31). We will prove that the map defined by ϕ(P ) := P (σ(f)) is
K(x̂)-linear from VN to WN , that it is non-injective for large enough N (see
Lemma 32). As a by-product, we will get an annihilator Pα of ∆2,1(f) with
controled degree and order (see again Lemma 32).

Denote Di := Dxi for i = 1, . . . , n.

Lemma 28. We have for all g ∈ S:

Ds(σ(g)) = σ
((
−x−1

1 +D1 − x−1
1 x2D2

)
(g)

)
,

Dt(σ(g)) = σ
(
(x−1

1 D2)(g)
)
,

Dxh
(σ(g)) = σ(Dh(g)), h = 3, . . . , n.

Proof. For the first two identities, write the following two equations by the chain
rule, then use the formulas τ(x1) = s, τ(x2) = t/s, and (13):

Ds(σ(g)) = −1

s
σ(g) + σ(D1(g))−

t

s2
σ(D2(g)),

Dt(σ(g)) =
1

s
σ(D2(g)).

The third identity is obvious.

Define for any N ∈ N:

GN :=
⊕

a+b≤N

x−N
1 K[x1, x2]≤NDa

1D
b
2. (19)

Lemma 29. For all g ∈ S and all non-negative integers i and j, Dj
tD

i
s(σ(g)) is

an element of σ(Gi+j(g)).
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Proof. It follows immediately from Lemma 28 that, for all i, j ∈ N,

Dj
tD

i
s(σ(g)) = Dj

tσ
(
(−x−1

1 +D1 − x−1
1 x2D2)

i(g)
)

= σ
(
(x−1

1 D2)
j(−x−1

1 +D1 − x−1
1 x2D2)

i(g)
)
.

(20)

Consider an element x−ipDa
1D

b
2 of Gi, or equivalently, integers a and b and a

polynomial p ∈ K[x1, x2] satisfying a+ b ≤ i and tdeg(p) ≤ i. We observe that(
− 1

x1
+D1 −

x2

x1
D2

)(
p

xi
1

Da
1D

b
2

)
=

1

xi+1
1

(
−pDa

1D
b
2 − ipDa

1D
b
2 + x1D1(p)D

a
1D

b
2 + x1pD

a+1
1 Db

2

− x2D2(p)D
a
1D

b
2 − x2pD

a
1D

b+1
2

)
is in Gi+1. Therefore,

(
− 1

x1
+D1 − x2

x1
D2

)
Gi ⊆ Gi+1, by linearity. We derive

similarly(
1

x1
D2

)(
1

xi
1

p(x1, x2)D
a
1D

b
2

)
=

1

xi+1
1

(
D2(p)D

a
1D

b
2 + pDa

1D
b+1
2

)
∈ Gi+1,

and
(

1
x1
D2

)
Gi ⊆ Gi+1. Since 1 ∈ G0, we get by induction that for all i, j ∈ N,(

1

x1
D2

)j (
− 1

x1
+D1 −

x2

x1
D2

)i

∈ Gi+j .

Lemma 30. For any integers p and q, we have:

τ

(
1

xq
1

K[x1, x2]≤p

)
⊆ K[s, t]≤2p

sp+q
and τ (K[x]≤p) ⊆

K[s, x̂]≤2p

sp
.

Proof. Both formulas follow by linearity from the action of τ on monomials:

τ(xi
1x

j
2) =

si+(p−j)tj

sp
∈ K[s, t]≤p+i

sp
if i+ j ≤ p;

τ(x i ) =
si1+(p−i2)xi2

2 · · ·xin
n

sp
∈ K[s, x̂]≤p+i1

sp
if |i| ≤ p.

Lemma 31. Consider B := {0, 1, . . . , r1 − 1} × {0, 1, . . . , r2 − 1}, the
polynomial C, and dC = d1 + d2 ≤ 2df as set by Definition 13 for S := {1, 2}.
Fix N ∈ N and set D := 2+2dC ≥ 2 and AN (s, x̂) := s(dC+2)N ·τ(CN ) ∈ K[s, x̂].
Then, if i+ j ≤ N , then

Di
sD

j
t (σ(f)) ∈

∑
α≤DN
β∈B

K[x̂]≤DN

AN (s, x̂)
sασ(Dβ

xf). (21)
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Proof. If i+ j ≤ N , then Lemma 29, Equation (13) and Lemma 30 imply

Di
sD

j
t (σ(f)) ∈ σ(Gi+j(f)) ⊆ σ(GN (f))

=
∑

a+b≤N

τ(x−N
1 K[x1, x2]≤N )σ(Da

1D
b
2(f))

⊆
∑

a+b≤N

K[s, t]≤2N

s2N
σ(Da

1D
b
2(f)).

(22)

Next, by Definition 13 for S := {1, 2} and by Lemma 17 with u := N ≥ v := a+b
and t := 0, we have

Da
1D

b
2 ∈ H0,a+b ⊆

1

CN
HNdC ,0 +

1

CN
J.

Applying to f , then applying σ, yields, appealing again to (13), next again to
Lemma 30:

σ(Da
1D

b
2(f)) ∈

1

τ(CN )
σ(HNdC ,0(f)) ⊆

∑
β∈B

K[s, x̂]≤2dCN

sdCN · τ(CN )
σ(Dβ

xf). (23)

Combining (22) and (23) and using t = x2, we obtain (21) where D and AN are
set as in the lemma statement.

Lemma 32. There exists a non-zero annihilator Pα(x̂;Dt) of ∆2,1(f) satisfy-
ing (10).

Proof. Recall the definitions (17) and (18) of VN and WN , where AN and B
are now fixed. Lemma 31 has proved that the K(x̂)-linear map defined by
ϕ(P ) := P (σ(f)) is from VN to WN . Note that

dimK(x̂) VN =

(
N + 2

2

)
, dimK(x̂) WN ≤ R(DN + 1), (24)

where R := r1r2 = O(r2f ). Fix

N = 2DR = 4(d1 + d2 + 1) r1r2 = O(dfr
2
f ), (25)

so that
dimK(x̂) VN − dimK(x̂) WN = (3D − 1)R+ 1 > 0 (26)

and ϕ is non-injective. For all i, j with i + j ≤ N , by Lemma 31 there exist

polynomials q
(i,j)
α,β ∈ K[x̂] satisfying tdeg(q

(i,j)
α,β ) ≤ DN and

AN ·Di
sD

j
t (σ(f)) =

∑
α≤DN
β∈B

q
(i,j)
α,β sασ(Dβ

xf) ∈ WN .

A witness of non-injectivity will be provided by polynomials pi,j ∈ K[x̂] such
that ∑

i+j≤N

pi,j(x̂) ·AN Di
sD

j
t (σ(f)) = 0,
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that is, by coefficient extraction, such that for all α ≤ DN and β ∈ B,∑
i+j≤N

pi,j q
(i,j)
α,β = 0.

Hence we have a linear system

 . . .

. . . q
(i,j)
α,β . . .

. . .

 ·


...

pi,j
...

 = 0,

where the polynomials q
(i,j)
α,β have total degree at most DN . This system has

dimK(x̂) WN rows and dimK(x̂) VN columns, where those dimensions are given
by (24), and by the inequality (26) it has more columns than rows. So, Lemma 4
applies and leads to a non-zero solution (pi,j) satisfying

tdeg(pi,j) ≤ DN ·R(ND + 1) = O(D4R3) = O(d4fr
6
f ),

where we used (25). The operator P :=
∑

i+j≤N pi,j D
i
sD

j
t satisfies P (σ(f)) = 0

and can be written

P =

β∑
i=α

Pi(x̂;Dt)D
i
s

with Pα(x̂;Dt) ̸= 0. Then Pα annihilates ∆2,1(f) and satisfies the announced
bounds (10).

4.1.2. Controlling and combining the Di
sD

j
xh
(σ(f))

For each h ∈ {3, . . . , n}, we proceed by an argument similar to the
argument of Section 4.1.1 to construct an operator Ph ∈ K[x̂]⟨Dxh

, Ds⟩ such
that Ph(σ(f)) = 0. The proof is a bit simpler, because the action of Dxh

on σ(f) is simpler that the action of Dt on it. This time, we consider
B = {0, 1, . . . , r1} × {0, 1, . . . , r2} × {0, 1, . . . , rh}, the polynomial C, and
dC = d1 + d2 + dh ≤ 3df as set by Definition 13 for S := {1, 2, h}. In analogy
with (10) and (11), for each N ∈ N, we introduce

VN = AN · spanK(x̂){Di
sD

j
xh

| i+ j ≤ N}, (27)

where AN = s(dC+2)N · τ(CN ) ∈ K[s, x̂], and

WN = spanK(x̂){sασ(D
β
xf) | α ≤ DN,β ∈ B}, (28)

where D = 2 + 2dC = O(df ). We will again prove that the map defined by
ϕ(P ) := P (σ(f)) is K(x̂)-linear from VN to WN .

In analogy with (19), define for any N ∈ N:

GN :=
⊕

a+b+c≤N

x−N
1 K[x1, x2]≤NDa

1D
b
2D

c
xh
. (29)
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Lemma 33. Let B, C, and dC be as defined at the beginning of Section 4.1.2,
that is, as set by Definition 13 for S := {1, 2, h}. Then, if i+ j ≤ N , then

Di
sD

j
xh
(σ(f)) ∈

∑
α≤DN
β∈B

K[x̂]≤DN

AN (s, x̂)
sασ(Dβ

xf). (30)

Proof. If i + j ≤ N , then Lemma 29, the definition (29), Equation (13) and
Lemma 30 imply

Di
sD

j
xh
(σ(f)) ∈ Dj

xh
σ(Gi(f)) ⊆ σ(Gi+j(f)) ⊆ σ(GN (f))

=
∑

a+b+c≤N

τ(x−N
1 K[x1, x2]≤N )σ(Da

1D
b
2D

c
xh
(f))

⊆
∑

a+b+c≤N

K[s, t]≤2N

s2N
σ(Da

1D
b
2D

c
xh
(f)).

(31)

Next, by Lemma 17 with u := N ≥ v := a+ b+ c and t := 0, we have

Da
1D

b
2D

c
xh

∈ H0,a+b+c ⊆
1

CN
HNdC ,0 +

1

CN
J.

Applying to f , then applying σ, yields, appealing again to (13), next again to
Lemma 30:

σ(Da
1D

b
2D

c
xh
(f)) ∈ 1

τ(CN )
σ(HNdC ,0(f)) ⊆

∑
β∈B

K[s, x̂]≤2dCN

sdCN · τ(CN )
σ(Dβ

xf). (32)

Combining (31) and (32) and using t = x2, we obtain (30) where D and AN are
set as in the lemma statement.

Lemma 34. There exists a non-zero annihilator Pα(x̂;Dxh
) of ∆2,1(f) satis-

fying (11).

Proof. Recall the definitions (27) and (28) of VN andWN . Lemma 33 has proved
that the K(x̂)-linear map defined by ϕ(P ) := P (σ(f)) is from VN to WN . Note
that

dimK(x̂) VN =

(
N + 2

2

)
, dimK(x̂) WN ≤ R(DN + 1),

where R := r1r2fh = O(r3f ), and fix

N = 2DR = 4(d1 + d2 + dh + 1) r1r2rh = O(dfr
3
f ). (33)

The thast three formulas in terms of R and D are the same as in Lemma 34,
with only the values of R and D changed, so the inequality

dimK(x̂) VN − dimK(x̂) WN = (3D − 1)R+ 1 > 0 (34)
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holds again, and ϕ is non-injective. The proof by linear algebra continues as
in the proof of Lemma 32, recombining expressions AN Di

sD
j
xh
(σ(f)) instead of

expressions AN Di
sD

j
t (σ(f)). It constructs a non-zero operator

Ph :=
∑

i+j≤N

pi,j D
i
sD

j
xh

=

βh∑
i=αh

Ph,i(x̂;Dxh
)Di

s ∈ K[x̂]⟨Ds, Dxh
⟩

satisfying Ph(σ(f)) = 0, Ph,αh
̸= 0, and

tdeg(pi,j) ≤ ND ·R(ND + 1) = O(D4R3) = O(d4fr
9
f ). (35)

Then Ph,αh
annihilates ∆2,1(f) and satisfies the announced bounds (11).

4.1.3. Iterating primary diagonals

We can now estimate bounds on the degree and order of an annihilating
operator for the complete diagonal of f obtained by successive primary
diagonals. In analogy with the definition (1) of the complete diagonal, we
consider the partial diagonal

g := ∆k+1,k∆k,k−1 · · ·∆2,1(f) ∈ K[[xk+1, . . . , xn]].

obtained after k iterations of a primary diagonal. Assume that there exists a
non-zero annihilating operator for g with respective degree and order bounds

O
(
d
u(k)
f r

v(k)
f

)
and O

(
d
s(k)
f r

t(k)
f

)
. (36)

By Theorem 25 applied to f = g, there exists a non-zero annihilating operator
for ∆k+2,k+1(g), with respective degree and order bounds analogous to (36) for
exponents u(k + 1), v(k + 1), s(k + 1), t(k + 1) given by(

u(k + 1) v(k + 1)
s(k + 1) t(k + 1)

)
=

(
4 9
1 3

)
·
(
u(k) v(k)
s(k) t(k)

)
.

Here, the entries of the constant matrix are obtained as the maximums of
the exponents appearing in the big O terms in (10) and (11). This sets up
a recurrence that we proceed to analyze. The matrix

(
4 9
1 3

)
has two eigenvalues

satisfying λ2 − 7λ+ 3 = 0, namely

λ1 :=
7 +

√
37

2
≈ 6.54 . . . , λ2 :=

7−
√
37

2
≈ 0.46 . . . . (37)
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Taking initial values for s, t, u, v in to account, we get

s(k) =
1√
37

λk
1 − 1√

37
λk
2 ≈ (0.16 . . . )λk

1 − (0.16 . . . )λk
2 ,

t(k) =

(
1

2
− 1

2
√
37

)
λk
1 +

(
1

2
+

1

2
√
37

)
λk
2 ≈ (0.42 . . . )λk

1 + (0.58 . . . )λk
2 ,

u(k) =

(
1

2
− 5

2
√
37

)
λk
1 +

(
1

2
+

5

2
√
37

)
λk
2 ≈ (0.09 . . . )λk

1 + (0.91 . . . )λk
2 ,

v(k) =
9√
37

λk
1 − 9√

37
λk
2 ≈ (1.48 . . . )λk

1 − (1.48 . . . )λk
2 .

(38)
Degree and order bounds for an annihilating operator P of ∆(f) are obtained
for k = n− 1, and (38) leads to the respective asymptotic formulas

deg(P ) = O
(
d
u(n−1)
f r

v(n−1)
f

)
= d

O(λn
1 )

f r
O(λn

1 )
f ,

ord(P ) = O
(
d
s(n−1)
f r

t(n−1)
f

)
= d

O(λn
1 )

f r
O(λn

1 )
f .

when n, df , and rf tend independently to infinity, and where the constants in
the big O’s are small (at most 1).

4.2. Complete diagonal in a single step

Following [13, Remarks, item (3)], instead of iterating primary diagonal
transformations, we can get the operator that annihilates the complete diagonal
of f in a single step. The goal of this subsection is indeed the construction of a
specific linear differential operator annihilating ∆(f) that satisfies the bounds
presented in the following theorem. These bounds are simply exponential in n,
and therefore asymptotically smaller than the bounds obtained by the method
by iteration, which are doubly exponential in n.

Theorem 35. Let f ∈ K[[x]] be D-finite over K(x) and let di, fi, df , rf be as in

Definition 2. Then, there exists an annihilating operator P̃ of ∆(f) in K[t]⟨Dt⟩
that satisfies, for all ε > 0,

deg(P̃ ) ≤ N ′ = O((2 + ε)nn2ndnf r
n
f ), ord(P̃ ) ≤ N = O((2 + ε)nn2n−1dn−1

f rnf ),
(39)

when n, df , and rf tend independently to infinity, and where

N ′ = (2D + 1)n
n∏

j=1

rj , N =
(2D + 1)n

D

n∏
j=1

rj , for D = n

(
2 +

n∑
i=1

di

)
. (40)

To prepare for the proof, we specialize the setting introduced at the
beginning of Section 4 by setting m = n − 1, so that t = xn, and we define
two maps σ and τ from S to M by

τ(h(x)) = h

(
s1,

s2
s1

,
s3
s2

, . . . ,
sn−1

sn−2
,

t

sn−1

)
and σ(h(x)) =

τ(h(x))

s1 · · · sn−1
, (41)
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which the reader will compare with (12). Hence, as in the previous subsection,
τ is a ring morphism and the formula (13) holds again.

In order to generalize Lemmas 26 and 27, we introduce some convenient
notation for coefficient extraction. For a series

g =
∑
i ,j

gi ,js
i tj ∈ M,

variables v1, . . . , vℓ and exponents e1, . . . , eℓ, with {v1, . . . , vℓ} ⊂ {s, t}, we
denote by

[ve11 · · · veℓℓ ]g

the sub-series of g involving only the monomials s i tj in which v1 has exponent
exactly e1, v2 has exponent exactly e2, etc. Note that this is mere notation
and that [ve11 ]g need not be equal to [ve11 v02 ]g although ve11 = ve11 v02 in M . We
do analogously with an operator P ∈ (K[t]⟨Dt⟩)[Ds] and a set of variables
{v1, . . . , vℓ} ⊂ {Ds}, with the convention that coefficients are always written to
the left of the monomials.

Lemma 36. Let P ∈ (K[t]⟨Dt⟩)[Ds] be a non-zero operator viewed with coef-
ficients in K[t]⟨Dt⟩. Consider any lexicographical order ≻ on the commutative
monoid generated by {Ds1 , . . . , Dsn−1

}, e.g., the lexicographical order for which
Ds1 ≻ Ds2 ≻ · · · ≻ Dsn−1

. Let Dα1
s1 · · ·Dαn−1

sn−1 be the minimal monomial in P
with respect to this order, so that

P = P̃ (t;Dt)D
α1
s1 · · ·Dαn−1

sn−1
+ terms with higher monomials (42)

for some non-zero P̃ ∈ K[t]⟨Dt⟩. Additionally, let

g =
∑
i ,j

gi ,js
i tj

be any series in M . Then,

[s
−(α1+1)
1 · · · s−(αn−1+1)

n−1 ]P (g) = (−1)|α|α1! · · ·αn−1! P̃ ([s−1
1 · · · s−1

n−1]g).

Proof. For the proof, we fix the lexicographical order ≻ to satisfy Ds1 ≻ Ds2 ≻
· · · ≻ Dsn−1

. Any other lexicographical order would be dealt with by obvious
modifications. We claim that, for any i, after writing

P = P̄ (t;Dt, Dsi+1 , . . . , Dsn−1)D
α1
s1 · · ·Dαi

si +Q

for some non-zero P̄ ∈ K[t]⟨Dt, Dsi+1
, . . . , Dsn−1

⟩ and some operator Q whose

monomials Dβ
s are all such that (β1, . . . , βi) is lexicographically higher than

(α1, . . . , αi), we have

[s
−(α1+1)
1 · · · s−(αi+1)

i ]P (g) = (−1)α1+···+αiα1! · · ·αi! P̄ ([s−1
1 · · · s−1

i ]g). (43)

The proof is by induction on i ∈ {0, . . . , n−1}. The base case i = 0 corresponds
to no coefficient extraction and P̄ = P , so that (43) is the tautology P (g) =
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1 × P̄ (g). Fix i ≥ 1 and, in order to prove (43), assume the analog of (43)
at i− 1, that is,

[s
−(α1+1)
1 · · · s−(αi−1+1)

i−1 ]P (g) =

(−1)α1+···+αi−1α1! · · ·αi−1! P̂ ([s−1
1 · · · s−1

i−1]g),
(44)

for some non-zero

P̂ =
∑
j≥αi

P̂j(t;Dt, Dsi+1
, . . . , Dsn−1

)Dj
si ∈ K[t]⟨Dt, Dsi , . . . , Dsn−1

⟩.

Consider a series c ∈ M involving only t, si+1, . . . , sn−1, as well as some
integer u ∈ Z, to compute

[s
−(αi+1)
i ]P̂ (csui ) =

∑
j≥αi

P̂j(c)u(u− 1) · · · (u− j + 1) [s
−(αi+1)
i ]su−j

i .

The last term [s
−(αi+1)
i ]su−j

i makes the sum have at most one single non-zero
contribution, for j = u + αi + 1, while it makes it be zero if u ≤ −2. If not
a priori zero, the sum reduces to P̂u+αi+1(c)u(u− 1) · · · (−αi), hence it is zero
if u ≥ 0. The only possibly non-zero case is therefore for u = −1, making the
sum equal to (−1)αiαi! P̂αi

(c). By linearity, we obtain

[s
−(αi+1)
i ]P̂ ([s−1

1 · · · s−1
i−1]g) = (−1)αiαi! P̂αi

([s−1
i ] [s−1

1 · · · s−1
i−1]g). (45)

Applying [s
−(αi+1)
i ] to (44), combining with (45), and setting P̄ = P̂αi , we thus

obtain (43). The case i = n− 1 proves the lemma by providing P̃ = P̄ .

Consider again a non-necessarily D-finite series f as in (16). By the
definition (1) of the complete diagonal ∆(f), and by the definition (41) of τ
and σ, this complete diagonal ∆(f) is [s−1

1 · · · s−1
n−1]σ(f). We will now derive

the following analogue of Lemma 27.

Lemma 37. Let f be as in (16). Fix any lexicographical order ≻ on the
commutative monoid generated by {Ds1 , . . . , Dsn−1

}. If P (σ(f)) = 0 for P

and P̃ ̸= 0 as in (42), then P̃ annihilates ∆(f).

Proof. Lemma 36 and the equality [s−1
1 · · · s−1

n−1]σ(f) = ∆(f) imply

(−1)|α|α1! . . . αn−1! P̃ (∆(f)) = [s
−(α1+1)
1 · · · s−(αn−1+1)

n−1 ]P (σ(f)) = 0.

Hence, P̃ (∆(f)) = 0.

We will now construct an operator P . Henceforth, it will be convenient to
write w in place of s1 · · · sn−1 and Di in place of Dxi

, for i = 1, . . . , n. Define

Gm :=
K[s, t]≤2nm

w2m
σ (spanK {Dα

x f | |α| ≤ m}) .
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For convenience, write s0 := 1, sn := t. By the chain rule, for all g ∈ S and each
i = 1, 2, . . . , n− 1, we have

Dsi(σ(g)) = − 1

si
σ(g) +

1

si−1
σ(Di (g))−

si+1

s2i
σ(Di+1(g)), (46)

and

Dt(σ(g)) =
1

sn−1
σ(Dn(g)). (47)

For all |α| ≤ m, and all p(s, t) ∈ K[s, t]≤2nm, the chain rule implies that if
1 ≤ i ≤ n− 1, then

Dsi

(
p(s, t)

w2m
σ(Dα

x f)

)
= Dsi

(
1

w2m

)
p σ(Dα

x f) +
Dsi(p)

w2m
σ(Dα

x f)

+
p

w2m
Dsi(σ(D

α
x f)).

Rewriting the first two terms of the right-hand side over the denominator
w2(m+1) shows that they are both in Gm+1. Similarly, making g =Dα

x f in (46)
and rewriting over the denominator w2(m+1) shows that the third term is also
in Gm+1. Therefore, Dsi Gm ⊆ Gm+1. A similar proof, using (47), also shows
Dt Gm ⊆ Gm+1. Since 1 ∈ G0, we get by induction that for all i ∈ Nn−1

and j ∈ N,
Dj

t D
i
s(σ(f)) ∈ Gj+|i |.

Also note that Gm ⊆ Gm′ if m ≤ m′. Now, if k ≤ N ′, j + |i| ≤ N , then

tkDj
tD

i
s(σ(f)) ∈

K[s, t]≤2nN+N ′

w2N
σ (spanK {Dα

x f | |α| ≤ N}) . (48)

Using Definition 13 when S = {1, . . . , n} fixes B =
∏n

i=1 {0, 1, . . . , ri − 1}, the
polynomial C, and dC =

∑n
j=1 dj ≤ ndf . Then by Lemma 17, with u = N, v =

|α|, t = 0, we have

Dα
x ∈ 1

CN
HNdC ,0 +

1

CN
J.

Applying to f , then applying σ, yields:

σ(Dα
x f) ∈

1

τ(CN )
σ(HNdC ,0 (f)) ⊆

K[s, t]≤nNdC

wdCNτ(CN )

⊕
β∈B

K σ(Dβ
xf). (49)

Therefore, by (48) and (49), and for D defined as in (40), we have

tkDj
tD

i
s σ(f) ∈

K[s, t]≤DN+N ′

w(2+dC)Nτ(CN )

⊕
β∈B

K σ(Dβ
xf). (50)

Denote AN (s, t) := w(2+dC)Nτ(CN ) ∈ K[s, t]. For any given N ′ and N , define

VN,N ′ = AN · spanK{tkDj
tD

i
s | k ≤ N ′, j + |i| ≤ N}
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and
WN,N ′ =

∑
β∈B

K[s, t]≤DN+N ′σ(Dβ
xf).

We have proved by (50) that there is a K-linear map ϕ from VN,N ′ to WN,N ′

defined by ϕ(P ) := P (σ(f)). Note that

dimK VN,N ′ = (N ′ +1) ·
(
N + n

n

)
, dimK WN,N ′ ≤ R

(
DN +N ′ + n

n

)
, (51)

where R := r1 · · · rn = O(rnf ). Fix N and N ′ as in (40) (D has already been

defined as there), so that N ′ = DN , N > R 1+2nD
D > 2n > n, and

NnN ′ = R(2ND +N)n > R(2ND + n)n = R(DN +N ′ + n)n,

from which follows, with the help of (51),

dimK VN,N ′ > N ′ · N
n

n!

> R · (DN +N ′ + n)n

n!
> R

(
DN +N ′ + n

n

)
≥ dimK WN,N ′ .

We therefore obtain dimK VN,N ′ − dimK WN,N ′ > 0, so that ϕ is non-injective.
Consider any non-zero kernel element Z, that is, any family of constants ci ,j,k ∈
K indexed by i, j, k with |i|+ j ≤ N and k ≤ N ′, and such that ϕ(Z) = 0 for

Z =
∑

i+j≤N, k≤N ′

ci ,j,k ·AN tkDj
tD

i
s. (52)

Then, the operator P := A−1
N Z =

∑
ci ,j,k t

kDj
tD

i
s satisfies P (σ(f)) = 0 as well.

From (52) it follows that

deg(P ) ≤ N ′, ord(P ) ≤ N. (53)

Finally, P can be written

P = P̃ (t;Dt)D
α1
s1 . . . Dαn−1

sn−1
+ higher terms

with P̃ (t;Dt) ̸= 0, and the operator P̃ annihilates ∆(f) by Lemma 37 and
satisfies the announced bounds (39) because of (53).

Finishing the proof of Theorem 35 only requires to validate the asymptotic
estimates in (39). Set S :=

∑n
i=1 di, which goes to infinity because df ≤ S ≤

ndf . Fix ε > 0. From the value of D in (40) follow, at least for n ≥ 1/(4ε),

D = nS

(
1 +

2

S

)
≤ nS

(
1 +

2

df

)
= O(nS),

2D + 1 = 2nS

(
1 +

2

S
+

1

4nS

)
≤ 2nS

(
1 +

2

df
+

1

4ndf

)
≤ 2nS

(
1 +

2 + ε

df

)
,
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and then, at least for n ≥ 1/(4ε) and df ≥ 2,

(2D + 1)n ≤ 2nnnSn(1 + ε/2)n ≤ (2 + ε)nn2ndnf ,

(2D + 1)n

D
≤

(2 + ε)nn2ndnf
n(2 + S)

≤
(2 + ε)nn2ndnf
n(2 + df )

≤ (2 + ε)nn2n−1dn−1
f .

Combining with (40) yields (39).
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