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Abstract

We present a new algorithm for solving the reduction problem in the
context of holonomic integrals, which in turn provides an approach to
integration with parameters. Our method extends the Griffiths–Dwork
reduction technique to holonomic systems and is implemented in Julia.
While not yet outperforming creative telescoping in D-finite cases, it en-
hances computational capabilities within the holonomic framework. As
an application, we derive a previously unattainable differential equation
for the generating series of 8-regular graphs.

1 Introduction

Symbolic integration is a fundamental problem in computer algebra, with deep
connections to combinatorics, number theory, and mathematical physics. In the
vast landscape of integrable functions, holonomic functions—those multivari-
ate functions satisfying sufficiently many independent linear partial differential
equations with polynomial coefficients—form a particularly rich and structured
class. This class includes many special functions of mathematical and physi-
cal interest, such as exponential functions, logarithms, polylogarithms, elliptic
integrals and various hypergeometric functions. In the realm of univariate func-
tions, the classical problem of integrating elementary functions in terms of ele-
mentary functions does not always have a solution—as governed by Liouville’s
theorem. Holonomic functions, in contrast, exhibit a different structure that re-
mains closed under integration, including under definite integration depending
on parameters. In the holonomic setting (and its variants), symbolic integration
revolves around two problems: integration with a parameter and reduction.

Integration with a parameter. Given a function f(t, x1, . . . , xn) of 1 + n
variables satisfying a suitable system of linear partial differential equations with
polynomial coefficients, we aim at computing a linear differential equation sat-
isfied by the integral

I(t) =

∫
D

f(t, x1, . . . , xn)dx1 · · · dxn.
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To obtain an algebraic formulation of the problem and eliminate the analytic
aspects, we need some simplifying assumptions. We consider a function spaceM
in which f lies such that:

(a) M is closed under differentiation by t and the xi, and by multiplication
by t and the xi;

(b) g 7→
∫
D
g(x1, . . . , xn)dx1 . . . dxn is well defined on M and commutes with

differentiation with respect to t and multiplication by t;

(c) For any g ∈M and any 1 ≤ i ≤ n,
∫
D

∂
∂xi

g(x1, . . . , xn)dx1 . . . dxn = 0.

Then the problem reduces to finding polynomials p0(t), . . . , pr(t), with pr
nonzero, and functions g1, . . . , gn ∈M such that

p0(t)f + p1(t)
∂f

∂t
+ · · ·+ pr(t)

∂rf

∂tr
=
∂g1
∂x1

+ · · ·+ ∂gn
∂xn

. (1)

Indeed, after integrating both sides over D, the hypotheses above imply that

p0(t)I + p1(t)I
′ + · · ·+ pr(t)I

(r) = 0, (2)

which is the kind of relations we aim to compute.
To make one step further towards algebra, we introduce the Weyl alge-

bra Wt,x, which is the non-commutative algebra generated by t, x1, . . . , xn, ∂t,
∂x1 , . . . , ∂xn , and the usual relations uv = vu, ∂u∂v = ∂v∂u and ∂uu = u∂u + 1,
for any distinct u, v ∈ {t, x1, . . . , xn}. Hypothesis (a) translates to the state-
ment that M is a left module over Wt,x. To ensure that (1) has a solution, we
require more specifically that:

(d) M is a holonomic Wt,x-module.

The concept of holonomy embodies the idea of a function satisfying “sufficiently
many independent linear PDEs”, see Section 2.2 for more details.

From the algorithmic point of view, we want an algorithm that takes as
input a description of M as a Wt,x-module, with generators and relations, and
computes polynomials p0(t), . . . , pr(t) such that (1) holds for some g1, . . . , gn
in M , which we usually do not need to compute.

The reduction problem. In absence of a parameter, integrals are constants
and holonomic methods do not directly compute them. However, holonomic
methods can be used to find relations between integrals. Consider the Weyl al-
gebraWx in the variables x1, . . . , xn and a holonomicWx-moduleM . As above,
we algebraically interpret integration as a linear map on M that vanishes on
the subspace ∂x1M + · · ·+ ∂xnM , which we denote simply ∂M below. So, find-
ing a relation between the integrals of functions f1, . . . , fr ∈ M means finding
constants c1, . . . , cr, with cr ̸= 0, such that

c1f1 + · · ·+ crfr ∈ ∂M.
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Computing normal forms in the quotient M/∂M is one way to find this sort
of relations. Owing to the assumption of the holonomy of M , a classical result
is that this quotient is finite-dimensional over the base field [7, Theorem 6.1
of Chapter 1, combined with the example that precedes it, for p = 2n]. It
is now well understood that the integration problem may be tackled through
the reduction problem [9, 10, 17, 18, 16, 11, 33], in a way that departs from
algorithms based on earlier approaches, namely by a linear ansatz [52, 36] or by
following Zeilberger’s method [53, 20].

Contributions. In the holonomic context, we propose a new algorithm for the
problem of reduction (Section 3). In some aspects, this is a generalization to
holonomic systems of the Griffiths–Dwork reduction method for homogeneous
rational functions [32, 12, 39] (Section 3.4). This algorithm yields a new al-
gorithm for integration with a parameter (Section 4). We provide a Julia [6]
implementation of our algorithm (Section 5). Although the new algorithm is
still not on par with best implementations following Zeilberger’s approach and
generalizations on their home turf (i.e., D-finite functions, see below), it im-
proves the state of the art in the holonomic context. As an application, we were
able to compute a differential equation for the generating series of 8-regular
graphs, for which Zeilberger’s approach is theoretically not suited, and which
was also previously unattainable by dedicated methods (Section 6).

D-finiteness versus holonomy. The creative telescoping approach to sym-
bolic integration (see [21] for a review) relies on D-finiteness instead of holon-
omy. Instead of working with the Weyl algebra Wt,x and with holonomic Wt,x-
modules, this approach considers the rational Weyl algebra Wt,x(t,x), which is
the Weyl algebra extended with rational functions in t and x, and Wt,x(t,x)-
modules that are finite-dimensional over K(t,x), where K is the base field. The
nuance has deep concrete implications.

Expressivity is an argument in favor of holonomy: we can express a wider
class of integrals with holonomy than with D-finiteness. Integrals over semi-
algebraic sets is a prominent example [43]. In general, it is always possible
to construct a D-finite module from a holonomic module M : it is enough to
consider the localization K(t,x) ⊗K[t,x] M , but this operation may lose impor-
tant information. For example, it is possible that K(t,x) ⊗K[t,x] M = 0, as it
happens when enumerating k-regular graphs (see Section 6), making it impos-
sible to apply any creative-telescoping algorithm over rational functions in a
relevant way.

As for efficiency, approaches based on D-finiteness (implemented in Mathe-
matica [36, 37], Maple [20, 11], and Sagemath [35]) are far superior, when they
apply, to that based on holonomy [44] (implemented in Macaulay2, Singular,
and Risa/Asir). Understanding and bridging this gap to achieve both efficiency
and expressivity remains a significant challenge, and this paper represents a step
forward in that direction.

In this paper, we consider a mixed approach by using modules over Wt,x(t),
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the Weyl algebra extended with rational functions in t only: this amounts to
considering holonomy with respect to the x and D-finiteness with respect to
the parameter t. This enables the use of reductions over the base field K(t) to
compute integrals with a parameter.

Related work. In the context of D-finiteness, the problem of integration with
parameters is addressed by algorithms of Chyzak [20] and Koutschan [36]. A
more recent research line addresses the integration problem by solving first the
reduction problem [9, 10, 17, 18, 16, 11, 33, 15]. In a holonomic context,
the integration problem and the reduction problem have been addressed by
Takayama [50] and Oaku and Takayama [44], without making efficiency their
main goal. In this work, we forgo the minimality of the order of the output
relation (2) in order to bypass the machinery related to b-functions. Already
Takayama’s algorithm [50] made a similar compromise. However, in comparison
to this algorithm, we leverage a Gröbner basis technique to obtain a first reduc-
tion, which has a lot of structure and can be computed efficiently, but which
is not enough to detect all relations between integrals. This is completed by
another reduction, more direct and less structured, which happens in a smaller
dimensional space than what would arise with Takayama’s algorithm, thanks to
the first reduction.

In the case of integrals of the form∫
a(x1 . . . , xn) exp(f(x1, . . . , xn))dx0 · · · dxn,

where a(x1, . . . , xn) is a polynomial and f(x1, . . . , xn) a homogeneous polyno-
mial, the first reduction echoes the Griffiths–Dwork reduction [32, 12], while
the second reduction echoes Lairez’s reduction algorithm in [38]. In the similar
context of rational integrals, which are of great importance in the computation
of Feynman integrals, the reduction is addressed by Laporta [41].

In the context of the combinatorics of k-regular graphs, first algorithms for
computing linear differential equations satisfied by their counting generating
functions were developed by Chyzak, Mishna, and Salvy [23]. This was fol-
lowing works by the combinatorialist Gessel in the 1980s, who introduced a
representation of the generating functions as a scalar product in the theory of
symmetric functions. A faster method was very recently introduced by Chyzak
and Mishna [22], based on the same scalar-product representation but following
an approach reminiscent of reductions. This was the starting point of our inter-
est, making us rethink the representation to have the algorithms of the present
work apply directly to the problem.

2 Computing with Weyl algebras

2.1 Weyl algebras

Let K be a field of characteristic zero, typically Q or Q(t). LetWx denote the nth
Weyl algebra K[x]⟨∂x⟩ with generators x = (x1 . . . , xn) and ∂x = (∂1, . . . , ∂n),
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and relations ∂ixi = xi∂i + 1, xixj = xjxi, ∂i∂j = ∂j∂i and xi∂j = ∂jxi
whenever i ̸= j. We refer to [24, Chapters 1–10] for a complete introduction to
these algebras covering most needs of the present article, or to [8, Chapter 5] for
a denser alternative. We often need to highlight one variable with a specific role,
in which case we use the name t for the distinguished variable. Correspondingly,
we will write Wt,x for the (1 + n)th Weyl algebra, and we will write Wt for the
special case n = 0. We also define Wt,x(t) as the algebra K(t)⊗K[t] Wt,x where
the variable t is rational and the variables x are polynomial. For non-zero r ∈ N,
we also consider Cartesian powers of these algebras, W r

x , Wx(t)
r, etc., which we

view as modules overWx orWx(t), as relevant. Each element of the moduleW r
x

decomposes uniquely in the basis of K-vector space

Mx,r = {xα∂β
x ei | α,β ∈ Nn, i ∈ {1, . . . , r}}.

Given an element p =
∑

α,β,i aα,β,ix
α∂βei of W

r
t,x, we define the degree of p as

deg(p) = max{|α|+ |β| | ∃i ∈ {1, . . . , r}, aα,β,i ̸= 0},

where |α| and |β| denote the sums α1+· · ·+αn and β1+· · ·+βn. Definitions for
the algebraWx mimic the case r = 1, just not considering any ei, and definitions
for the module W r

t,x are just a special notation when n is replaced with n + 1:
a vector basis of Wx is

Mx = {xα∂β
x | α,β ∈ Nn},

and given an element p =
∑

α,β aα,βx
α∂β

x of Wx, its degree is

deg(p) = max{|α|+ |β| | aα,β ̸= 0};

a vector basis of W r
t,x is

Mt,x,r = {tαxβ∂γt ∂
δ
xei | α, γ ∈ N, β, δ ∈ Nn, i ∈ {1, . . . , r}},

and given an element p =
∑

α,β,γ,δ,i aα,β,γ,δ,it
αxβ∂γt ∂

δ
xei of W

r
t,x, its degree is

deg(p) = max{α+ |β|+ γ + |δ| | ∃i ∈ {1, . . . , r}, aα,β,γ,δ,i ̸= 0}.

2.2 Holonomic modules

Let S be a submodule of W r
x . We recall the classical definition of a holonomic

Wx-module by means of the dimension of the quotient moduleM =W r
x/S. We

point out that any Wx-module of finite type is isomorphic to a module of this
form. The Bernstein filtration [4] of the algebra Wx is the sequence of K-vector
spaces Fm defined by

Fm = {P ∈Wx | deg(P ) ≤ m} .

A filtration of the module M that is adapted to (Fm)m≥0 is the sequence of
K-linear subspaces Φm ⊆M defined by

Φm = image in M of {P · ei | P ∈ Fm, 1 ≤ i ≤ r} .
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Those filtrations are compatible with the algebra and module structures: both
FmFm′ ⊆ Fm+m′ and FmΦm′ ⊆ Φm+m′ hold. There exists a polynomial p ∈
K[m] called the Hilbert polynomial of M that satisfies dimK(Φk) = p(k) for
any sufficiently large k. The dimension of the module M is the degree d of
the polynomial p. The integer d clearly lies between 0 and 2n. It was proved
by Bernstein that if M is non-zero, then d is larger than or equal to n [24,
Theorem 9.4.2]. When the dimension of M is exactly n or when M is the zero
module, we say that the module M is holonomic. (Here, we follow the tradition
in [8, Chapter 5] and in [24] to consider the zero module as holonomic. By
way of comparison, [7] speaks of a module “in the Bernstein class” to refer to a
non-zero holonomic module.)

2.3 Gröbner bases in Weyl algebras and their modules

Despite their non-commutative nature, by a monomial we will mean an element
of the vector bases Mx,r, Mx, and Mt,x,r. A monomial order ≼ on W r

x is a
well-ordering on Mx,r that satisfies for any i, j ∈ {1, . . . , r} and any exponents
α,β,α1,β1,α2,β2 ∈ Nn

xα1∂β1
x ei ≼ xα2∂β2

x ej =⇒ xα1+α∂β1+β
x ei ≼ xα2+α∂β2+β

x ej .

Given an operator P ∈ W r
x , we define its support supp(P ) as the set of all

monomials appearing with non-zero coefficient in the decomposition of P with
coefficients on the left in the basis Mx,r. We then define its leading monomial
lm(P ) as the largest monomial for ≼ in supp(P ), its leading coefficient lc(P )
as the coefficient of lm(P ) in this decomposition, and its leading term lt(P ) as
lc(P ) lm(P ). We stress that our definition of a leading monomial makes lm(P )
en element of W r

x , whereas some authors choose to see leading monomials as
commutative objects in an auxiliary commutative polynomial algebra, intro-
ducing commutative variables ξi to replace the ∂i in monomials. For example,
we have lm(∂1x1ei) = x1∂1ei. Note that an essentially equivalent theory could
be developed by choosing monomials as elements of the basis consisting of the
products ∂β

xx
αei, instead of monomials in Mx,r.

Computations in Weyl algebras rely heavily on a non-commutative gener-
alization of Gröbner bases. After the original introduction [14, 13, 30] there
have been a number of presentations of such a theory, including [48, 34, 42].
A first textbook presentation is [46, Chapter 1]. A recent and simpler intro-
duction can be found in [2]. We now adapt this to our need. A Gröbner basis
of a left (resp. right) ideal I of Wx with respect to a monomial order ≼ is a
finite set G of generators of I such that for any a ∈ I there exist g ∈ G and
q ∈ Wx satisfying lm(a) = lm(qg) (resp. lm(a) = lm(gq)). Note that the non-
commutativity of the monomials makes them lack divisibility properties that a
commutative variant would: we may have lm(qg) ̸= lm(q) lm(g) and lm(a) may
not be a multiple of lm(g), be it on the left or on the right. However, we always
have lm(a) = lm(lm(q) lm(g)). (The variables ξi introduced by other authors
is to avoid this formula.) A Gröbner basis allows to define and compute for
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any a ∈Wx a unique representative of a+ I in the quotient Wx/I by means of
a non-commutative generalization of polynomial division. We call this unique
representative the remainder of the division of a by the Gröbner basis G or more
shortly remainder of a modulo the Gröbner basis G. We denote this remainder
LRem(a,G) when I is a left ideal and RRem(a,G) when I is a right ideal. The
concept of Gröbner bases for ideals of Wx extends to submodules of W r

x in the
same way as the notion of Gröbner bases for polynomial ideals generalizes to
submodules of a polynomial algebra (see [3, Chapter 10.4], [25, Chapter 5], or
[1, Section 3.5]). The noetherianity of Weyl algebras implies that any left or
right submodule of W r

x admits a (finite) Gröbner basis.
Let A be a subvector space of W r

x . We define ∂A as the K-vector space∑n
i=1 ∂iA. If A is a right Wx-module, then ∂A is also a right Wx-module.

2.4 Integration

The integral of a Wx-module M ≃W r
x/S is the K-vector space

M/∂M ≃W r
x/(S + ∂W r

x). (3)

As already mentioned, it is classical that, ifM is holonomic, then the integral (3)
ofM is a finite-dimensional K-linear space [8, Theorem 6.1 of Chapter 1]. Com-
puting relations modulo ∂M is the main matter of this article: given a family
in M , we want to find a linear dependency relation on its image in the integral
module M/∂M , if any such relation exists.

2.5 Data structure for holonomic modules

Algorithmically, we only deal with holonomic Wx-modules. They are finitely
presented: for such a module M , there exist Wx-linear homomorphisms a and b
forming an exact sequence

W s
x

a→W r
x

b→M → 0.

Equivalently, this means that M ≃ W r
x/S, where S is the left submodule gen-

erated by the image under a of the canonical basis of W s
x . The module S

consists of Wx-linear combinations of the canonical basis of W r
x , which we al-

ways denote (e1, . . . , er). This gives a concrete data structure for representing
holonomic modules. It is well known that holonomic modules are cyclic, that is
generated by a single element [24, Corollary 10.2.6]. This means that we could
in principle always assume that r = 1. However, some modules have a more nat-
ural description with r > 1 and transforming the presentation to achieve r = 1
has an algorithmic cost that we are not willing to pay. Therefore, we will not
assume r = 1.

In order to integrate an infinitely differentiable function f(x), we may con-
sider theWx-module generated by f under the natural action ofWx on C∞ func-
tions. Of course, the holonomic approach to symbolic integration will only work
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if this module is holonomic. Instead of Wx · f , we can also consider any holo-
nomic module that contains it as a submodule.

For example, to integrate a rational function A/F ∈ K(x), we can consider
the module K[x][F−1], which is holonomic. However, finding a finite presen-
tation W r

x/S ≃ K[x][F−1] is not trivial. There are algorithms [45] to solve
this problem, but, in terms of efficiency, it is still a practical issue that we do
not address in this work. Fortunately, in many cases we can easily construct a
holonomic module for integration. See for example Section 6.

3 Reductions

We consider the Weyl algebra Wx over a field K and a finitely presented Wx-
moduleM given in the formW r

x/S for some r ≥ 1 and some submodule S ofW r
x

(see Section 2.2). The main objective of the section is to compute normal forms
in M modulo ∂M , or, equivalently, normal forms in W r

x modulo S + ∂W r
x . In

other words, we want an algorithm that given some a ∈W r
x computes some [a] ∈

W r
x , and such that [a] = [b] if and only if a − b ∈ S + ∂W r

x . This goal in only
partially reached with a family of reductions [.]η such that for each pair (a, b),
there exists η such that [a]η = [b]η if and only if a−b ∈ S+∂W r

x . The existence
of a monomial η is not effective, similarly to the maximal total degree to be
considered in Takayama’s algorithm [49]. This is a step backwards compared
to previous methods [44], but computing weaker normal forms allows for more
efficient computational methods. Concretely, we do not rely on the computation
of b-functions.

The present section is organized as follows. In Section 3.1 we define a reduc-
tion procedure [.] that partially reduces elements ofW r

x by S+∂W r
x , in the sense

that the procedure will in general not reduce every element of S+∂W r
x to zero.

In Section 3.2 we define a filtration (F≼η)η∈Mx,r
of the vector space S + ∂W r

x

and we give an algorithm to compute a basis of each vector space [F≼η] of re-
duced forms. Using this basis we define a new reduction [.]η that enhances the
first one. In Section 3.3, we provide, for some infinite families (ai)i≥0 in W r

x , an
algorithm for computing an η such that all the [ai]η lie in a finite-dimensional
subspace. In Section 3.4, we consider the case where S is the annihilator of ef for
some homogeneous multivariate polynomial f , and we compare our reduction
procedures with variants of the Griffiths–Dwork reduction.

3.1 Reduction [.] and irreducible elements

Reduction rules. Let ≼ be a monomial order on W r
x and let G be a Gröbner

basis of S for this order. We define two binary relations→1 and→2 onW
r
x×W r

x

as follows:

• Given a ∈W r
x , λ ∈ K, m ∈Mx, and g ∈ G, we write

a→1 a− λmg

if lm(mg) is in the support of a but not in the support of a− λmg.
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• Given a ∈W r
x , λ ∈ K, m ∈Mx,r, and i ∈ {1, . . . , n}, we write

a→2 a− λ∂im

if lm(∂im) is in the support of a but not in the support of a− λ∂im.

The relation→1 corresponds to the reduction by the Gröbner basis G of the
left module S and the relation→2 corresponds to the reduction by the Gröbner
basis {∂iej | i = 1, . . . , n, j = 1, . . . , r} of the right module ∂W r

x . Next, we
define → as the relation →1 ∪ →2. That is, a → b if either a →1 b or a →2 b.
The relation →+ is the transitive closure of →: a→+ b if there exist s ≥ 1 and
a sequence of s reductions

a→ c1 → · · · → cs = b (4)

for some c1, . . . , cs ∈W r
x . The relation→∗ is the reflexive closure of→+: a→∗ b

if either a→+ b or a = b. In this situation we say that a reduces to b.

Irreducible elements. We say that an element b is irreducible if there is
no c such that b→ c and we say that b is a reduced form of a if b is irreducible
and a→∗ b.

Lemma 1. Let a, b ∈W r
x . If a→∗ b then a− b ∈ S + ∂W r

x .

Proof. This follows from the definition of →1 and →2 since the terms mg
and ∂im are in S and ∂W r

x , respectively.

However, the converse of Lemma 1 is not true in general, even when b = 0:
there may be nonzero irreducible elements in S + ∂W r

x .

Lemma 2. The irreducible elements of W r
x form a K-vector space.

Proof. The set V of all irreducible elements contains 0 and is stable by mul-
tiplication by K. Let a, b ∈ V and assume by contradiction that a + b is not
irreducible. Then, there exists a monomialm ∈Mx,r in the support of a+b that
can be reduced by →. Because a+ b = b+ a, we can without loss of generality
assume that m is in the support of a. This contradicts the irreducibility of a.
Thus a+ b ∈ V .

The vector space of Lemma 2 can be infinite-dimensional, as we now exem-
plify.

Example 3. Let S =Wx1
∂1 be the left ideal generated by ∂1 in the Weyl algebra

in one pair of generators, (x1, ∂1). Note that Wx1
/S ≃ K[x1] as Wx1

-module.
Let ≼ be the lexicographic order for which ∂1 ≼ x1. Then, any element of K[x1]
(as a subspace of Wx1) is irreducible.

Irreducible forms can be computed by alternating left reductions with respect
to a Gröbner basis of S (representing the rule →1) and right reductions with
respect to a Gröbner basis of ∂W r

x (representing the rule →2). This leads to
Algorithm 1. Correctness is clear. The algorithm terminates since the largest
reducible monomial in a, if any, decreases at each iteration of the loop.
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Algorithm 1 Computation of a reduced form

Input:
• a ∈W r

x

• a Gröbner basis G of S

Output:
• a reduced form of a

1 while a is not irreducible

2 a← RRem(a, {∂iej | i = 1, . . . , n, j = 1, . . . , r})
3 a← LRem(a,G)

4 return a

Definition 4. We denote by [a] the reduced form of a ∈W r
x that is computed

by Algorithm 1.

Proposition 5. The map [.] is K-linear.

Proof. The maps RRem and LRem areK-linear by the uniqueness of the remain-
der of a division by a Gröbner basis. Let τ(a) denote the number of iterations
of the while loop in Algorithm 1 on input a. Given τ ∈ N, let Vτ denote the set
of all a for which τ(a) ≤ τ . The restriction of [.] on Vτ takes the same values
as the composition of τ copies of RRem and τ copies of LRem in alternation,
in which some of the final copies effectively act by the identity as they input
irreducible elements. So the restriction of [.] on Vτ is K-linear as a composition
of linear maps. The result follows because W r

x =
⋃

τ≥0 Vτ .

3.2 Computation of the irreducible elements of S + ∂W r
x

Again, we fix an order ≼ and a submodule S of W r
x by considering a Gröbner

basis G of it. Let E be the vector space of all irreducible elements of S +∂W r
x .

This vector space can be infinite-dimensional hence we cannot hope to compute
all of it. We therefore define a vector-space filtration (F≼η)η∈Mx,r of S+∂W r

x by

F≼η = {s+ d ∈W r
x | s ∈ S, d ∈ ∂W r

x , and max(lm(s), lm(d)) ≼ η} ,

and a vector-space filtration of E by E≼η := F≼η ∩E. We define F≺η and E≺η

similarly, by requiring a strict inequality on the maximum of the leading mono-
mials.

Our goal is to obtain an efficient computation of a K-basis of E≼η. Let us
give an intuitive description of our algorithm. By general properties of Gröbner
bases, a non-zero element reduces to zero using the relation→1 (resp.→2) if and
only if it belongs to S (resp. ∂W r

x). The difficulty arises when both reduction
rules can be applied to reduce a monomial. For example, take an element s
in S such that lm(s) ∈ lm(S) ∩ lm(∂W r

x) and, assuming is can be reduced so
as to cancel its leading monomial by using →2, perform this reduction, that is,
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find s′ such that s →2 s
′ and lm(s′) ≺ lm(s). In this case, it is possible that

s′ is neither in S nor in ∂W r
x , making it a good candidate for an element that

does not reduce to 0 by →. The following theorem shows more precisely how
generators of E can be obtained.

Theorem 6. Let η ∈Mx,r.

1. If η ̸∈ lm(S) ∩ lm(∂W r
x), then E≼η = E≺η.

2. If η ∈ lm(S) ∩ lm(∂W r
x), then E≼η = E≺η + Ka, for any reduced form a

of mg − ∂iw, where w ∈ W r
x , m ∈ Wx and g ∈ G are any elements such

that η = lm(mg) = lm(∂iw) and lc(mg) = lc(∂iw). Moreover, such m
and g exist because G is a Gröbner basis of S.

Proof. For the first point, we prove by contradiction that for any a ∈ E≼η and
any s ∈ S and d ∈ ∂W r

x satisfying a = s + d and max(lm(s), lm(d)) ≼ η, we
have in fact max(lm(s), lm(d)) ≺ η. This will imply the equality E≼η = E≺η.
Let us assume that the equality max(lm(s), lm(d)) = η holds. Therefore, either
lm(s) = lm(d) = η, or lm(s) ≺ lm(d) = η, or lm(d) ≺ lm(s) = η. The first case
is excluded because we assumed η ̸∈ lm(S)∩ lm(∂W r

x). In both remaining cases
it is possible to reduce lm(a) = η with one of the two reduction rules. This
contradicts the fact that a is irreducible.

For the second point, let m, g, w, i, and a be given as in the statement.
We first check that E≺η +Ka ⊆ E≼η. It is enough to prove that a ∈ E≼η. By
definition, mg − ∂iw ∈ F≼η, and we check easily that F≼η is stable under →.
So a ∈ F≼. Since a is also irreducible, we have a ∈ E≼η.

Let us prove the other inclusion. Let f ∈ E≼η. Then f is irreducible and of
the form s+ d for s ∈ S and d ∈ ∂W r

x satisfying max(lm(s), lm(d)) ≼ η. If this
inequality is strict, then f ∈ E≺η, proving f ∈ E≺η + Ka. Otherwise, we have
the equality max(lm(s), lm(d)) = η. Let us remark the equality lm(s) = lm(d),
for otherwise either lm(s) ≻ lm(d) and f could be reduced using→1, or lm(s) ≺
lm(d) and f could be reduced using →2. So η = lm(s) = lm(d). This monomial
cannot be lm(f), for otherwise f could be reduced using any of →1 and →2.
Hence lm(f) ≺ η and lt(s) = − lt(d). We decompose s and d as s = λmg + s′

and d = −λ∂iw+d′ with λ ∈ K, s′ ∈ S, d′ ∈ ∂W r
x , and max(lm(s′), lm(d′)) ≺ η.

Let h denote mg − ∂iw, which, by hypothesis, has a as a reduced form. This
implies an equality of the form h = a + s′′ + d′′ with s′′ ∈ S, d′′ ∈ ∂W r

x , and
max(lm(s′′), lm(d′′)) ≺ η. We obtain f = s+d = λ(mg−∂iw)+s′+d′ = λa+ b
with b = s′ + λs′′ + d′ + λd′′. Since both f and a are irreducible so is b, thus
b ∈ E≺η, proving that f is in E≺η +Ka.

The meaning of Theorem 6 is that the dimension of the filtration (E≼η)η
is susceptible to increase at η only if η ∈ lm(S) ∩ lm(∂W r

x). But this is not
necessary as the element a may well be in E≺η. The following lemma describes
a sufficient condition for this situation.

Lemma 7. Let η ∈ lm(S) ∩ lm(∂W r
x). If there exist g ∈ G, m ∈ Mx, and

some i such that η = lm(∂img), then

E≺η = E≼η.
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Proof. By Theorem 6, the result reduces to proving that E≺η contains the re-
duced form a of some h = ∂img − ∂jw with lm(h) ≺ η. We choose j = i
and w = mg, so that h = 0, which already is irreducible and in E≺η.

Corollary 8. Let η ∈ Mx,r. Let H be the set of monomials m ≼ η such that
m ∈ lm(S) ∩ lm(∂W r

x) and m ̸= lm(∂ipg) for any i, g ∈ G, and p ∈ Mx.
For m ∈ H, let am ∈ W r

x be any reduced form of some xγg − lc(g)∂βxα+γej,
where g ∈ G, lm(g) = xα∂βej, and m = lm(xγg). Then

E≼η =
∑
m∈H

Kam. (5)

Proof. Note that for each m ∈ H, the corresponding β is nonzero. Indeed, by
definition,m ∈ lm(∂W r

x ) so there is some ∂i such thatm = lm(∂im
′) for another

monomial m′. Moreover, m = lm(xγg), so lm(g) also contains ∂i. In particular,
the term lc(g)∂βxα+γej has the form ∂iw. Therefore, Theorem 6 applies and
E≼m = E≺m+Kam. For a monomialm not in H, either Theorem 6 or Lemma 7
shows that E≼m = E≺m. Then the statement follows by well-founded induction
on η.

To turn Corollary 8 into an algorithm, we introduce a finiteness property of
the monomial order ≼.

Hypothesis 9. For any two monomials γ and η of Mx,r, the set of α for which
xαγ ≼ η is finite.

This hypothesis is always satisfied by orders graded by total degree, because
a monomial η has a finite number of predecessors in Mx,r. It is also satisfied by
orders eliminating x, in the sense that

α′ −α ∈ Nn \ {0} ⇒ xα∂β
x ei ≺ xα′

∂β′

x ei′ , (6)

as long as the set of α for which xα ≼ xi is finite for each i ∈ {1, . . . , n}. For
example, this contains “elimination orders” [25] or “block orders” [3] that first
order by total degree in x, but not a lexicographical order that has x1 > x2 >
∂1 > ∂2.

Theorem 10. Under Hypothesis 9 Algorithm 2 is correct and terminates.

Proof. Termination is obvious since the set on line 2 is finite, by hypothesis.
For the correction, we observe that H computed in the algorithm is the same
as the set H described in Corollary 8.

Definition 11. Let Bη be an echelon form of the generating family returned
by Algorithm 2 on input η. We define a reduction [.]η from W r

x into itself by

[a]η = Reduce([a], Bη)

where [.] is the map defined by Algorithm 1 and Reduce(., Bη) is the reduction
algorithm by the echelon form Bη.
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Algorithm 2 Computation of E≼η

Input:
• a Gröbner basis G of S
• η ∈Mx,r

Output:
• a generating family of the K-vector space E≼η

1 G′ ← {g ∈ G | lm(g) involves some ∂i}
2 H ← {lm(xγg) | γ ∈ Nn, g ∈ G′, and lm(xγg) ≼ η} # finite by Hypothesis 9

3 H ← H \ {lm(∂img) | m ∈Mx, g ∈ G, 1 ≤ i ≤ n}
4 B ← ∅
5 for m ∈ H
6 pick g ∈ G′ and γ such that m = lm(xγg)

7 xα∂βei ← lm(g) # by construction β ̸= 0

8 B ← B ∪
{[
xγg − lc(g)∂βxα+γei

]}
9 return B

Proposition 12. The map [.]η is K-linear.

Proof. This follows from Proposition 5 and the K-linearity of Reduce(., Bη).

Theorem 13. For any a ∈ S + ∂W r
x there exists η ∈ Mx,r such that for all

η′ ≽ η, the remainder [a]η′ is zero.

Proof. The element [a] is congruent to a modulo S+∂W r
x , so it is in S + ∂W r

x ,
like a itself. Moreover, it is irreducible, and so it is in E by the definition of E.
Because of the equality E =

⋃
η∈Mx,r

E≼η, there exists η such that [a] ∈ E≼η and

thus Reduce([a], Bη) = 0. For η′ ≽ η, the vector space SpanK(Bη) is included
in SpanK(Bη′), so [a]η′ = Reduce([a], Bη′) = Reduce(Reduce([a], Bη), Bη′) =
Reduce(0, Bη′) = 0.

Definition 14. The normal form of an element a ∈ W r
x modulo S + ∂W r

x is
the unique element a′ ∈W r

x such that a ≡ a′ (mod S+∂W r
x) and no monomial

of a′ is the leading monomial of an element of S + ∂W r
x .

Corollary 15. For any a ∈W r
x , there exists η ∈Mx,r such that for all η′ ≽ η,

the remainder [a]η′ is the normal form of a modulo S + ∂W r
x .

Proof. Let a′ be the normal form of a. Let η such that [a − a′]η = 0, given
by Theorem 13. By definition, [.]η replaces monomials by smaller ones, but
only if this is possible, so that we have [a′]η = a′. By linearity of [.]η, we
obtain [a]η = a′.
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Algorithm 3 Computation of a confinement

Input:
• a module S ⊆W r

x given by a Gröbner basis
• a ∈W r

x

• a Wx-linear map L :W r
x →W r

x given by a r × r matrix
• ρ ∈ N

Output:
• an effective confinement for a and L modulo S + ∂W r

x

1 s← ρ

2 η ← the largest monomial of degree s

3 B ← ∅
4 Q← supp([a]η)

5 while Q \B ̸= ∅
6 m← an element of Q \B
7 if degm > s− ρ
8 s← s+ 1

9 goto line 2

10 Q← Q ∪ supp([L(m)]η)

11 B ← B ∪ {m}
12 return (η,B)

3.3 Confinement

“Computing” in the quotient M/∂M ≃ W r
x/(S + ∂W r

x) can take on several
forms, with various levels of potency. In the strongest interpretation, we want
to compute a basis of the quotient, as a K-linear space, and we want to be
able to compute normal forms in W r

x modulo S + ∂W r
x . In a weaker sense, we

merely want to be able to capture the finiteness of the quotient space, without
ensuring the linear independence of a finite generating set or even producing it
explicitly. In view of our needs for integration algorithms in the next sections,
there is an even weaker sense: given a ∈ W r

x (which will designate a function
to be integrated) and a Wx-linear map from W r

x to itself (which will be related
to taking derivatives with respect to a parameter t ∈ K), we need to testify the
finite-dimensionality of the span over K of the orbit {Li(a) | i ∈ N} modulo
S + ∂W r

x . In this section, we show that the reductions [.]η can be used to find,
for any a and L, a finite set B that witnesses this finite-dimensionality.

Definition 16. An effective confinement for a ∈W r
x and a Wx-linear map L :

W r
x →W r

x is a pair (η,B) consisting of a monomial η and of a finite subset B ⊆
Mx,r, and satisfying:

1. the support of [a]η is included in B;
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2. the support of [L(m)]η is included in B for any m ∈ B.

An effective confinement is free if the elements of B are K-linearly independent
modulo S + ∂W r

x .

Theorem 17. Algorithm 3 is correct. It terminates if M/∂M is finite-dimen-
sional, for example if M is holonomic. Moreover, if the input parameter ρ is
large enough, then Algorithm 3 outputs a free effective confinement.

Proof. We first address correctness. Consider the sets B and Q after any it-
eration of the while loop. By construction, we have B ⊆ Q, supp([a]η) ⊆ Q,
and supp([L(m)]η) ⊆ Q for any m ∈ B. If the halting condition Q \ B ̸= ∅ of
the while loop is reached, that is, equivalently, if Q ⊆ B holds at the end of an
iteration, then we have B = Q. In conclusion, the returned value (η,B) is an
effective confinement.

As for termination, let C ⊆ Mr
x be the set of monomials that are normal

forms modulo S + ∂W r
x . As a consequence of Definition 14, the set of nor-

mal forms is the vector space SpanK(C). Moreover, a basis of the quotient
space M/∂M is formed by the classes modulo S+∂W r

x of all elements of C, so
in particular, C is finite by the hypothesis of finite dimension. By Corollary 15,
there is therefore some η∞ such that for any η ≽ η∞,

supp([a]η) ⊆ C and ∀m ∈ C, supp([L(m)]η) ⊆ C. (7)

Since each iteration of the while loop treat a different monomial m, and
since there are finitely many monomials of degree at most s− ρ, the while loop
terminates. It terminates either because Q\B = ∅, in which case the algorithm
terminates, or because Q contains an element of degree larger that s−ρ, in which
case we increase s. So, either the algorithm terminates, or s tends to ∞.

Assume s → ∞. At some point, we will have s ≥ deg η∞, so after line 2 is

executed, we have the inequalities η ≽ η∞x
s−deg(η∞)
1 ≽ η∞, because η is the

largest monomial of degree s and by the definition of a monomial order. In this
circumstances, the set Q is a subset of C at every iteration of the main loop,
because of (7), and so is B because of the invariant B ⊆ Q. Since s → ∞, we
also reach a point where ρ+ degm ≤ s for all m ∈ C. After this point, s is not
increased anymore. This contradiction shows that the algorithm terminates.

If the input ρ satisfies ρ ≥ deg η∞, we have s ≥ ρ ≥ deg η∞, and by the
same reasoning as in the previous paragraph, we have again η ≽ η∞. This is so
during the whole execution of the algorithm. Therefore, like in the preceding
paragraph, we have B ⊆ Q ⊆ C during the execution of the while loop. So, the
output set B is a subset of C, which is a free family modulo S + ∂W r

x .

3.4 Comparison with the Griffiths–Dwork reduction

Let f ∈ K[x] be a homogeneous polynomial and letM be theWx-moduleK[x]ef ,
where ∂i acts by ∂i · ef = ∂f

∂xi
ef . When f defines a smooth variety, we can

compute in M/∂M using the Griffiths–Dwork reduction [27, 28, 32]. This
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is usually presented with rational functions in K[x, f−1] but the exponential
formulation is equivalent (for example, see [26, 38]). The module M admits the
presentation

M ≃ Wx∑
iWx(∂i − fi)

,

where fi denotes the partial derivative
∂f
∂xi

. (This presentation is what makes the
exponential formulation easier in our setting. A presentation of the holonomic
Wx-module K[x, f−1] is much harder to compute [44].)

We briefly present the Griffiths–Dwork reduction and observe that irre-
ducible elements for the Griffiths–Dwork reduction are exactly the irreducible
elements for our reduction →.

The Griffiths–Dwork reduction. Let ≼0 be a monomial order on K[x],
and, for this monomial ordering, let G0 be the minimal Gröbner basis of the
polynomial ideal I = (f1, . . . , fn). Given a homogeneous polynomial a ∈ K[x],
we can compute the remainder r of the multivariate division of a by G0 and the
cofactors b1, . . . , bn ∈ K[x] such that

a = r +

n∑
i=1

bifi. (8)

By homogeneity, deg bi = deg a − deg f + 1 (unless bi = 0). Then, the rule for
the derivative of a product yields

aef = ref −
n∑

i=1

∂bi
∂xi︸ ︷︷ ︸

degree deg a − deg f

ef +

n∑
i=1

∂i ·
(
bie

f
)

︸ ︷︷ ︸
∈∂M

. (9)

The last term is in ∂M , so we ignore it, and the second term has lower degree
than a, so we can apply the same procedure recursively, which will terminate
by induction on the degree. In the end, we obtain a reduced form aef ≡ ref

(mod ∂M) where r ∈ K[x] is irreducible with respect to G0. These are the
irreducible elements for the Griffiths–Dwork reduction.

This reductions is defined for any homogeneous polynomial f , but it enjoys
special properties when f1, . . . , fn do not have any non trivial common zero in
an algebraic closure of K. Geometrically, this means that f defines a smooth hy-
persurface in Pn−1(K). Griffiths [32] proved, under this smoothness assumption,
that the reduced form of any aef vanishes if and only if aef ∈ ∂M .

Comparison with the reduction →. We consider the reduction rule →
applied to the left ideal S of Wx generated by ∂i − fi, so that K[x]ef ≃ Wx/S
(Section 3.1). Let ≼ be a monomial order on Wx that eliminates x (see (6))
and agrees with ≼0 on K[x]. By following the steps of Buchberger’s algorithm,
we observe that there is a Gröbner basis G of S in which each element is:
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1. either an element of the form r −
∑n

i=1 bi∂i, with r ∈ G0, bi ∈ K[x] of
degree deg(r)− deg(fi), and r =

∑
i bifi,

2. or an element of Wx∂1 + · · ·+Wx∂n.

We will call such elements respectively of the first kind and of the second kind.
We now characterize irreducible elements in Wx with respect to →. Let a ∈

Wx be an irreducible element. Since a cannot be reduced with →2, it contains
no ∂i, so it is a polynomial. Since a cannot be reduced with →1, no monomial
in a is divisible by the leading term of an element of G. By considering the
elements of the first kind, we see that the monomials of a are not divisible by
the leading monomial of any element of G0. So a is irreducible with respect
to G0. The converse also holds: if a ∈ K[x] is irreducible with respect to G0,
then a is irreducible in Wx with respect to S. In this sense, we can regard
Algorithm 1 as a generalization of the Griffiths–Dwork reduction.

As we observed, this reduction is not enough to compute in M/∂M , since
there may be nonzero irreducible elements in S + ∂Wx. In the case of ratio-
nal functions, Lairez [39] gave an algorithm to compute them efficiently. The
algorithm that we have given in Section 3.2 behaves differently. In short, the
algorithm in [39] would only consider elements of the second kind with degree 1
in the ∂i, whereas we consider all elements of the second kind. On the one
hand, this seems to give more reduction power, on the other hand the cost of
computing them is higher. This indicates room for improvement in future work.

4 Creative Telescoping by Reduction

In the previous section, we obtained an algorithm for normalizing modulo deriva-
tives in a holonomic Wx-module. In this section, we introduce a parameter t
and differentiation with respect to t. It would be natural to work with a holo-
nomic Wt,x-module, but in view of the previous section, we need a finitely
presented module over a Weyl algebra in the derivatives with respect to x only.
This motivates the following context.

We consider the Weyl algebra Wx(t) = K(t) ⊗K Wx (which is just a Weyl
algebra over the fieldK(t)), and a holonomicWx(t)-moduleM with a compatible
derivation ∂t, that is, a K-linear map ∂t :M →M such that for any a ∈Wx(t)
and any m ∈M ,

∂t · am = ∂a
∂tm+ a∂t ·m,

where ∂a
∂t is the coefficient-wise differentiation in Wx(t). In other words, M is

a Wt,x(t)-module that is holonomic as a Wx(t)-module.
It is also convenient to fix a finite presentation Wx(t)

r/S of M and as-
sume that there is a Wx(t)-linear map L : Wx(t)

r → Wx(t)
r such that for

any a ∈Wx(t)
r,

∂t · prS(a) = prS
(
∂a
∂t + L(a)

)
, (10)

where prS is the canonical map Wx(t)
r → M . In particular, note that S is

stable under ∂
∂t + L. From the algorithmic point of view, we represent M by
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its finite presentation and the derivation ∂t by the the r × r matrix of the
endomorphism L. We explain in Section 4.3 how to obtain this setting from a
holonomic Wt,x-module.

Using the algorithm of the previous section, we aim at describing an al-
gorithm that performs integration with respect to x1, . . . , xn, in the following
sense. Given f ∈ M , we want to compute a nonzero operator P (t, ∂t) ∈ Wt(t)
such that

P (t, ∂t) · f ∈ ∂M (11)

with the motivation that P (t, ∂t) is then an annihilating operator of the integral
of f with respect to x1, . . . , xn. The principle of integration by reduction is
described in Section 4.1 and an algorithm is presented in Section 4.2.

4.1 Integration by reduction

We utilize the family of reductions [.]η defined in Section 3.2. Let f be an
element of Wx(t)

r, let η be some monomial in Mx,r and let (gi)i≥0 be the
sequence in Wx(t)

r defined by

g0 = [f ]η and gi+1 = ∂gi
∂t + [L(gi)]η for all i ≥ 0. (12)

As usual with integration-by-reduction algorithms, we relate the dependency
relations between the reduced forms gi to the operators P ∈ Wt(t) such that
P · prS(f) ∈ ∂M , which, as is traditional, we call telescopers for f .

Lemma 18. For any i ≥ 0,

prS(gi) ≡ ∂it · prS(f) (mod ∂M). (13)

Proof. For i = 0, this means that [f ]η ≡ f (mod S + ∂Wx(t)
r), which holds

by construction of [.]η. By property of [.]η, again, there is some si ∈ S and
some ∆i =

∑
j ∂jai,j ∈ ∂Wx(t)

r such that

[L(gi)]η = L(gi) + si +∆i.

Therefore, using the Wx(t)-linearity of prS and prS(si) = 0, we obtain

prS(gi+1) = prS

(
∂gi
∂t + L(gi)

)
+ prS(∆i)

= ∂t · prS(gi) +
∑
j

∂j prS(ai,j), using (10),

≡ ∂t · prS(gi) (mod ∂M).

The claim follows by induction on i, using that ∂t·∂M ⊂ ∂M , since ∂t commutes
with ∂.

Lemma 19. Let P =
∑N

i=0 ci∂
i
t ∈Wt(t).

1. If c0g0 + · · ·+ cNgN = 0, then P · prS(f) ∈ ∂M .
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2. If P · prS(f) ∈ ∂M , then c0g0 + · · ·+ cNgN ∈ S + ∂Wx(t)
r.

3. If η is large enough and if P · prS(f) ∈ ∂M , then c0g0 + · · ·+ cNgN = 0.
(Note that “large enough” depends on f and P .)

Proof. The first assertion follows directly from Lemma 18. Conversely, assume
that P · prS(f) ∈ ∂M . This implies, again by Lemma 18, that

N∑
i=0

cigi ∈ S + ∂Wx(t)
r,

proving the second assertion. Now, we observe that, if in addition η is large
enough, the gi are normal forms modulo S+∂Wx(t)

r. Indeed, by Corollary 15,
the [L(gi)]η are normal forms; and since being a normal form is a condition
on the monomial support, it is stable under coefficient-wise differentiation, so
the ∂gi

∂t are normal forms, by induction on i. So the linear combination
∑

i cigi
is also a normal form modulo S + ∂Wx(t)

r. This implies
∑

i cigi = 0.

4.2 An algorithm for integrating by reduction

To turn Lemma 19 into an algorithm to compute a telescoper, it only remains
to find a suitable η. We use the idea of confinement (Section 3.3). Using Algo-
rithm 3, we can compute an effective confinement for f and L. Recall that this is
a monomial η and a finite set B of monomials inMx,r such that supp([f ]η) ⊆ B
and supp([L(b)]η) ⊆ B for all b ∈ B. The following statement explains that
reduced forms of successive derivatives with respect to t therefore lie in the
finite-dimensional vector-space SpanK(t)(B).

Lemma 20. Let (η,B) be an effective confinement for f and L. Let (gi)i≥0 be
the sequence defined by (12). Then, for all i ≥ 0, gi ∈ SpanK(t)(B).

Proof. By definition of an effective confinement, [f ]η ∈ SpanK(t)(B), and the
space SpanK(t)(B) is stable under [L(.)]η. Moreover, SpanK(t)(B) is stable un-

der ∂
∂t . So the claim follows from the definition of gi.

Algorithm 3 and Lemma 20 combine into Algorithm 4, whose main properties
are provided in the following theorem.

Theorem 21. Algorithm 4 is correct and terminates. Moreover, if ρ is large
enough, then it outputs a minimal telescoper for the input.

Proof. Correctness follows from Lemma 19. As to termination, it follows from
Lemma 20: because the set B is finite, the infinite family of elements g0, g1, . . .
is linearly dependent, so the main loop terminates for some N less than or equal
to the cardinality of B.

As for the minimality, it is clear that the algorithm outputs a non-trivial
relation c0g0 + · · ·+ cNgN = 0 with mimimal possible N among those available
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Algorithm 4 Integration using reductions

Input:
• a holonomic module Wx(t)

r/S
• a derivation map ∂t : Wx(t)

r/S → Wx(t)
r/S given by the matrix of an

endomorphism L, as in (10).
• an element f ∈Wx(t)

r

• an integer ρ ≥ 0

Output:
• P = c0 + · · ·+ cN∂

N
t such that ci ∈ K(t), cN ̸= 0 and P · prS(f) ∈ ∂M

1 (η,B)← an effective confinement obtained from (S, f, L, ρ) by Algorithm 3

2 g0 ← [f ]η

3 N ← 0

4 while g0, . . . , gN are linearly independent over k(t)

5 gN+1 ← ∂g
∂t + [L(g)]η

6 N ← N + 1

7 return c0 + · · ·+ cN∂
N
t s.t. c0g0 + · · ·+ cNgN = 0, ci ∈ K(t) and cN ̸= 0.

for the sequence (gi)i≥0. Besides, consider any telescoper P = c0 + . . .+ cΩ∂
Ω
t .

By point 2 of Lemma 19, we have

c0g0 + · · ·+ cΩgΩ ∈ S + ∂Wx(t)
r. (14)

Assume that ρ is large enough, in the sense of Theorem 17, so that the confine-
ment is free, meaning that the elements of B are independent modulo S+∂W r

x .
The linear combination in (14) is a linear combination of elements of B, so it
must be zero: c0g0 + · · ·+ cΩgΩ = 0. So Algorithm 4 will output a relation for
an N that is at most the minimal order of telescopers.

Remark 22. Algorithm 4 can be modified to compute a system of linear dif-
ferential equations satisfied by an integral depending on multiple parameters
t1, . . . , tp. These parameters can also be associated to other Ore operators [19]
than the differentiation provided they define a map on W r

x(t1, . . . , tp).

4.3 Scalar extension

Let P be a holonomic Wt,x-module and let M = K(t)⊗K[t] P . This space M is
a Wx(t)-module in a natural way. Moreover, we can define a derivation ∂t by

∂t · (a⊗m) = ∂a
∂t ⊗m+ a⊗ (∂t ·m).

This derivation commutes with the action of the ∂i.
In this section, we aim to compute M from P , so that we can apply the

integration algorithm (Section 4.2). Let us first make what we mean explicit.
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We assume that P is given by a finite presentation, that is, P = W s
t,x/J for

some s ≥ 0 and some submodule J ⊆ W s
t,x given by a finite set of generators.

Computing M means computing a finite presentation M ≃ Wx(t)
r/S, and a

Wx(t)-linear map L :Wx(t)
r →Wx(t)

r such that (10) holds.
It is not obvious that such a finite presentation exists because M does not

have any obvious finite set of generators. However, this existence is implied by
the holonomy of M . Here, we give a proof based on restriction of D-modules.

Lemma 23. If P is a Wt,x-holonomic module, then M = K(t) ⊗K[t] P is a
Wx(t)-holonomic module.

The statement is similar in nature to the well-known statement that “holo-
nomic implies D-finite”.

Proof. Let ξ be a new variable. Consider the field L = K(ξ). Introduce the
(1 + n)th Weyl algebra with coefficients in L, which we denoteWt,x(ξ). Consider
as well the Wt,x(ξ)-module P ′ = L⊗K P . This scalar extension of the base field
this preserves holonomy. So P ′ is holonomic. Consider now the embedding
map F : Ln → L1+n defined by

(x1, . . . , xn) 7→ (ξ, x1, . . . , xn),

and the inverse image F ∗P ′, that is, the restriction of P ′ at t = ξ. We just need
to know that F ∗P ′ is:

• a Wx(ξ)-module, which is by [24, construction of §14.1 and §14.2],

• holonomic as a Wx(ξ)-module, which is by [24, Theorem 18.1.4],

• isomorphic to P ′/(t− ξ)P ′, which is obtained as a suitable variant of [24,
§15.1], by making Y = t in that reference before specializing at ξ instead
of 0.

In particular, we have

F ∗P ′ ≃ P ′/(t− ξ)P ′ ≃ L[t]/(t− ξ)⊗L[t] P
′.

Next, we check that

P ′ = L⊗K P, by definition

≃ L⊗K (K[t]⊗K[t] P ), because P is a K[t] module

≃ L[t]⊗K[t] P, by associativity of ⊗,

and therefore, using associativity of ⊗ again,

F ∗P ′ ≃ L[t]/(t− ξ)⊗K[t] P.

Finally, we observe the isomorphism K(t) ≃ L[t]/(t− ξ) as K[t]-algebras under
the map f(t) 7→ f(ξ), so we obtain F ∗P ′ ≃ K(t) ⊗K[t] P = M , by definition
of M . Since F ∗P ′ is holonomic, this gives the claim.
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We now describe an algorithm for computing M . Recall that P = W s
t,x/J ,

so M ≃ Wt,x(t)
s/J(t) where J(t) is the submodule K(t) ⊗K[t] J of Wt,x(t)

s

generated by J . We can compute normal forms in M using Gröbner bases
in Wt,x(t)

s after fixing a monomial order on all monomials xα∂β∂kt ei [e.g., 19].
We choose a monomial order that eliminates ∂t, that is, any monomial order
such that

k < k′ ⇒ xα∂β
x ∂

k
t ei ≺ xα′

∂β′

x ∂k
′

t ei′ .

Let G denote a Gröbner basis of J(t) for such an elimination order.
As a Wx(t)-module, Wt,x(t)

s is generated by the set{
∂itej

∣∣ i ≥ 0, 1 ≤ j ≤ s
}
.

So M is generated by the image of this set. This is an infinite family, but, since
M is Wx(t)-holonomic, M is actually a Noetherian Wx(t)-module, finitely gen-
erated in particular. To describeM , we need to find an explicit finite generating
set and the module of relations between the generators.

For a ∈Wt,x(t)
s, let ind(a) denote the degree of a with respect to ∂t, which

we will call the index of a. In other words, this is the smallest integer k ≥ 0
such that a is in the sub-Wx(t)-module generated by

Bk =
{
∂itej

∣∣ 0 ≤ i ≤ k, 1 ≤ j ≤ s} .
Moreover, for a ∈Wt,x(t)

s, let indJ(t)(a) denote

indJ(t)(a) = min {ind(b) | b ∈Wt,x(t)
s and a ≡ b (mod J(t))} . (15)

Given a, we can compute indJ(t)(a) using the Gröbner basis G:

indJ(t)(a) = ind (LRem(a,G)) .

Indeed: we have a ≡ LRem(b,G) if a ≡ b (mod J(t)) and the elimination
property shows ind (LRem(b,G)) ≤ ind(b), so that ind(b) can be replaced with
ind(LRem(b,G)) in (15); then the Gröbner basis property shows LRem(a,G) =
LRem(b,G) if a ≡ b (mod J(t)).

Lemma 24. There is ℓ ≥ 0 such that indJ(t)(∂
ℓ+1
t ei) ≤ ℓ for any 1 ≤ i ≤ s.

Moreover, for any such ℓ:

1. M is generated as a Wx(t)-module by the image in it of Bℓ,

2. indJ(t)(a) ≤ ℓ for any a ∈Wt,x(t)
s.

Proof. SinceM is Noetherian, the increasing sequence of the Wx(t)-modules Sk

generated by the images of the Bk in M is stationary: there exists ℓ ≥ 0 for
which the Wx(t)-module Sℓ contains all the Sk for k ≥ 0, and is therefore equal
to M . For such an integer ℓ, any k > ℓ, and any j, the image of ∂kt ej in M is
in Sk, therefore in Sℓ = M . Consequently, there exist coefficients ch,i ∈ Wx(t)
satisfying

∂kt ej ≡
∑

h≤ℓ, i

ch,i∂
h
t ei (mod J(t)).
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By the definition (15), indJ(t)(∂
k
t ej) is less than or equal to the index of the

right-hand side, which by construction is less than or equal to ℓ. We obtain
that ℓ is a uniform bound on all indJ(t)(∂

k
t ej). This proves in particular the

first part of the statement, on the existence of ℓ. For the second part, we
fix such an ℓ. We have already proved M = Sℓ, which is the first itemized
statement. We have also already proved, for any k > ℓ and any j, the existence
of some rk,j of index at most ℓ such that ∂kt ej ≡ rk,j (mod J(t)). This also
holds by the definition of the index for k ≤ ℓ. Now, any a ∈ W s

t,x writes in

the form
∑

k,j ck,j∂
k
t ej for coefficients ck,j ∈Wx(t). Taking linear combinations

of congruences modulo the Wx(t)-module J(t), we obtain a ≡
∑

k,j ck,jrk,j
(mod J(t)), and as a consequence,

indJ(t)(a) ≤ ind

(∑
k,j

ck,jrk,j

)
≤ ℓ,

where the first inequality is by (15) and the second by the definition of the index
as a degree. We have proved the second itemized statement.

An algorithm for computing the smallest ℓ as in the statement above follows
directly from (15), simply by testing increasing values of ℓ.

Now that we have a finite generating set forM , it remains to characterize the
relations between the generators. To this end, for the rest of the section we fix ℓ
as provided by Lemma 24 and we let Jℓ be the sub-Wx(t)-module of Wt,x(t)

s

generated by {
∂kt g

∣∣ g ∈ G and k + ind(g) ≤ ℓ
}
.

It is, by construction, a submodule of Wx(t)Bℓ.

Lemma 25. The inclusion Wx(t)Bℓ →Wt,x(t)
s induces an isomorphism

M ≃ Wx(t)Bℓ

Jℓ
,

with inverse induced by the map Wt,x(t)
s →Wx(t)Bℓ given by a 7→ LRem(a,G).

Proof. First, Jℓ ⊆ J(t), so the inclusion Wx(t)Bℓ → Wt,x(t)
s induces a mor-

phism of Wx(t)-modules

ϕ :Wx(t)Bℓ/Jℓ →Wt,x(t)
s/J(t).

Next, the K(t)-linear map a ∈ Wt,x(t)
s 7→ LRem(a,G) has values in Wx(t)Bℓ,

because ind(LRem(a,G)) = indJ(t)(a) ≤ ℓ, by Lemma 24. This map vanishes
on J(t), because G is a Gröbner basis of J(t), so it induces a K(t)-linear map

ψ :Wt,x(t)
s/J(t)→Wx(t)Bℓ/Jℓ.

The maps ϕ◦ψ and ψ ◦ϕ are both induced by a 7→ LRem(a,G). The first is the
identity on Wt,x(t)

s/J(t) because for all a ∈W s
t,x, a ≡ LRem(a,G) (mod J(t))

as a property of the Gröbner basis G. The second is the identity onWx(t)Bℓ/Jℓ
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because of the elimination property: the computation of LRem(a,G) only in-
volves multiples of G of index at most ind(a), which are all in Jℓ, so that for
all a of index at most ℓ, a ≡ LRem(a,G) (mod Jℓ). This shows that ϕ is an
isomorphism.

At this point we are able to define the wanted dimension r and mod-
ule S. In view of Lemma 25, set r to (ℓ + 1)s, so as to have a trivial isomor-
phism Wx(t)Bℓ ≃ Wx(t)

r. Call S the image of the submodule Jℓ of Wx(t)Bℓ

under this isomorphism, so that, summarizing,

W s
t,x

J(t)
≃M ≃ Wx(t)Bℓ

Jℓ
≃ Wx(t)

r

S
.

It remains to describe an endomorphism L of Wx(t)
r such that

∂t · prS(a) = prS
(
∂a
∂t + L(a)

)
,

for any a ∈ Wx(t)
r. Introduce the canonical maps prJ(t) and prS to the rel-

evant quotients. Recall that ∂t is defined for any h in Wt,x(t)
s/J(t) by left-

multiplication by ∂t:
∂t · prJ(t)(h) = prJ(t)(∂th).

Therefore, the isomorphism of Lemma 25 transfers ∂t on Wx(t)Bℓ/Jℓ as

∂t · prJℓ
(a) = prJℓ

(LRem(∂ta,G)) . (16)

Lastly, take a ∈ Wx(t)Bℓ and write it a =
∑n

i=1 aiei. The Leibniz rule in W s
t,x

gives ∂ta = ∂a
∂t +

∑n
i=1 ai∂tei. By linearity of LRem and since Wx(t)Bℓ is stable

under the coefficient-wise differentiation ∂
∂t , we obtain

LRem(∂ta,G) = LRem(∂a∂t , G) + LRem

( n∑
i=1

ai∂tei, G

)

= ∂a
∂t + LRem

( n∑
i=1

ai∂tei, G

)
+ h

for some h ∈ Jℓ, then, upon applying prJℓ
and combining with (16),

∂t · prJℓ
(a) = prJℓ

(
∂a
∂t + LRem

( n∑
i=1

ai∂tei, G

))
.

So, the endomorphism L we want is obtained by transferring the endomorphism

n∑
i=1

aiei 7→ LRem

( n∑
i=1

ai∂tei, G

)
of Wx(t)Bℓ to an endomorphism of Wx(t)

r.
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5 Implementation

This section outlines specific algorithmic and implementation choices made in
our Julia implementation of the algorithms presented in this paper. We be-
gin in Section 5.1 with a general presentation of our package. In Section 5.2
we present two ideas based on memoization and on the use of a tracer to ef-
ficiently compute the image of the reduction map [.]η on a finite-dimensional
space. Lastly, we present in Section 5.3 a modified version of Algorithm 4 that
utilizes the evaluation/interpolation paradigm to avoid the growth of intermedi-
ate coefficients. This is of particular importance when reducing operators with
coefficients in K(t) using the reduction [.]η.

5.1 General comments

We have implemented our algorithms in Julia. This is available as the package
MultivariateCreativeTelescoping.jl1. The package includes an implemen-
tation of Weyl algebras in which operators have a sparse representation by a
pair of vectors, one for exponents and one for the corresponding coefficients.
The currently supported coefficient fields are the field Q of rational numbers,
the finite fields Fp with p ≤ 231, and extensions of those fields with symbolic
parameters. When such parameters are present, the implementation interfaces
with FLINT for defining and manipulating commutative polynomials, by means
of the Julia packages AbstractAlgebra.jl and Nemo.jl. Our package also pro-
vides an implementation of non-commutative generalizations of algorithms for
computing Gröbner bases: Buchberger’s algorithm (see e.g. [2]), the F4 algo-
rithm [29], and the F5 algorithm [47, 40]. The F4 implementation seems to be
the most efficient one for grevlex orders while the F5 implementation seems to
be the most efficient one for block and lexicographical orders.

5.2 Efficient computation of the reduction map [.]η on a
finite-dimensional vector space

We first explain how to compute efficiently the sequence (gi)i≥0 that is contained
in a finite-dimensional vector space obtained by an effective confinement. We
next discuss the use of a tracer to compute the vector space E≼η. We finally
provide comments on the dimension of E≼η for various examples.

Computation of the sequence (gi)i using memoization. The confine-
ment (η,B) required by Algorithm 4 is constructed so that the sequence (gi)i
defined in (12) is contained in SpanK(t)(B). Properties of the reduction [.]η imply
a refined formula: after decomposing gi as a sum

∑
m∈B amm with am ∈ K(t),

gi+1 can be obtained by

gi+1 =
∑
m∈B

(
∂ai
∂t

m+ am[L(m)]η

)
. (17)

1See https://hbrochet.github.io/MultivariateCreativeTelescoping.jl/.
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Early in the execution of Algorithm 4, when it computes the confinement (η,B)
by Algorithm 3, the image [L(m)]η of every monomial m ∈ B has to be com-
puted. We therefore choose to store these images in memory to allow for a more
efficient computation of the sequence (gi)i by using (17) at a later stage.

The vector space E≼η. In Algorithm 2, a generating set of the vector
space E≼η is computed by reducing for each η′ ≼ η a term of the form mg−∂iw
satisfying η′ = lm(mg) = lm(∂iw). However, not all such terms contribute
to an increase in the dimension of the space, as their reductions may be lin-
early dependent. Since such reductions are repeated multiple times for different
primes p and evaluation points of t (see the next subsection), we use a tracer [51]
during the computation for the first pair (p, t) to record all η′ corresponding to
a non-contributing term and skip the corresponding terms in subsequent com-
putations. Assuming that the first pair (p, t) is not unlucky, we know that
all the skipped pairs would also lead to unnecessary elements if used in later
computations.

Dimension of the vector space E≼η. By the finite dimensionality ofM/∂M ,
only finitely many monomials of Mx,r are irreducible modulo S + ∂W r

x . As a
consequence, every monomial m ∈Mx,r except for the finitely many irreducible
ones is either reducible by G or by an echelon form of E≼η for some η. If an
infinite number of monomials is not reducible by G, as in Example 3, the di-
mension of E≼η will tend to infinity when η increases indefinitely, making the
computation of E≼η increasingly expensive. As a consequence, the computa-
tional cost of Algorithm 2 depends on the structure of the staircase formed by
the leading monomials of G. We present two extreme scenarios: in one, E≼η is
equal to {0} for any η and in the other, no monomial of K[x] is reducible by G.
Naturally, intermediate cases also exist.

Example 26. Let S be the left ideal of Wx(t) generated by the Gröbner basis

(t− 1)x1 − t∂1, x2 − t.

Up to renaming variables, this is the left ideal used for the computation of the
generating series of 2-regular graphs in Section 6. Every operator in this Gröbner
basis has its leading monomial in K[x], therefore Theorem 6 implies that E≼η

is {0} for any η. In this very special case we obtain that the reduction [.]
computes normal forms. That is, [a] = 0 if and only if a ∈ S + ∂W r

x . We
observed the same phenomenon with the ideals S defined in Theorem 29 for
k-regular graphs up to k = 8.

Example 27. Let f(x, t) = 1− (1− x1x2)x3 − tx1x2x3(1− x1)(1− x2)(1− x3)
and set the context for n = 3. The integral of 1/f is related to the generating
function of Apéry numbers [5]. We were able to compute, by a method that we
do not describe here, a Gröbner basis for the grevlex order of a Wx(t)-ideal S
included in Ann(1/f) such that Wx(t)/S is holonomic. This Gröbner basis
contains 26 operators but all of their leading monomials contain a ∂i. Hence,
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no monomial of K[x] is reducible the Gröbner basis of S. We observed the same
phenomenon for every rational function that we tried.

Lastly, we present the simplest example on which our reduction [.]η is inef-
ficient.

Example 28. We continue Example 3, in which we set S to Wx1
∂1 and ≼ to the

lexicographic order ∂1 ≼ x1. We remarked that E ⊂ K[x1], and reciprocally the
equality (i + 1)xi1 = ∂1x

i+1
1 − xi+1

1 ∂1 proves that K[x1] ⊂ E. The reduction [.]
does not see that elements of K[x1] are reducible by S+∂Wx1

and Algorithm 2
ends up calculating a basis of K[x1]≼η.

5.3 Modular methods and evaluation/interpolation

In this subsection, we fix K = Q. We first recall the principle of the evalua-
tion/interpolation paradigm and then we present a modified version of Algo-
rithm 4 that incorporates this paradigm.

The principle. Let r1, . . . , rℓ ∈ Q(t) be rational functions and let F : Q(t)ℓ →
Q(t) be a function computable using only additions, multiplications, and inver-
sions. The rational function F (r1, . . . , rℓ) can be reconstructed as an element
of Q(t) from its evaluations F (r1(ai), . . . , rℓ(ai)) mod pj at several points ai ∈
Fpj

and for several prime integers pj in three steps:

1. for each j, reconstruct F (r1, . . . , rℓ) mod pj in Fpj
(t) by Cauchy interpo-

lation [31, Chapter 5.8],

2. reconstruct F (r1, . . . , rℓ) mod N in FN (t) where N =
∏

j pj by the Chi-
nese remainder theorem [31, Chapter 5.4],

3. lift the integer coefficients of F (r1, . . . , rℓ) mod N in Q by rational recon-
struction [31, Chapter 5.10].

The first (resp. third) step requires a bound on the degree in t of the result (resp.
on the size of its coefficients) to determine the number of evaluations needed to
ensure correctness. Since we do not have access to such bounds, we rely instead
on a probabilistic approach: after successfully obtaining a result with a certain
number of evaluations in step 1 (resp. 3), we compute one additional evaluation
and check consistency with the previously obtained result.

Finally, this method can fail if some bad evaluation points or some bad
primes are chosen. However, these situations are very rare, provided the prime
numbers are sufficiently large and the evaluation points are selected uniformly
at random over Fp.
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Algorithm 5 Integration with evaluation/interpolation

Input:
• a holonomic module Wx(t)

r/S
• a derivation map ∂t : Wx(t)

r/S → Wx(t)
r/S given by the matrix of an endomorphism L, as

in (10)
• an element f ∈Wx(t)

r

• an integer ρ ≥ 0

Output:
• P = c0 + · · ·+ cN∂

N
t such that ci ∈ Q(t), cN ̸= 0 and P · prS(f) ∈ ∂M

1 for large random prime numbers p = p1, p2, . . .

2 L̄← the endomorphism of Fp ⊗Z W
r
x(t) induced by L via the reduction modulo p

3 for random numbers a = a1, a2, . . . in Fp

4 S̃ ← image of S under evaluation at t = a and reduction modulo p

5 L̃← the endomorphism of Fp ⊗Z W
r
x induced by L̄ via the same evaluation

6 (η,B)← an effective confinement obtained from (S̃, f̃ , L̃, ρ) by Algorithm 3 over K = Fp

7 g̃0 ← [f̃ ]η where the reduction is over K = Fp

8 store g̃0 as well as the images [L̃(m)]η that have been computed at line 6 for all m ∈ B
9 interpolate the coefficients of ḡ0 and of each [L̄(m)]η by elements of Fp(t)

10 N ← 0

11 while ḡ0, . . . , ḡN are linearly independent over Fp(t)

12 ḡN+1 ← ∂ḡN
∂t +

[
L̄(ḡN )

]
η
where the reduction is over K = Fp(t)

13 N ← N + 1

14 store coefficients of the minimal non-trivial relation c̄0ḡ0 + · · ·+ c̄N ḡN = 0 for c̄i ∈ Fp(t)

15 reconstruct the coefficients c0, . . . , cN in Q(t) from their values in the Fpj
(t)

16 return c0 + · · ·+ cN∂
N
t
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Implementation. The evaluation/interpolation scheme described above can-
not be directly applied to Algorithm 4 as it involves not only additions, multipli-
cations and inversions, but also differentiations. Indeed, recall that the sequence
(gi)i is defined for η ∈Mx,r by g0 = [f ]η and

gi+1 =
∂gi
∂t

+ [L(gi)]η

where ∂g/∂t denotes the coefficient-wise differentiation of g in the basis Mx,r.
This differentiation does not commute with the evaluation of t, which prevents
the sequence (gi)i from being computed by evaluation/interpolation.

Algorithm 5 computes the matrix of the K(t)-linear map [L(.)]η using eval-
uation/interpolation and uses it to find a linear relation among the elements of
the sequence (gi)i. The reconstruction of the coefficients from Fp(t) to Q(t) is
delayed to the end of the algorithm. We adopt the following conventions: the
projection of an element g ∈Wx(t)

r in Fp⊗ZW
r
x by evaluation at a point a and

reduction modulo p is stored in a variable g̃ and its projection in Fp ⊗Z W
r
x(t)

by reduction modulo p is stored in a variable ḡ.

6 Application to the computation of ODEs sat-
isfied by k-regular graphs

In this section, we illustrate our new algorithm with computations on a fam-
ily of multivariate integrals of combinatorial origin. We compute linear ODEs
satisfied by various models of k-regular graphs and generalizations. A distin-
guishing feature of these integration problems is that they cannot be solved by
classical creative telescoping algorithms, which perform computations over the
field of rational functions in all variables: because the objects to be integrated
have polynomial torsion, they are not functions, and such calculations would
erroneously result in a zero integral.

ODEs for k ≤ 5 were obtained 20 years ago by naive linear algebra and elim-
ination by Euclidean divisions [23]. This has recently been extended to k ≤ 7
by a multivariate analog of the reduction-based algorithm [11] in which the re-
duction is modulo the polynomial image of several differential operators. Here
we use our new algorithm to achieve k = 8.

6.1 Statement of the integration problem

We first briefly introduce the problem and its solution by an integral represen-
tation. We refer the reader to [23] for further motivation, history, and details.
Given a fixed integer k ≥ 2, a k-regular graph is a graph whose vertices all
have degree k, that is, all have exactly k neighbors. We are interested in the
enumerative generating function

Rk(t) =
∑
n≥0

rk,n
tn

n!
,
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where rk,n is the number of k-regular labeled graphs on n vertices. It is well
known that the generating function Rk(t) satisfies a linear ODE with polynomial
coefficients in t.

In this section, we show how such a differential equation can be obtained
from Algorithm 4. To this end, we use the classical formulation of Rk(t) as a
scalar product of two exponentials,

Rk(t) = ⟨ef , etg⟩,

where f and g are explicit polynomials in indeterminate p1, . . . , pk [22, Algo-
rithm 1, Step a.], and where the scalar product is a classic tool in the combina-
torics of symmetric functions. The scalar product is first defined on monomi-
als by

⟨pr11 · · · p
rk
k , p

s1
1 · · · p

sk
k ⟩ = zrδr,s for zr = r1! 1

r1r2! 2
r2 · · · rk! krk . (18)

With zr indexed by exponents in Nk, we depart from the equivalent indexing zλ
by partitions λ1 ≥ λ2 ≥ . . . that is used classically as well as in [22]. The scalar
product is then extended by bilinearity to left arguments in Q[[p]] and right
arguments in Q[p]((t)), making the scalar product live in Q((t)). Note that,
because in the symmetric-function theory the power function pi denotes the
sum xi1 + xi2 + · · · , we use the more traditional p instead of x for the variables,
in accordance with existing litterature. Also, by Q[p]((t)) we mean the ring of
formal sums with coefficients in Q[p], with finitely many exponents towards −∞
and potentially infinitely many towards +∞. This is not a field. The use of
Algorithm 4 is justified by the following statement.

Theorem 29. Let f, g ∈ Q[p]. Let S be the left ideal of Wp(t) generated by

pi − t
∂g

∂pi
(u1, . . . , uk),

for 1 ≤ i ≤ k, where ui = i
(

∂f
∂pi
− ∂i

)
. Then, Wp(t)/S is holonomic as a

Wp(t)-module. Write prS for the canonical projection prS :Wp(t)→Wp(t)/S.
Then, Wp(t)/S can be endowed with a derivation ∂t commuting with p and ∂p

satisfying
∂t · prS(a) = prS

(
∂a
∂t + ag(u1, . . . , uk)

)
. (19)

On input the module Wp(t)/S (for r = 1), the derivation (19) (for the implied
endomorphism L : a 7→ ag(u)), the element f = 1 ∈ Wp(t), and any ρ ≥ 0,
Algorithm 4 outputs a nonzero differential operator P (t, ∂t) such that

P (t, ∂t) · ⟨ef , etg⟩ = 0.

The rest of the section is a proof of this statement. In particular, we fix
the ideal S as in theorem, and the holonomy of Wp(t)/S will be proven as
Lemma 33, the existence of the derivation ∂t will be proven as Lemma 31, and
the correctness Theorem 21 will prove the final result on the operator P .
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We begin with a few preliminary definitions. First, given h = h(p1, . . . , pk) ∈
Q[p], we write h̃ for h(1p1, 2p2, . . . , kpk). Second, we define a formal Laplace
transform on monomials by

L(pr11 . . . prkk ) = r1! p
−r1−1
1 . . . rk! p

−rk−1
k (20)

and extend it by linearity into a map from Q[p] to Q[p−1]. Third, we introduce
the ring

Q⟨⟨p⟩⟩ := Q[[p]][p−1] =
⋃
ℓ≥0

(p1 · · · pk)−ℓQ[[p]]

and a formal residue on it by the formula

res

(∑
r∈Zk

crp
r

)
= c−1,...,−1. (21)

Lastly, we extend h 7→ h̃ to a map from Q[p]((t)) to itself, L to a map
from Q[p]((t)) to Q[p−1]((t)), and res to a map from Q⟨⟨p⟩⟩((t)) to Q((t)),
by making each of those maps act coefficient-wise.

Lemma 30. For any polynomials f and g in Q[p],

⟨ef , etg⟩ = res(efL(etg̃)).

Proof. For U ∈ Q[[p]] and for r ∈ Nk, UL(p̃r) is an element of Q⟨⟨p⟩⟩, so that
using (20), (18), and (21) in order, we derive:

res(UL(p̃r)) = res
(
U × 1r1 · · · krkr1! p−r1−1

1 · · · rk! p−rk−1
k

)
= zr res(Up

−r1−1
1 · · · p−rk−1

k ) = zr × [pr]U = ⟨U,pr⟩.

This formula extends by linearity to ⟨U, h⟩ = res(UL(h̃)) for any h ∈ Q[p].
Upon specializing to U = ef and h = gn/n! before taking series in t, this makes
the informal integral formula provided in [23, end of 7.1] completely algebraic,
in the form of the formula

⟨ef , etg⟩ =
∑
ℓ≥0

⟨ef , gℓ⟩ t
ℓ

ℓ!
=
∑
ℓ≥0

res
(
efL(g̃ℓ)

) tℓ
ℓ!

= res
(
efL(etg̃)

)
.

The ring Q⟨⟨p⟩⟩((t)) is a Wp(t)-module with the usual actions: pi acts by
multiplication and ∂i by partial differentiation with respect to pi. Let K be the
subspace of all elements of Q⟨⟨p⟩⟩((t)) that do not contain any monomial prtm

with r1, . . . , rk all negative. In other words,

K =

k∑
i=1

Q[[p]][p−1
1 , . . . , p−1

i−1, p
−1
i+1, . . . , p

−1
k ]((t)).

This subspace has the property to be a sub-Wp(t)-module of Q⟨⟨p⟩⟩((t)) and to
be contained in the kernel of the residue map Q⟨⟨p⟩⟩((t))→ Q((t)).

Now, let f and g be two polynomials in Q[p]. We provide in Lemma 31
an explicit construction of a derivation ∂t satisfying (19). We remark that this
construction is simpler than the general approach presented in Section 4.3.
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Lemma 31. The Wx(t)-linear map L : a 7→ a g̃( ∂f
∂p1
− ∂1, . . . , ∂f

∂pk
− ∂k) defines

a derivation on Wx(t)/S by

∂t · prS(a) = prS
(
∂a
∂t + L(a)

)
. (22)

This derivation commutes with p and ∂p.

Proof. Let ϕ be the Wp-linear endomorphism of Wp(t) defined by ϕ(a) = ∂a
∂t +

L(a). To show that ∂t is well-defined, it suffices to verify that ϕ(S) ⊆ S.
Consider the generators

si := pi − t
∂g̃

∂pi

(
∂f
∂p1
− ∂1, . . . , ∂f

∂pk
− ∂k

)
of S. Using the commutation rule pi(

∂f
∂pj
−∂j) = ( ∂f

∂pj
−∂j)pi+ δi,j , one obtains

for any polynomial q(X1, . . . , Xk)

pi q(
∂f
∂p1
− ∂1, . . . , ∂f

∂pk
− ∂k)

= q( ∂f
∂p1
− ∂1, . . . , ∂f

∂pk
− ∂k) pi + ∂q

∂Xi
( ∂f
∂p1
− ∂1, . . . , ∂f

∂pk
− ∂k).

So, for each i, a computation shows that

ϕ(si) = g̃( ∂f
∂p1
− ∂1, . . . , ∂f

∂pk
− ∂k) si ∈ S.

Next, for any rational function R(t) and any i, we check

ϕ(R(t)si) = R(t)ϕ(si) +R′(t)si ∈ S,

by Q(t)-linearity of L. Now, S is generated as a Wx-module by the fam-
ily (R(t)si)R,i, so, by Wx-linearity of L, and thus of ϕ, we get the inclu-
sion ϕ(S) ⊆ S. The Wx(t)-linearity of L and the definition (22) imply, for
any R(t) ∈ Q(t),

∂tR(t) · prS(a) = ∂t · prS(R(t)a)) = prS

(
∂(R(t)a)

∂t +R(t)L(a)
)
=

R(t)∂t · prS(a) +R′(t) prS(a).

In other words, ∂t is a derivation. A similar but simpler calculation shows that
it commutes with p and ∂p.

For the same polynomials f and g, let Ξf,g be the class of e
fL(etg̃) moduloK.

Lemma 32. For any a ∈ S, the relation a · Ξf,g = 0 holds. Moreover,

∂
∂t · Ξf,g = g̃( ∂f

∂p1
− ∂1, . . . , ∂f

∂pk
− ∂k) · Ξf,g.
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Proof. The definition (20) of the formal Laplace transform implies the following
formulas, valid for r ∈ Nk:

L(pi · pr) = (ri + 1)p−1
i L(p

r) = −∂i · L(pr), (23)

L(∂i · pr) = L(rip−1
i pr) =

{
pi · L(pr), if ri ̸= 0,

0, otherwise.
(24)

In turn, for h ∈ Q[p], this implies the formulas

L(pi · h) = −∂i · L(h), (25)

L(∂i · h) = pi · L(h)− pi · L(h|pi=0). (26)

The last formula is not convenient because of the term involving h|pi=0. Fortu-
nately, this term is in K, so we have the nicer formula

L(∂i · h) ≡ pi · L(h) (mod K). (27)

Moreover, we have for any h ∈ Q⟨⟨p⟩⟩((t)),

( ∂f
∂pi
− ∂i) · efh = −ef∂i · h (28)

Therefore, we have(
pi − t ∂g̃

∂pi
( ∂f
∂p1
− ∂1, . . . , ∂f

∂pk
− ∂k)

)
· efL(etg̃) (29)

= ef
(
pi − t ∂g̃

∂pi
(−∂1, . . . ,−∂k)

)
· L(etg̃), using (28)

≡ efL
((
∂i − t ∂g̃

∂pi

)
· etg̃

)
using (25) and (27)

≡ efL(0) ≡ 0 (mod K).

This proves the first statement about all a ∈ S by Wp(t)-linearity. The second

statement is proved similarly, starting with ∂
∂t− g̃(

∂f
∂p1
−∂1, . . . , ∂f

∂pk
−∂k) instead

of the operator in (29).

Lemma 33. The Wp(t)-module Wp(t)/S is holonomic.

Proof. Let τ be the automorphism of the Q(t)-algebra Wp(t) defined by

τ(pi) =
∂f
∂pi
− ∂i and τ(∂i) = pi − tτ

(
∂g̃
∂pi

)
.

(Note that the definition is not recursive since ∂g̃
∂pi

is a polynomial in p. Also,

pi commutes with ∂g̃
∂pi

, making their images under τ commute as well. This

justifies τ(∂i)τ(pi) = τ(pi)τ(∂i) + 1 to have an algebra morphism.) The inverse
morphism is given by

τ−1(pi) = ∂i + t ∂g̃
∂pi

and τ−1(∂i) = τ−1
(

∂f
∂pi

)
− pi.
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By definition, S is generated by τ(∂1), . . . , τ(∂k). Therefore, as Wp(t)-modules,

Wp(t)/S ≃Wp(t)/(Wp(t)∂1 + · · ·+Wp(t)∂k) ≃ Q(t)[p].

Since the latter is holonomic, so is Wp(t)/S.

Let M denote the holonomic module Wp(t)/S. All in all, we have a com-
mutative diagram of Q(t)-linear spaces, with all arrows commuting with the
derivation ∂t

M Wp(t) · Ξf,g
Q⟨⟨p⟩⟩((t))

K

M
∂M Wp(t) · ⟨ef , etg⟩ Q((t)).

res res

The class of 1 in M is mapped to ⟨ef , etg⟩ in Q((t)). What Algorithm 4 com-
putes, is an operator L(t, ∂t) such that L(t, ∂t) · 1 ∈ ∂M . This implies that
L(t, ∂t) · ⟨ef , etg⟩ = 0.

Remark 34. At this point we can make explicit our remark that earlier creative-
telescoping algorithms could not deal with our integrals. From the explicit
definition of g in the formula Rk(t) = ⟨ef , etg⟩, we can prove that g̃ is always
in the form pk + h(p1, . . . , pk−1), for some polynomial h. So pk − t is always
in S. Any integration algorithm that would work over Q(t, pk), as many that
are designed to apply to functions, would therefore consider that 1 is in the
annihilator of the function to be integrated, which would lead to a wrong result.

6.2 Experimental results

We consider graph models that are either some model of k-regular (simple)
graphs or some generalization with loops and/or multiple edges and/or degrees
in the set {1, 2, . . . , k} instead of {k}. Given such a graph model, the theory
in [22] provides immediate formulas for the polynomials f and g. Obtaining the
ideal of the lemma is easily implemented as a simple non-commutative substitu-
tion. To this end, we used Maple’s OreAlgebra package. After converting2 from
Maple notation to the notation of MultivariateCreativeTelescoping.jl, we
could use the latter to obtain the wanted ODEs, appealing to the implemen-
tation of our optimized Algorithm 5. This was done for 2 ≤ k ≤ 8 and the
degree sets K = {k} and K = {1, 2, . . . , k}. We collected the computed ODEs
and made them available on the web3. For k ≤ 7, they are the same as with
the Maple implementation that accompanies Chyzak and Mishna’s article [22].

2Maple uses its commutative product * to represent monomials, so that both Maple inputs
t*dt and dt*t represent the element t∂t. This is no problem inside Maple, where non-
commutative products are computed by the command skew product. But naively serializing
an operator from Maple by lprint can lead to strings with a different interpretation in Bro-
chet’s Julia implementation. We automated a rewrite of those strings to move all derivatives
to the right.

3See https://files.inria.fr/chyzak/kregs/.
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graph ODE time and memory

k l e ord deg f5 mct total rss

2 ll se 1 2 0.04 0.05 18 0.63
3 ll se 2 11 0.04 0.05 18 0.62
4 ll se 2 14 0.05 0.05 19 0.62
5 ll se 6 125 0.05 0.59 17 0.65
6 ll se 6 145 0.23 1.0 20 0.66
7 ll se 20 1683 8.6 303 330 4.6
7 ll me 20 1683 8.4 300 326 4.3
7 la se 20 1683 8.3 301 328 4.3
7 la me 20 1683 8.3 299 326 4.4
7 lh se 20 1683 8.6 310 337 5.9
7 lh me 20 1683 8.3 322 349 5.8
8 ll se 19 1793 244 832 1095 6.5
8 ll me 19 1793 247 831 1097 6.7
8 la se 19 1793 244 831 1094 6.0
8 la me 19 1793 244 829 1093 6.0
8 lh se 35 6204 393 23069 23481 5.4
8 lh me 35 6200 393 23111 23524 5.4

graph ODE time and memory

k l e ord deg f5 mct total rss

2 ll se 1 3 0.04 0.04 17 0.62
3 ll se 2 11 0.04 0.13 18 0.64
4 ll se 3 29 0.04 0.07 18 0.62
5 ll se 6 125 0.06 0.69 19 0.65
6 ll se 10 425 0.31 11 31 0.86
7 ll se 20 1683 8.3 316 343 5.8
7 ll me 20 1683 8.5 321 348 5.8
7 la se 20 1683 8.7 324 352 5.8
7 la me 20 1683 8.8 322 349 5.8
7 lh se 20 1683 8.7 310 337 5.6
7 lh me 20 1683 8.2 323 349 5.8
8 ll se 35 6201 389 23198 23605 5.4
8 ll me 35 6200 386 23586 23991 5.4
8 la se 35 6204 401 23495 23915 5.4
8 la me 35 6205 393 23188 23600 5.4
8 lh se 35 6205 387 22745 23152 5.5
8 lh me 35 6205 394 23440 23853 5.4

Table 1: Computation of ODEs for k-regular graph models K = {k} (left) and
K = {1, . . . , k} (right). A graph model is input by the triple (k, l, e), where
l and e describe if loops and edges are allowed. For each output ODE, the
order (‘ord’) and the coefficient degree (‘deg’) are given. All times are given in
seconds. The two main computation steps are preparing a Gröbner basis (‘f5’)
and running Algorithm 5 on it (‘mct’). The maximum memory used is given in
GB (‘rss’). See details in Section 6.2.

To the best of our knowledge, the ODEs for k = 8 are obtained for the first
time. Table 1 displays some parameters related to the calculations and to the
results we obtained. There, each graph model is described by a triple (k, l, e)
where: k determines the set of allowed degrees, either by K = {k} for the left
part of Table 1 or by K = {1, . . . , k} for the right part; l is one of ‘ll’ for loop-
less graphs, ‘la’ for graphs with loops allowed and contributing 2 to the degree,
and ‘lh’ for graphs with loops allowed and contributing 1 to the degree; e is
either ‘se’ for graphs with simple edges or ‘me’ for graphs with multiple edges
allowed. For each graph model, the resulting ODE has order and degree given
in columns ‘ord’ and ‘deg’. The total time for computing the ODE is given in
column ‘total’ and decomposes as follows: the time to prepare generators for the
ideal S is negligible; the time to make a Gröbner basis out of them is given in
column ‘f5’; the time to extract next the ODE by our new algorithm is given in
column ‘mct’. We note that the time for ‘mct’ always dominates. The total time
includes the compilation time, which explains why its value exceeds the sum of
‘f5’ and ‘mct’. The maximal peak of memory usage is listed in column ‘rss’.

By way of comparison, the model (se, ll, 7) could be computed by the method
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and implementation of [22] in 3.22 · 104 seconds (almost 9 hours), which is
roughly 100 times as much as the 330 seconds (5.5 minutes) needed by our
new algorithm and implementation. This can partly be explained by the lack
of efficient evaluation/interpolation methods in the implementation of [22] and
by the choice in [22] to continue the calculation by factoring the polynomial
coefficients of the ODE.
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Travaux en Cours. Hermann, Paris, 1987, pp. 1–19. doi: 10/d2zr4n.

[14] F. Castro. “Théorème de division pour les opérateurs différentiels et calcul
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[15] S. Chen, L. Du, and M. Kauers. “Hermite Reduction for D-finite Functions
via Integral Bases”. In: Proc. 2023 Int. Symp. Symb. Algebr. Comput.
ISSAC ’23. Association for Computing Machinery, July 24, 2023, pp. 155–
163. doi: 10/g865z3.

[16] S. Chen, M. van Hoeij, M. Kauers, and C. Koutschan. “Reduction-Based
Creative Telescoping for Fuchsian D-finite Functions”. In: J. Symb. Com-
put. 85 (Mar. 1, 2018), pp. 108–127. doi: 10/ggck9k.

[17] S. Chen, H. Huang, M. Kauers, and Z. Li. “AModified Abramov-Petkovšek
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