
DOI: 10.1007/s004530010062

Algorithmica (2000) OF1–OF19 Algorithmica
© 2000 Springer-Verlag New York Inc.

A Randomized Algorith m for Approximate
String Matching1

M. J. Atallah,2 F. Chyzak,3 and P. Dumas3

Abstract. Wegive arandomizedalgorithmindeterministic timeO(N log M) for estimating thescorevector
of matchesbetween atext string of length N and apattern string of length M , i.e., thevector obtained when the
pattern is slid along the text, and the number of matches is counted for each position. A direct application is
approximatestringmatching. Therandomizedalgorithmusesconvolution tofindanestimator of thescores; the
varianceof theestimator isparticularly small for scores that areclose to M , i.e., for approximateoccurrences
of thepattern in thetext. Noassumption ismadeabout theprobabilisticcharacteristicsof theinput, or about the
size of the alphabet. The solution extends to string matching with classes, class complements, “never match”
and “always match” symbols, to theweighted caseand to higher dimensions.

Key Words. Convolution, FFT, Approximatestring matching, Randomized algorithms.

1. Scores and ApproximateString Matching

Problem Statement. For a text string T = t0t1 · · · tN−1 and a pattern string P =
p0 p1 · · · pM−1, we address the problem of computing the score vector of matches be-
tween T and P. This isdefined asthevector C whose i th component ci is thenumber of
matchesbetween thetext and thepattern when thefirst letter of thepattern ispositioned
in front of the i th letter of thestring (seeFigure1).

A related problem is approximate string matching, which consists in finding occur-
rences of small variations of the pattern string P in the text string T . The strings found
differ from thepattern by afew insertions, deletions, or substitutionsof letters. Comput-
ingthescorevector solves aversionof theproblemof approximatestringmatchingwhere
only substitutionsarepermitted: an exact match corresponds to ascorec = M ; amatch
with eerrors to ascorec = M − e. In thiswork wealso consider pattern matching with
classes, whereaposition in thepattern isallowed to match any letter from afiniteclass,
but donot addressthecaseof searching for regular expressions, whichwouldcorrespond
to matching any pattern from afiniteclass, or any repetition of a given pattern.

1 The first author gratefully acknowledges support from the CERIAS Center at Purdue and its sponsors. The
second and third authors’ work wassupported in part by theLong Term Research Project Alcom-IT (#20244)
of theEuropean Union.
2 CERIAS and Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA.
mja@cs.purdue.edu.
3 INRIA, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France. {Frederic.Chyzak, Philippe.Dumas}
@inria.fr.

Received July 20, 1997; revised April 20, 1998, and June1, 1999. Communicated by Ming-Yang Kao.
Onlinepublication October 5, 2000.

OF2 M. J. Atallah, F. Chyzak, and P. Dumas

Fig. 1. The pattern is slid along the text and for each position we count the number of matches between the
pattern and the corresponding slice of the text; this gives the scoreC (hereCi = 2).

Approximate string matching has many applications, including intrusion detection in a
computer system [11], image analysis, and data compression [2]. In the first application,
alphabet symbols correspond to events in a system, and since some events are more
important than others (from a security point of view), the scores require to beweighted
by the relative importance of alphabet symbols. This leads us to consider a weighted
version of the problem which computesweighted scores:

ci =
M−1∑
j=0

w(pj)δti+ j ,pj , 0≤ i ≤ N − M,

whereN ≥ M , δx,y denotes the Kronecker symbol, andw is a complex-valued func-
tion defined over the alphabet. The basic nonweighted case corresponds to a constant
functionw(p) = 1.

Method. Rather than focusing on computing the exact scores, we develop in this paper
a randomizedalgorithm of Monte-Carlo type to compute an unbiased estimate of the
score vector. The algorithm computes the score vector by a convolution, which makes
it possible to use the fast Fourier transform. Although randomized, its behavior neither
depends on any a priori probabilistic assumption on the input, nor on the size of the
alphabet. It proceeds by computing and averagingk independent equally distributed
estimates for the score vector. The expected value of the averaged estimator is equal
to the exact value. In other words, the expected value of thei th component̂ci of our
estimateĈ of the score vector equalsci . It turns out that the standard deviation is
bounded by(M − ci)/

√
k, and that the algorithm can be tuned to attain an arbitrary

level of accuracy. Moreover, the fewer the numberM − ci of mismatches, the better the
approximation that the algorithm returns: even if the estimated score can differ somewhat
from the exact value when the pattern and the text have little match, an almost complete
match will be recognized by the algorithm. The latter thus locates interesting positions
with good accuracy, and the algorithm can at least theoretically be used as a filter: after
a few positions have been recognized as good candidates for approximate matches, the
exact scores can be computed for those few positions only. Our method generalizes to
the weighted case as well.

Complexity. As already mentioned, we obtain an asymptotically fast algorithm by using
fast Fourier transform to compute convolutions [9]. As a result our algorithm runs in
deterministic timeO(kNγ (M)/M), whereγ (M) is the time needed to perform the
convolution of two vectors of lengthM . Henceforth, we replaceγ (M) by M log M
which corresponds to the computational model where an arithmetic operation takes
constant time. We thus get an algorithm in deterministic timeO(kN log M). Note the

A Randomized Algorithm for Approximate String Matching OF3

tradeoff between time complexity and accuracy: by choosing larger values ofk, more
accurate estimates are obtained. However, preliminary experiments suggest that small
values fork are sufficient in practice to achieve a reasonable accuracy. The following
theorem summarizes our main result in the nonweighted case.

THEOREM1. An estimate for the score C between a text string of length N and a pattern
string of length M can be computed by a Monte-Carlo algorithm in time O(kN log M),
where k is the number of iterations in the algorithm. The randomized result has mean C
and each entry has a variance bounded by(M − ci)

2/k.

Algorithmical Context. A continuous and intensive research effort since the 1970s
has led to a great deal of approximate string matching algorithms. These algorithms
typically have a time complexity linear in the sizeN of the text, but with a depen-
dency in the sizeM of the pattern between linear and logarithmical. We proceed to list
and sketch the main existing algorithms. All the complexity evaluations below refer to
arithmetic complexity and are based on a computational model in which the convolu-
tion of two vectors of lengthM is performed in timeO(M log M). The list splits into
three types of algorithms: algorithms based on fast multiplication for large integers,
practical algorithms based on hardware, and a more recent generation of randomized
algorithms.

The first algorithm that comes to mind for computing exact score vectors is the naive
(deterministic) algorithm with a time complexity ofO((N − M + 1)M). Several algo-
rithms escape this quadratic complexity by the use of efficient multiplication algorithms
for large integers:

• Fischer and Paterson use convolution to solve the special case of finding all exact
occurrences (i.e., scores that equal exactlyM) in the presence of “always match”
symbols [7]. This algorithm has time complexityO(N log M logσ) and requires the
alphabet to be fixed, finite, and known beforehand. Although the size of the alphabet
used for a text of lengthN can be as large asN, splitting the text in chunks of
length O(M) to be dealt with independently ensures it will work with an alphabet
sizeσ = O(M), which extends the previous algorithms to the case when alphabets
are not known beforehand.
• Abrahamson and Kosaraju independently extended the algorithm by Fischer and Pa-

terson into a deterministic algorithm for computing the vectorC in time complex-
ity O(N

√
M log M) [1], [10], allowing for generalized alphabets with classes and

alphabets that were not known beforehand (see Section 4). Their clever approach
makes judicious use of two different methods: convolution to compute the contribu-
tion of alphabet symbols that occur frequently; a more direct (and quite straight-
forward) method to compute the contribution of alphabet symbols that occur in-
frequently. Note that Abrahamson also gives a variant algorithm of time complex-
ity O(N log M) restricted to fixed finite alphabets known beforehand and allowing
classes [1].

Of a different nature, several asymptotically slow algorithms make crucial use of
the hardware in order to lessen their practical complexity: in spite of a bad theoretical
complexity inO(MN) they beat the other algorithms in practice for small sizes. This is

OF4 M. J. Atallah, F. Chyzak, and P. Dumas

the case of the next two algorithms which more generally deal with approximate string
matching when insertion and deletion are also allowed:

• The algorithm of Baeza-Yates and Gonnet solves the problem in timeO(NM log M/
log N) [4], which is better thanO(N log M) for very smallM , i.e., M = o(log N).
Besides, for even smaller values ofM , sayM = O(1), this algorithm has a very low
practical complexity, linear inN with a low constant factor, because all parameters of
the algorithm can then be packed on the same machine word and be processed using
very few hardware operations.
• The algorithm of Baeza-Yates and Perleberg solves the problem in timeO(NMfmax)

where fmax is the maximal occurrence frequency of symbols in the pattern [5]. The
idea of the algorithm is to rely on fast operations on linked lists. For patterns ruled by
an equiprobable Bernoulli model, the average time complexity isO(NM/σ), which
is good for large alphabets when the pattern sizeM is fixed. However, in view of a
fair comparison with other algorithms whenM is large, note that maintaining that the
complexity of this algorithm is small, sayN × o(M), requires fmax to tend to zero,
andσ to grow unbounded withM .

The interest in the vectorC is usually motivated in applications by the need to find
all positions in the text at which the patternalmost occurs, i.e., the offsetsi such thatci

is close toM . From this viewpoint, computing exact values for the scores is not needed.
A recent trend is the introduction of randomization in the computation of scores.

• An algorithm of deterministic timeO(N log M) was given in [3], whose analysis
depends on some restrictive assumptions on the probabilistic characteristics of the
input, namely the Bernoulli model. Although this model is not realistic, the contribu-
tion of this paper is the introduction of randomization in the problem of approximate
string matching, together with a hashing of the alphabet which allows one to reduce
to working with a fixed alphabet that is known beforehand.
• As opposed to Fisher and Paterson, Karloff studied the case when the alphabet is not

known beforehand and gave a clever deterministic algorithm of timeO(N log3 M) for
estimating all the scores of mismatches [8]. He also provided a randomized variant
of deterministic time complexityO(N log2 M). Karloff’s estimator isintentionally
biasedin order to guarantee not overestimating the number of mismatches by more
than a constant multiplicative factor. The method apparently cannot be modified to
estimate the number of matches (rather than of mismatches).

2. Description of the Algorithm. Assume that we have two strings of lengthM over
a finite alphabet6 of cardinalityσ . The algorithm is based on the following idea: if
we renumber the letters by the application of a map8 from the alphabet to the integer
interval

[0, σ) = {0, . . . , σ − 1},

we obtain two integer sequencesn0 · · ·nM−1 andm0 · · ·mM−1. Now note that a match
between the two strings at positionj induces a matchnj = mj . This contributes 1 in the

A Randomized Algorithm for Approximate String Matching OF5

Hermitian inner product

M−1∑
j=0

ωnjωmj =
M−1∑
j=0

ωnj−mj ,

whereω denotes any primitiveσ th root of unity. On the other hand a mismatch contributes
a perturbative termωnj−mj .

From the nullity of the sum of all theσ th roots of unity, one observes that the
mean E(ωX) is zero whenX is a uniformly distributed random variable over [0, σ).
Consequentially we introduce the set4 of all possible mappings from6 to [0, σ), and
turn8 into a uniformly distributed random variable over4 so as to obtain the score
between both strings as the mean of the Hermitian inner product over all renumberings.

As to our problem of computing the score vectorC, we could make use of the
previous idea to compute each of itsN − M + 1 entries successively. However, this
would ineluctably lead to a time complexity ofO(NM). The turning point of our method
is to interpret the score vector as the mean over all letter renumberings of theconvolution
of two randomized finite sequences of complex numbers. In this way, thesimultaneous
calculation of all theci ’s is made possible by the use of fast Fourier transform (FFT).
Additionally, we apply the standard technique [6] of partitioning the text into overlapping
chunks of size(1+α)M each, and then processing each chunk separately. Processing one
chunk suppliesαM components ofC, so that we need no more thanN/(αM) chunks. In
this discussion the parameterα may depend onM . We choose it to beO(M) and larger
than a constant, so that each chunk requires a timeO((1+ α)M log((1+ α)M)). The
time complexity for one iteration step is therefore

N

αM
O((1+ α)M log((1+ α)M))

= O

(
1+ α
α

N log((1+ α)M)
)
= O(N log M).

The overall time complexity of our Monte-Carlo algorithm is thenO(kM log M)wherek
is the number of repetitions performed. The basic caseN = (1+ α)M of the algorithm
is sketched in Figure 2. We name it MC after the Monte-Carlo approach used.

The end of the section is devoted to further comments and to variations of the
algorithm.

A closer look at the dependency inα of the complexity permits us to minimize
the implied constant in the big oh. To this end, introduce the constantτ defined by
the complexityγ (M) = τM log M of the FFT. For the simple choiceα = 1, the
complexity reduces to 2τN log(2M). The better choiceα = log M lessens the constant 2
to 1+ (log logM)/log M , up to terms of orderO(1/log M). This suggests an optimal
choice ofα = 2(log M).

Roots of unity appear in two different ways in the algorithm. On the one handσ th
roots of unityωi are used to encode the alphabet into complex numbers. On the other
hand the FFT to compute the convolution of two complex vectors of size(1+α)M uses
roots of unityζ i of order a power of two which is not smaller than(1+ α)M . It should
be clear thatω is not related toζ , for the alphabet size and the text size are independent
from one another. In spite of the fixed precision of the numerical computations, first

OF6 M. J. Atallah, F. Chyzak, and P. Dumas

Input: a textT = t0 · · · t(1+α)M−1 and a patternP = p0 · · · pM−1 where the
ti ’s and thepi ’s are letters from6;

Output: an estimate for the score vectorC.

1. For` = 1,2, . . . , k:
(a) randomly and uniformly select a8(`) from4 = [0, σ)6 ;
(b) from the textT , obtain a complex sequenceT (`) of size(1+ α)M

by replacing every symbolt in T byω8
(`)(t);

(c) from the patternP, obtain a complex sequenceP(`) by

i. replacing every symbolp in P byω−8
(`)(p);

ii. padding withαM (trailing) zeros;

(d) compute the vectorC(`) as the convolution ofT (`) with the reverse
of P(`), i.e.,

c(`)i =
M−1∑
j=0

ω8
(`)(ti+ j)ω8

(`)(pj) =
M−1∑
j=0

ω8
(`)(ti+ j)−8(`)(pj);

2. compute the vector̂C =∑k
`=1 C(`)/k and output it as an estimate ofC.

Fig. 2.Algorithm MC.

experimental results (Section 5) show that the round-off error causes no apparent loss of
validity of the theoretical predictions. Yet, an unavoidable restriction is that the precision
of the numerical calculations be less than the inverse of the product 2(1+ α)kMσ .

Note that one could encode the alphabet into a finite field instead of the complex, and
use FFT in this framework. This would avoid any round-off errors, but would require
fieldsFp2 for a large primep, and to compute with the same number of bits as in the
complex case.

3. Probabilistic Analysis of the Output Estimate. We now study the mean and the
variance of the estimatorŝci . It turns out that the mean E(ĉi) is ci , and that the standard
deviation of ĉi is bounded by(M − ci)/

√
k. This result was already summarized in

Theorem 1.
All the random variableŝci are defined in a similar way; hence we generically consider

the random variable

ŝ= 1

k

k∑
`=1

M−1∑
j=0

ω8
(`)(tj)−8(`)(pj),

where thetj ’s and thepj ’s are fixed and the mappings8(`)’s are independent and uni-
formly distributed random mappings from6 to [0, σ). The numberc of matches be-
tweent0 · · · tM−1 and p0 · · · pM−1 is

c =
M−1∑
j=0

δtj ,pj .

A Randomized Algorithm for Approximate String Matching OF7

The random variablês is the mean ofk independent identically distributed random
variabless(`). Hence it suffices to consider the random variable

s=
M−1∑
j=0

ω8(tj)−8(pj),

for the mean and variance ofŝ are then

E
(

ŝ
) = E(s) and Var

(
ŝ
) = Var(s)

k
.

We start by evaluating the mean ofŝ with the following lemma.

LEMMA 1. The mean of̂s is the number c of matches between t0 · · · tM−1 and p0 · · · pM−1.

PROOF. The mean of̂s is

E(ŝ) = E(s) =
M−1∑
j=0

E(ω8(tj)−8(pj)).

Now, observe that the mean inside the sum is zero unlesstj = pj , becauseω8(tj)−8(pj)

is equally likely to be any of theσ th roots of unity, whose sum is zero. More precisely,
we have the equality

E(ω8(tj)−8(pj)) = δtj ,pj ,

from which the result follows.

Next, we consider the variance ofŝ. We mention the corresponding result now for
the purpose of exposition, but postpone its proof to the next section where it is proved
in more generality.

LEMMA 2. The variance of̂s is bounded as follows:

Var
(

ŝ
) ≤ (M − c)2

k
.

Theorem 1 now follows from Lemmata 1 and 2.

4. Generalized String Matching. We extend the previous technique in several direc-
tions. The main contribution here is to show that classical generalizations also apply to
our algorithm and to perform the corresponding complexity analyses. The first exten-
sion to be analyzed is a weighted version of the problem. This allows for more general
functions than the characteristic function of matches, and is used by the other exten-
sions. Then we show how our algorithm extends to pattern matching of arrays in place
of words, or more generally to higher-dimensional arrays. Next, a different extension of
our algorithm allows us to accommodate classes of letters, class complements, “never
match” and “always match” symbols in the patterns and when possible in the texts. For
the simplicity of the exposition, we present each extension separately, but they could all
be merged in the same algorithm and implementation.

OF8 M. J. Atallah, F. Chyzak, and P. Dumas

Weighted Case. The method and results we developed apply to weighted versions of
the problem, i.e., to the problem of computing weighted scores defined by

ci =
M−1∑
j=0

w(pj)δti+ j ,pj ,

wherew is a complex-valued function defined over the alphabet. In fact, we consider
scores of the form

ci =
M−1∑
j=0

f (ti+ j)g(pj)δti+ j ,pj ,

where f and g are complex-valued functions defined over the alphabet. These two
formulations may seem equivalent. Nonetheless, we use the second formulation because
it suggests a better intuition of the algorithm and enables the further extensions of the
next sections.

In the algorithm, the encoding of the alphabet using roots of unity has to be changed
accordingly: when creatingT (`) we now replace every symbolt in T by f (t)ω8

(`)(t),
while when creatingP(`) we replace every symbolp in P by g(p)ω−8

(`)(p).
As a matter of fact, we proceed to perform our analysis in the even more general case

of weighted scores of the form

ci =
M−1∑
j=0

h(ti+ j , pj)δti+ j ,pj ,

whereh is a complex-valued function on pairs of letters in62. We do this essentially for
the purpose of mathematical analysis, although our convolution-based algorithm can only
deal with the special case ofh(a,b) = f (a)g(b). The randomized vector̂C we obtain
still has the property to beC in the mean, and the variance ofĉi to beO((M − ci)/

√
k).

However, the restriction to the special case of weights is crucially needed from the
computational point of view to represent, and compute, the vector score by a convolution.

Once again, we generically consider the random variable

ŝ= 1

k

k∑
`=1

M−1∑
j=0

h(tj , pj)ω
8(`)(tj)−8(`)(pj),

where thetj ’s and thepj ’s are fixed and the8(`)’s are independent and uniformly
distributed random mappings from6 to [0, σ). The weighted score betweent0 · · · tM−1

and p0 · · · pM−1 is

c =
M−1∑
j=0

h(tj , pj)δtj ,pj .

The random variablês is the mean ofk independent identically distributed random
variabless(`). Hence it suffices to consider the random variable

s=
M−1∑
j=0

h(tj , pj)ω
8(tj)−8(pj),

A Randomized Algorithm for Approximate String Matching OF9

for a single random renumbering8. The mean and variance ofŝ are then

E(ŝ) = E(s) and Var
(

ŝ
) = Var(s)

k
.

The analysis differs from the unweighted case in that the role ofδx,y in the unweighted
case is now played byh(x, y)δx,y. We start with the mean.

LEMMA 3. The mean of̂s is the weighted score

c =
M−1∑
j=0

h(tj , pj)δtj ,pj

between t0 · · · tM−1 and p0 · · · pM−1.

PROOF. The mean of̂s is

E(ŝ) = E(s) =
M−1∑
j=0

E(h(tj , pj)ω
8(tj)−8(pj))

=
M−1∑
j=0

h(tj , pj)E(ω
8(tj)−8(pj)) = c,

since E(ω8(tj)−8(pj)) = δtj ,pj .

We now turn to the variance, proving Lemma 2 as a particular case.

LEMMA 4. The variance of̂s is bounded by

Var
(

ŝ
) ≤ ||h||∞(M − c)2

k
,

where||h||∞ denotes the maximum value of|h(x, y)| over62.

PROOF. To express Var(s) = E(|s|2)− |E(s)|2, we first derive an explicit form for the
mean of|s|2 = ss, starting with the equality

E(ss) =
∑

0≤i, j<M

h(ti , pi)h(tj , pj)E(ω
8(ti)−8(pi)−8(tj)+8(pj)).

Whenω8(ti)−8(pi)−8(tj)+8(pj) = 1 independently from8, i.e., whenti = tj andpi = pj ,
or whenti = pi andtj = pj , the inner mean

E(ω8(ti)−8(pi)−8(tj)+8(pj))

is 1; otherwise, it is 0.
By a simple inclusion–exclusion argument, it follows that

E(ss) =
∑

0≤i, j<M

h(ti , pi)h(tj , pj)(δti ,pi δtj ,pj + δti ,tj δpi ,pj − δti ,tj δpi ,pj δti ,pi δtj ,pj).

OF10 M. J. Atallah, F. Chyzak, and P. Dumas

With the first product of Kronecker symbols, one recognizes the expansion of|E(s)|2,
so that

Var(s) = E(|s|2)− |E(s)|2
=

∑
0≤i, j<M

h(ti , pi)h(tj , pj)δti ,tj δpi ,pj (1− δti ,pi δtj ,pj).

We introduce the real symmetric matrix0 = [γi, j] of sizeσ × σ with (i, j)th entry
given by

γi, j = δti ,tj δpi ,pj (1− δti ,pi δtj ,pj),

and the vectorH with i th entryh(ti , pi). We obtain Var(s) = H
T
0H , where T denotes

the transpose of matrices. Callρ(0) the spectral radius of0, i.e., the largest modulus
of its eigenvalues. Since0 is positive semidefinite (because it describes variances), its
eigenvalues are nonnegative andρ(0) is the largest eigenvalue. We have

Var(s) = H
T
0H ≤ ρ(0)HT

H.

To improve on the previous upper bound and make it more explicit, we need to take the
numberc of matches into account.

The numberγi, j is 0 unlessti = tj 6= pi = pj . It entails that in case of a matchti = pi ,
both thei th row and thei th column of0 are 0. After renumbering the rows and columns
in 0 andH , we part them as follows:

0 =
[

0 0

0 0′

]
and H =

[∗
H ′

]
,

where0′ = [γ ′i, j] is a matrix of size(M−c)×(M−c) andH ′ is a vector of size(M−c).
It follows that

H
T
0H = H ′

T
0′H ′ ≤ ρ(0′)H ′T H ′.

On the other hand, the spectral radiusρ(0′) of 0′ is bounded by the Schur normN (0′)
which is defined by

N (0′)2 =
∑

1≤i, j≤M−c

|γ ′i, j |2 ≤ (M − c)2.

Furthermore, setting

||h||∞ = max
(x,y)∈62

|h(x, y)|,

we obtain

H ′
T
H ′ ≤ ||h||2∞(M − c).

Finally,

Var
(

ŝ
) = Var(s)

k
= H

T
0H

k
= H ′

T
0′H ′

k
≤ ||h||

2
∞(M − c)2

k
.

A Randomized Algorithm for Approximate String Matching OF11

The two lemmata above together prove the following theorem.

THEOREM2. For the weighted version of the problem, an estimatêC for the score C
between a text string of length N and a pattern string of length M can be computed by
a Monte-Carlo algorithm in deterministic time O(kN log M) with mean and variance

E(Ĉ) = C and Var(ĉi) ≤ ||h||
2
∞(M − ci)

2

k
.

Most commonly when the weights are defined by a single functionw as in the
introduction of this section,

||h||∞ = ||w||∞ = max
x∈6
|w(x)|.

Also note that the variance is once again particularly small whenci is close toM .

Higher-Dimensional Arrays. We sketch the extension to two-dimensional arrays in the
nonweighted case; similar ideas would extend it to three and higher dimensions, and to
mixed weighted higher-dimensional versions as well.

For the sake of simplicity, we assume in what follows thatM andN are the squares
of two integers,M = m2 andN = n2, and thatN ≥ M . The textT is now a matrix of
sizen × n, the patternP is a smaller matrix of sizem× m, and the result we seek is
an(n+ 1−m)× (n+ 1−m) matrixC where

ci, j =
m−1∑
k=0

m−1∑
l=0

δTi+k, j+l ,Pk,l ,

for 0 ≤ i, j ≤ n−m. The time to compute our estimatêC of C is now O(kN log M),
and we still have E(Ĉ) = C and Var(ĉi, j) ≤ (M − ci, j)

2/k. We next briefly sketch how
this is done.

We justify our focus to achieving a time complexity ofO(kM log M) for the casen =
2m by the following standard reduction [6] to this case from the general casen > 2m:

– CoverT with N/M overlapping squaresTi, j of size 2m×2meach, whereTi, j consists
of the square submatrix ofT of size 2m × 2m that has its top-left corner at posi-
tion (im, jm) in T . HenceTi, j andTi+1, j+1 overlap over a region ofT of sizem×m,
Ti, j andTi, j+1 overlap over a region of size 2m×m, andTi, j andTi+1, j overlap over
a region of sizem× 2m.

– The algorithm for the casen = 2m is then used on each of theN/M pairs(Ti, j , P)
of text and pattern. It is easy to see that theseN/M answers together contain a
description of the desired matrixC. The overall time complexity to compute them
is O((N/M)kM log M) = O(kN log M), as required.

Therefore, we henceforth assume thatn = 2m.
The extension of the one-dimensional solution to two dimensions works by transform-

ing the two-dimensional problem into a one-dimensional one [6], and in the process intro-
duces “never match” symbols: that is, if6 is the alphabet for the two-dimensional prob-
lem, then the corresponding alphabet for the one-dimensional problem is6∪{#}where#

OF12 M. J. Atallah, F. Chyzak, and P. Dumas

is a “never match” symbol in the sense that ifx or y (or both) equal#, thenδx,y = 0 as
a convention.

More specifically, from the text matrixT of size 2m×2m, we create the corresponding
text vectorV by concatenating the rows ofT . ThusV has length 4m2. From the pattern
matrix P of sizem× m, we create a pattern vectorW of length 2m2 by augmenting
each of the rows ofP by appending to the end of each of themm symbols# and then
concatenating the augmented rows. LetK be the score vector withV as text andW as
pattern, i.e.,

Ki =
2m2−1∑

j=0

δVi+ j ,Wj

for 0 ≤ i ≤ 2m2 and with the understanding thatδx,y is zero if eitherx or y equals the
special symbol#.

The connection betweenK and the score matrixC for text T and patternP is now
given by

ci, j = K2m(i−1)+ j .

Therefore, computing the matrixC reduces to computing the vectorK . The computation
is not complicated much more by the presence of the new, special# symbol: we simply
follow the rules of Algorithm MC except that, at the place where the algorithm is required
to createω8(t) (resp.ω−8(p)), we only do so ift (resp.p) is not the# symbol, and we
create a 0 instead ift (resp. p) is the # symbol. Hence we use the weighted model
introduced in the previous section, with the weight functions

f (a) = g(a) = 1

for any lettera ∈ 6 except from

f (#) = g(#) = 0.

Lemmata 1 and 2 simply lead to the following theorem.

THEOREM3. For the two-dimensional version of the problem, an estimatêC for the
score array C between a text array of size n× n (for n2 = N) and a pattern array of
size m×m (for m2 = M) can be computed by a Monte-Carlo algorithm in deterministic
time O(kN log M) with mean and variance

E(Ĉ) = C and Var(ĉi, j) ≤ (M − ci, j)
2

k
.

String Matching with Classes. Let av be letters in an alphabet. By aclass[a1 · · ·ar]
we mean a new symbol that matches any of the lettersav. In particular, letters can be
viewed as classes: the classes consisting in a single letter. Another special class is the
full class, i.e., the class consisting of the whole alphabet.

We first restrict to allowing classes in either the text or the pattern. Without loss of
generality, we focus on classes in patterns. Each symbolpj in a patternP = p0 · · · pM−1

A Randomized Algorithm for Approximate String Matching OF13

is now a class [pj,1 · · · pj,r j]. We modify our algorithm by replacing each classpj in the
pattern by

r j∑
v=1

w(pj,v)ω
−8(`)(pj,v)

while creatingP(`). The convolution vectorC(`) is thus

c(`)i =
M−1∑
j=0

r j∑
v=1

w(pj,v)ω
8(`)(ti+ j)ω−8

(`)(pj,v),

so that the modified algorithm still has the same time and space complexities. For mean
and variance analyses, we once again generically consider the random variable

s=
M−1∑
j=0

r j∑
v=1

w(pj,v)ω
8(tj)ω−8(pj,v).

By the linearity of the mean, we have

E(s) =
M−1∑
j=0

r j∑
v=1

w(pj,v)δtj ,pj,v .

For the variance analysis, we mentally replicater j times eachtj in the text, while men-
tally replacing eachpj by pj,1 · · · pj,r j in the pattern. We are thus led to two strings of
lengthM ′ = ∑j r j , whole convolution yields the same score as above. This yields the
following theorem.

THEOREM4. When allowing classes in the pattern, an estimatêC for the score C
between a text string of length N and a pattern string p= p0 · · · pM−1 of length M for
classes pj = [pj,0 · · · pj,r j] can be computed by a Monte-Carlo algorithm in deterministic
time O(kN log M) with mean and variance

E(Ĉ) = C and Var(ĉi) ≤ ||h||
2
∞(M

′ − ci)
2

k
for M ′ =

M∑
j=1

r j ≥ M.

So far, we have only weighted letters uniformly with respect to positions in the text
and in the pattern, by the weight functionw. It is additionally possible to weight letters
within a class, allowing different weights for the same letter according to its position in
the text or in the pattern: we denote by[

r∑
i=1

pi ai

]
theweighted classconsisting of the lettersai ’s weighted by thepi ’s. This notion extends
that of classes, since we have[

r∑
i=1

ai

]
= [a1 · · ·ar].

OF14 M. J. Atallah, F. Chyzak, and P. Dumas

As another example, thepi ’s can be viewed as probabilities when thepi ’s add up to 1. It
is then possible to allow classes both in the pattern and in the text, and to get a consistent
interpretation for this: for a second weighted class[

s∑
i=1

qi bi

]
,

we define the match between both classes to be

r∑
i=1

s∑
j=1

pi qj δai ,bj .

In this probabilistic interpretation, the score counts the matches according to the prob-
ability of occurrence of each letter in each class. Algorithmically, computing this score
by Algorithm MC is achieved by usingf to encode thepi ’s andg to encode theqi ’s.

“Never Match” and “Always Match” Symbols. To allow more flexible string matching
on a given alphabet6 and achieve a better accuracy of the estimates, we adjoin two new
special symbols, a “never match” symbol# and an “always match” symbol* .

The “never match” symbol# was already introduced in the previous section. It cor-
responds to a symbol that nevers matches any other letter; in other words, it satis-
fiesδa,# = δ#,a = 0 for any lettera ∈ 6. It may be used simultaneously in the pattern
and in the text and the weighted model extends to this new symbol by simply assuming

f (#) = g(#) = 0.

Working with the extended alphabet6∪{#} does not change the analysis of the previous
sections.

The “always match” symbol* corresponds to a symbol that matches any other letter;
in other words, it satisfiesδa,* = δ* ,a = 1 for any lettera ∈ 6. It may be used
simultaneously in the pattern and in the text and the weighted model extends to this new
symbol by simply assuming

f (*) = 1 and g(*) = w(*).
In this respect, it is very much like the full class (the class consisting of all the elements of
the alphabet). Still, it is of a different nature, differing in the way weights are dealt with.
Only as an exception, both notions share the same semantics in the simple case when
no weights are used, i.e., when matches are counted by ones and mismatches by zeros
(w = 1). As a convention, the “always match” symbol matches itself; whether “always
match” and “never match” symbols match each other is irrelevant in what follows. In all
the cases, we get an algorithm that is only four times slower to yield sharper estimates.
This algorithm (Figure 3) is based on four applications of our algorithm in the following
way. Letu be a new symbol, which we adjoin to the alphabet and view as a letter (i.e.,
it only matches itself).

As an optimization, steps 2 and 3 of the algorithm could be avoided when “always
match” symbols are not used in the text (and when “never match” symbols do not match

A Randomized Algorithm for Approximate String Matching OF15

Input: a textT = t0 · · · t2M−1 and a patternP = p0 · · · pM−1 where the
ti ’s and thepi ’s are letters from6 ∪ {∗};

Output: an estimate for the score vectorC.

1. Replace all* by # in both the text and the pattern, and apply Algorithm MC;
this matches letters in the text against letters in the pattern;

2. replace all* by u and all letters by# in the text, and all letters byu and all*
by # in the pattern, and apply Algorithm MC; this matches “always match”
symbols in the text against letters in the pattern;

3. replace all letters byu and all* by # in the text, and all* by u and all letters
by # in the pattern, and apply Algorithm MC; this matches letters in the text
against “always match” symbols in the pattern;

4. replace all* by u in both the text and the pattern and all letters by#, and
apply Algorithm MC; this matches “always match” symbols in the text against
“always match” symbols in the pattern;

5. add the four estimates previously obtained and return the sum as the result of
the algorithm.

Fig. 3.Algorithm MC with “always match” symbols.

“always match” symbols). In this case, one would simply count the number of “always
match” symbols in the pattern, and add the corresponding contribution to the result. The
algorithm then only requires twice as much time as the original Algorithm MC.

Noting that steps 2–4 yield exact estimates makes the analysis of the algorithm easy,
and we obtain the following theorem.

THEOREM5. When allowing “never match” and “always match” both in the text and
in the pattern, an estimatêC for the score C between a text string of length N and a
pattern string of length M can be computed by a Monte-Carlo algorithm in deterministic
time O(kN log M) with mean and variance

E(Ĉ) = C and Var(ĉi) ≤ ||h||
2
∞(M − ci)

2

k
.

To compare the analyses obtained when using the “always match” symbol* or the full
class, consider the extreme case of a pattern consisting ofM symbols* (and disallow#
in the text). The variance obtained by Theorem 5 is then zero, sinceci = M for all i .
Now, consider a pattern made ofM copies of the full class. The variance obtained by
Theorem 4 is now

||h||2∞(σ − 1)2M2

k
,

whereσ is the cardinality of the alphabet. Consequently, the use of the full class in-
troduces a lot of noise for a not too small alphabet, due to the randomization of the
algorithm. To achieve reasonable variances anyway then requires a numberk of itera-
tions of the algorithm of the order ofσ 2, thus to increase the time complexity. The same
phenomenon arises in fact for all “large” classes, i.e., classes with cardinality close toσ ;
this motivates the next section.

OF16 M. J. Atallah, F. Chyzak, and P. Dumas

Input: a textT = t0 · · · t2M−1 and a patternP = p0 · · · pM−1 where the
ti ’s and thepi ’s are letters from6 ∪ {∗}, classes or class complements
over6;

Output: an estimate for the score vectorC.

1. Replace all* by # and each class complement[a1 · · ·ar] by the weighted
class [

∑r
i=1 − ai] in both the text and the pattern, and apply Algorithm MC;

2. replace all* and all class complement byu and all letters by# in the text, and
all letters byu and all* and all class complement by# in the pattern, and apply
Algorithm MC;

3. replace all letters byu and all* and all class complement by# in the text, and
all * and all class complement byu and all letters by# in the pattern, and apply
Algorithm MC;

4. replace all* and all class complement byu in both the text and the pattern and
all letters by#, and apply Algorithm MC;

5. add the four estimates previously obtained and return the sum as the result of
the algorithm.

Fig. 4.Algorithm MC with class complements.

Class Complements. Allowing “large” classes in the pattern or in the text yields large
variances, as described by the formulae in Theorem 4. To avoid this, it can be advanta-
geous in some cases to describe each “large” class as thecomplementof a “small” class:
for a class [a1 · · ·ar], we introduce a new symbol[a1 · · ·ar] that matches any letters but
theav ’s. As we previously did for classes, we allow class complements in the patterns
only, in order to get a sensical interpretation. Moreover, we deal with a nonweighted
alphabet. In this case, the match of a letterb against the class complement[a1 · · ·ar] is
counted by the match ofb against* minus the match ofb against [a1 · · ·ar]. This yields
the algorithm shown in Figure 4, where class complements are basically viewed as an
“always match” symbol and a correcting contribution is removed at step 1.

Theorem 4 still holds after replacing “classes” by “classes and class complements.”

5. Implementation and Experimentation. We have implemented and tested our al-
gorithm, performing several experiments on several types of data: randomly generated
text, sequenced genes, domains in proteins, literature in several natural languages, and
MIDI encoding of classical music. Although the kind of string matching without inser-
tion and deletion discussed here may not always be well suited in real-life applications,
the examples chosen verify the robustness of the algorithm on a broad variety of sample
types. What is observed is excellent agreement of the experiments with the phenomena
predicted by the theory: the algorithm returns accurate results as soon as the pattern is
sufficiently large (typically, of sizeM larger than 32 or 64 bytes), even for a small value
of the parameterk that controls the number of repetitions in the algorithm. Typically, a
number ofk = 3 repetitions suffices for small values ofM , andk = 1 already yields
reliable results for patterns of sizeM = 256 or more if we disregard the scores that
correspond to more than 20% of the estimated mismatch.

A Randomized Algorithm for Approximate String Matching OF17

Randomly Generated Text. In order to demonstrate the accuracy of the approximations
of our algorithm, a first experiment was performed with randomly generated text and
pattern according to a Bernoulli model. Specifically, a text of 8192 bytes was drawn at
random according to the uniform distribution over the ASCII alphabet. The first 4096
bytes were picked, and a pattern was obtained by modifying them at random, so as to
keep 4042 matches. For this case, the parameters areN = 2M = 8192,σ = 256,
and we performed the algorithm fork = 1, 2, and 3. We obtained and compared the
estimated scores with the corresponding exact scores. Apart from the almost complete
match with exact score 4042, all other positions have an exact score less than or equal
to 59. The almost complete match is detected by an estimated score with an error of less
than 0.2%. Additionally the program behaves well on all other shifts, with scores that
were not overestimated by more than a factor of 5: all other estimated scores are not
more than 5× 60= 300, which is much less than 4096.

Classical Music. The next experiment shows that that the accuracy of the algorithm is
preserved in the case of small patterns in a real-life application: we considered the search
for approximate occurrences of a clarinet theme in Beethoven’s Fifth Symphony. The
experiment consisted in selecting a theme from the symphony and searching for slices
in the whole musical piece that are similar to this theme. The data were MIDI code,
and the length of the selected theme wasM = 128, so that we setN = 2M = 256,
σ = 128, and we ran the algorithm fork = 1, 2, and 3. A threshold ofλ = 0.5 was used
in order to filter out approximate matches (i.e., the program outputs only those matches
with c ≥ λM). Selected parts of the output fork = 3, sorted by decreasing scores, are
displayed in Figure 5. Each block corresponds to a slice of the text which approximately
matches the theme. For each block, the fieldestd gives the estimated scorêci /M , the
field exact gives the exact scoreci /M , and the fieldratio gives the ratiôci /ci . Note
the accuracy of the algorithm on this execution: the ratioĉi /ci varies little around 1.
Each approximate match is illustrated by a string which locates the matches between
musical notes: the symbols* and - represent a match and a mismatch, respectively.
Beside the exact occurrence of the theme (first block), we catch several occurrences
where the pattern and the text almost match during long sequences (next four blocks), as
well as an occurrence where intermediate-sized sequences of exact match are interlaced
with sequences of full mismatch (last block).

Fig. 5.Searching for a clarinet theme in Beethoven’s Fifth Symphony.

OF18 M. J. Atallah, F. Chyzak, and P. Dumas

Sequenced Proteins. Algorithm MC has a low asymptotical complexity but is not meant
to be a fast practical one. In a last experiment, we proposed evaluating thresholds with
respect to the sizeM of the patterns for which it becomes faster than the other ones.
To this end, we performed the search of prefixes of a sequenced protein in a protein
database using implementations for the naive algorithm, the “shift-add” algorithm by
Baeza-Yates and Gonnet [4], the “counting” algorithm by Baeza-Yates and Perleberg [5],
and our Monte-Carlo algorithm. Although the proteins were encoded over an alphabet
with a few dozen symbols only, the database also contained various information and
comments, so that we kept the alphabet consisting of all ASCII codes (withσ = 128).
Beside this, we allowed “never match” symbols both in the patterns and in the text, since
the protein database we used contained such “never match” symbols. The patterns used
were of sizeM = 2p for p from 7 to 12 (fromM = 256 toM = 4096).

For each of the algorithms, the observed time complexity closely agrees with the
theory. From numerical regression formulae we obtain that our Monte-Carlo algorithm
becomes faster than the “shift-add” approach for patterns larger than a few hundreds,
and faster than the naive algorithm beyond roughly twice as large a threshold. The fact
that the “shift-add” method is roughly twice as slow as the naive algorithm comes from
the large values ofM that we used, and does not contradict the observation in [4] that the
“shift-add” method gets three times faster than the naive algorithm forM < 9. Indeed,
this phenomenon stems from the fact that several parameters of the algorithm can only
be packed in the same machine word and processed simultaneously for very smallM .

As far as the “counting” algorithm is concerned, the threshold heavily depends on
the parameterfmax. In the experiment, the value observed forfmax was 1

2; indeed, the
symbols in the patterns appear with frequency less than 5% except for one special padding
symbol of frequency12. The threshold obtained in this situation is roughly 2 kB. A simple
extrapolation yields the thresholds 12, 150, and 410 kB for valuesfmax= 1

10,
1

100, and 1
256,

respectively. As already mentioned, we used a soft implementation of FFT which suffers
from large constant factors in its time complexity. Although our algorithm should work
better with the FFT step performed by dedicated chips, even a speed-up of a factor 1000
in our implementation would not yield a threshold lower than 3 kB forfmax= 1

100.

Acknowledgment. The authors warmly thank Roberto Sierra who sequenced the
whole symphony in MIDI code, together with other musical pieces, and made them
freely available on the WEB.

References

[1] Abrahamson, K. Generalized string matching.SIAM J. Comput. 16(6) (1987), 1039–1051.
[2] Atallah, M. J., Génin, Y., and Szpankowski, W. A pattern matching approach to image compression.

In Proceedings of the Third IEEE International Conference on Image Processing, Lausanne, 1996,
pp. 349–356.

[3] Atallah, M. J., Jacquet, P., and Szpankowski, W. Pattern matching with mismatches: a simple random-
ized algorithm and its analysis. InCombinatorial Pattern Matching(Proceedings of the Third Annual
Symposium held in Tucson, Arizona, April 29–May1, 1992), A. Apostolico, M. Crochemore, Z. Galil,
and U. Manber, eds., vol. 644 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1992,
pp. 27–40.

A Randomized Algorithm for Approximate String Matching OF19

[4] Baeza-Yates, R. A., and Gonnet, G. H. A new approach to text searching.Comm. ACM 35 (1992),
74–82.

[5] Baeza-Yates, R. A., and Perleberg, C. H. Fast and practical approximate string matching.Inform.
Process. Lett. 59(1) (1996), 21–27.

[6] Crochemore, M., and Rytter, W.Text Algorithms. The Clarendon Press, New York, 1994. With a preface
by Z. Galil.

[7] Fischer, M. J., and Paterson, M. S. String-matching and other products. InComplexity of Computa-
tion (Proceedings of the SIAM–AMS Applied Mathematics Symposium, New York, 1973), SIAM–AMS
Proceedings, Vol. VII, American Mathematical Society, Providence, RI, 1974, pp. 113–125.

[8] Karloff, H. Fast algorithms for approximately counting mismatches.Inform. Process. Lett. 48(2) (1993),
53–60.

[9] Knuth, D. E.The Art of Computer Programming, Vol. 2, second edn., Series in Computer Science and
Information Processing, Addison-Wesley, Reading, MA, 1981.

[10] Kosaraju, S. R. Efficient string matching. Manuscript, Johns Hopkins University, 1987.
[11] Kumar, S., and Spafford, E. H. A pattern-matching model for intrusion detection. InProceedings of the

National Computer Security Conference, 1994, pp. 11–21.

