Algorithmica (2000 OF1-OF19 . .
DOI: 10.10075004530010062 Al go rithmica

© 2000 Springe-Verlag New York Inc.

A Randomizeal Algorith m for Approximate
String Matching?

M. J. Atallah? F. Chyzak® and P. Dumas

Abstract. Wegive arandomizeé algorithmin deterministt time O(N log M) for estimatirg the scoe vector
of matchebetwee atext string of lengh N ard apatten string of lengh M, i.e., the vecta obtaine when the
patten is slid alorg the text, and the numbe of matche is countel for ead position A dired applicatia is
approximag string matching Therandomize algorithm usesconvolution to find an estimate of the scoresthe
variane of the estimate is particulary smal for scoresthat are closeto M, i.e., for approximag occurrences
of thepatteninthetext. Noassumptiaismaceabou the probabilistt characteristisof theinput, or abou the
size of the alphabetThe solution extends to string matchirg with classesclass complements‘never match”
ard “always match symbols to the weightal cas and to highe dimensions.

Key Words. Convolution, FFT, Approximat string matching Randomizd algorithms.

1. Scaesand Approximate String Matching

Problem Statement For a text string T = tot;---ty—1 and a patten string P =
Pop1- - - Pm—1, We addres the problem of computirg the scae vecta of mathes be-
tween T and P. Thisisdefinal asthe vecta C whosith componenc; isthe numbe of
matche betwea the text ard the patten when thefirst letter of the patten is positioned
in front of theith letter of the string (see Figure 1).

A relatal problem is approximat string mathing, which consiss in finding occu-
rences of smal variatiors of the patten string P in the text string T. The strings found
differ from the patten by afew insertionsdeletionsor substitutiors of letters Comput-
ingthescoevecta solves aversia of theproblem of approximag string matchirgwhere
only substitutiors are permitted an exadt matc correspondto ascoec = M; amatch
with e erroisto ascoec = M — e. In thiswork we alo conside pattem mathing with
classeswhere aposition in the patten is allowed to matd any letter from afinite class,
but do not addresthe case of searchig for regular expressionswhich would correspond
to matchirg any patten from afinite class or any repetitian of a given pattern.

1 The first autha gratefully ackrowledges suppot from the CERIAS Cente at Purdwe and its sponsorsThe
secom ard third authors work was supporte in patt by the Long Term Researk Projed Alcom-IT (#20244)
of the Europea Union.

2 CERIAS ard Departmen of Compute Sciences Purdie University, Weg Lafayette IN 47907 USA.

mja@cs.purdue.edu.

3 INRIA, RocquencourtB.P. 105 7813 Le Chesng Cedsx, France {Frederic.ChyzakPhilippe.Dumajp
@inria.f.

Receéved July 20, 1997 revised April 20, 1998 ard Jure 1, 1999 Communicatd by Ming-Yang Kao.
Online publicatian Octobe 5, 2000.

OF2 M. J. Atallah, F. Chyzak, and P. Dumas

Position !

Text ... b ¢ aa b ¢ a a b b b a c
Pattern a b a b b a
Matches 1 T

Fig. 1. The pattern is slid along the text and for each position we count the number of matches between the
pattern and the corresponding slice of the text; this gives the §&@hereC; = 2).

Approximate string matching has many applications, including intrusion detectionin a
computer system [11], image analysis, and data compression [2]. In the first application,
alphabet symbols correspond to events in a system, and since some events are more
important than others (from a security point of view), the scores require welghted
by the relative importance of alphabet symbols. This leads us to consider a weighted
version of the problem which computegighted scores

M-_1
Ci:zw(pj)atiﬂ.pjv 0<i<N-M,

j=0

whereN > M, §, y denotes the Kronecker symbol, andis a complex-valued func-
tion defined over the alphabet. The basic nonweighted case corresponds to a constant
functionw(p) = 1.

Method Rather than focusing on computing the exact scores, we develop in this paper
a randomizedalgorithm of Monte-Carlo type to compute an unbiased estimate of the
score vector. The algorithm computes the score vector by a convolution, which makes
it possible to use the fast Fourier transform. Although randomized, its behavior neither
depends on any a priori probabilistic assumption on the input, nor on the size of the
alphabet. It proceeds by computing and averadingdependent equally distributed
estimates for the score vector. The expected value of the averaged estimator is equal
to the exact value. In other words, the expected value ofttheomponent; of our
estimateC of the score vector equals. It turns out that the standard deviation is
bounded by(M — ¢)/+/k, and that the algorithm can be tuned to attain an arbitrary
level of accuracy. Moreover, the fewer the numbgr- ¢; of mismatches, the better the
approximation that the algorithm returns: even if the estimated score can differ somewhat
from the exact value when the pattern and the text have little match, an almost complete
match will be recognized by the algorithm. The latter thus locates interesting positions
with good accuracy, and the algorithm can at least theoretically be used as a filter: after
a few positions have been recognized as good candidates for approximate matches, the
exact scores can be computed for those few positions only. Our method generalizes to
the weighted case as well.

Complexity Asalready mentioned, we obtain an asymptotically fast algorithm by using
fast Fourier transform to compute convolutions [9]. As a result our algorithm runs in
deterministic timeO(kNy (M)/M), wherey (M) is the time needed to perform the
convolution of two vectors of lengtiv. Henceforth, we replace (M) by M logM

which corresponds to the computational model where an arithmetic operation takes
constant time. We thus get an algorithm in deterministic t@&N log M). Note the

A Randomized Algorithm for Approximate String Matching OF3

tradeoff between time complexity and accuracy: by choosing larger valuesnodre
accurate estimates are obtained. However, preliminary experiments suggest that small
values fork are sufficient in practice to achieve a reasonable accuracy. The following
theorem summarizes our main result in the nonweighted case.

THEOREM1. An estimate forthe score C between atext string of length N and a pattern
string of length M can be computed by a Monte-Carlo algorithm in tingk KDlog M),
where k is the number of iterations in the algoritifine randomized result has mean C
and each entry has a variance bounded M — ¢;)?/k.

Algorithmical Context A continuous and intensive research effort since the 1970s
has led to a great deal of approximate string matching algorithms. These algorithms
typically have a time complexity linear in the si2¢ of the text, but with a depen-
dency in the sizéV of the pattern between linear and logarithmical. We proceed to list
and sketch the main existing algorithms. All the complexity evaluations below refer to
arithmetic complexity and are based on a computational model in which the convolu-
tion of two vectors of lengtiM is performed in timeO(M log M). The list splits into

three types of algorithms: algorithms based on fast multiplication for large integers,
practical algorithms based on hardware, and a more recent generation of randomized
algorithms.

The first algorithm that comes to mind for computing exact score vectors is the naive
(deterministic) algorithm with a time complexity @((N — M + 1)M). Several algo-
rithms escape this quadratic complexity by the use of efficient multiplication algorithms
for large integers:

e Fischer and Paterson use convolution to solve the special case of finding all exact
occurrences (i.e., scores that equal exablyin the presence of “always match”
symbols [7]. This algorithm has time complexi®/(N log M log o) and requires the
alphabet to be fixed, finite, and known beforehand. Although the size of the alphabet
used for a text of lengtiN can be as large aN, splitting the text in chunks of
length O(M) to be dealt with independently ensures it will work with an alphabet
sizeoc = O(M), which extends the previous algorithms to the case when alphabets
are not known beforehand.

e Abrahamson and Kosaraju independently extended the algorithm by Fischer and Pa-
terson into a deterministic algorithm for computing the vecoin time complex-
ity O(N+/Mlog M) [1], [10], allowing for generalized alphabets with classes and
alphabets that were not known beforehand (see Section 4). Their clever approach
makes judicious use of two different methods: convolution to compute the contribu-
tion of alphabet symbols that occur frequently; a more direct (and quite straight-
forward) method to compute the contribution of alphabet symbols that occur in-
frequently. Note that Abrahamson also gives a variant algorithm of time complex-
ity O(N log M) restricted to fixed finite alphabets known beforehand and allowing
classes [1].

Of a different nature, several asymptotically slow algorithms make crucial use of
the hardware in order to lessen their practical complexity: in spite of a bad theoretical
complexity inO(MN) they beat the other algorithms in practice for small sizes. This is

OF4 M. J. Atallah, F. Chyzak, and P. Dumas

the case of the next two algorithms which more generally deal with approximate string
matching when insertion and deletion are also allowed:

e The algorithm of Baeza-Yates and Gonnet solves the problem in@ith log M/
log N) [4], which is better tharO(N log M) for very smallM, i.e., M = o(log N).
Besides, for even smaller valuesif, sayM = O(1), this algorithm has a very low
practical complexity, linear ifN with a low constant factor, because all parameters of
the algorithm can then be packed on the same machine word and be processed using
very few hardware operations.

e The algorithm of Baeza-Yates and Perleberg solves the problem inQitN&Af ,,,)
where fax is the maximal occurrence frequency of symbols in the pattern [5]. The
idea of the algorithm is to rely on fast operations on linked lists. For patterns ruled by
an equiprobable Bernoulli model, the average time complexi® (@ M/o), which
is good for large alphabets when the pattern $izés fixed. However, in view of a
fair comparison with other algorithms whéh is large, note that maintaining that the
complexity of this algorithm is small, sayl x o(M), requiresfn,ax to tend to zero,
ando to grow unbounded witi.

The interest in the vectdZ is usually motivated in applications by the need to find
all positions in the text at which the patteahmost occursi.e., the offset$ such that;
is close toM. From this viewpoint, computing exact values for the scores is not needed.
A recent trend is the introduction of randomization in the computation of scores.

e An algorithm of deterministic timeD(N log M) was given in [3], whose analysis
depends on some restrictive assumptions on the probabilistic characteristics of the
input, namely the Bernoulli model. Although this model is not realistic, the contribu-
tion of this paper is the introduction of randomization in the problem of approximate
string matching, together with a hashing of the alphabet which allows one to reduce
to working with a fixed alphabet that is known beforehand.

e As opposed to Fisher and Paterson, Karloff studied the case when the alphabet is not
known beforehand and gave a clever deterministic algorithm of@ié log® M) for
estimating all the scores of mismatches [8]. He also provided a randomized variant
of deterministic time complexityD(N log® M). Karloff's estimator isintentionally
biasedin order to guarantee not overestimating the number of mismatches by more
than a constant multiplicative factor. The method apparently cannot be modified to
estimate the number of matches (rather than of mismatches).

2. Description of the Algorithm. Assume that we have two strings of lendthover

a finite alphabet of cardinalityo. The algorithm is based on the following idea: if
we renumber the letters by the application of a rdafyrom the alphabet to the integer
interval

[0,0)=1{0,...,0 — 1},

we obtain two integer sequences: - - Ny_1 andmg - - - my_1. Now note that a match
between the two strings at positigrinduces a match; = m;. This contributes 1 in the

A Randomized Algorithm for Approximate String Matching OF5

Hermitian inner product

M—1 M—1
E "™ = E "™,
io j=0

wherew denotes any primitive th root of unity. On the other hand a mismatch contributes
a perturbative termp"—™,

From the nullity of the sum of all therth roots of unity, one observes that the
mean Ew*) is zero whenX is a uniformly distributed random variable over, {).
Consequentially we introduce the sebf all possible mappings frork to [0, o), and
turn @ into a uniformly distributed random variable ovErso as to obtain the score
between both strings as the mean of the Hermitian inner product over all renumberings.

As to our problem of computing the score vectr we could make use of the
previous idea to compute each of fs— M + 1 entries successively. However, this
would ineluctably lead to a time complexity 6f(NM). The turning point of our method
is to interpret the score vector as the mean over all letter renumberingsooitiaution
of two randomized finite sequences of complex numbers. In this wagjnidtaneous
calculation of all theg;’s is made possible by the use of fast Fourier transform (FFT).
Additionally, we apply the standard technique [6] of partitioning the text into overlapping
chunks of siz¢1+«)M each, and then processing each chunk separately. Processing one
chunk supplies M components of, so that we need no more thaly (« M) chunks. In
this discussion the parametemay depend oM. We choose it to b€ (M) and larger
than a constant, so that each chunk requires a @@ +)M log((1 + a)M)). The
time complexity for one iteration step is therefore

iO((l +a)Mlog((1 + a)M))
aM
~0 (H—“N Iog((l—i—a)M)) — O(N logM).
o

The overall time complexity of our Monte-Carlo algorithm is th@tk M log M) wherek
is the number of repetitions performed. The basic ddse (1 + o) M of the algorithm
is sketched in Figure 2. We name it MC after the Monte-Carlo approach used.

The end of the section is devoted to further comments and to variations of the
algorithm.

A closer look at the dependency in of the complexity permits us to minimize
the implied constant in the big oh. To this end, introduce the constatgfined by
the complexityy (M) = tMlogM of the FFT. For the simple choice = 1, the
complexity reduces toN log(2M). The better choice = log M lessens the constant 2
to 1+ (loglogM)/log M, up to terms of orde©(1/log M). This suggests an optimal
choice ofa = ®(logM).

Roots of unity appear in two different ways in the algorithm. On the one hdihd
roots of unityw' are used to encode the alphabet into complex numbers. On the other
hand the FFT to compute the convolution of two complex vectors of(&izex) M uses
roots of unityz' of order a power of two which is not smaller théh+) M. It should
be clear that is not related t@, for the alphabet size and the text size are independent
from one another. In spite of the fixed precision of the numerical computations, first

OF6 M. J. Atallah, F. Chyzak, and P. Dumas

Input a textT =to- - - taiem-1 @and a patteri® = po - - - pu—1 Where the
ti's and thep;'s are letters froni;
Output an estimate for the score vector

1. Fort=1,2,..., k:
(@) randomly and uniformly select@® from & = [0, 0)%;
(b) from the tex{T, obtain a complex sequendé” of size(1 +)M
by replacing every symbalin T by »®“'®;
(c) from the patterrP, obtain a complex sequen&® by
i. replacing every symbapin P by =" ®;
ii. padding witha M (trailing) zeros;

(d) compute the vectdZ® as the convolution of with the reverse
of P9, j.e.,

M-1 M-1
CI(D _ 2 :w<1><”<ti+j)wq><f><p,> — § :wd><”<ti+j)—<1>“)<pj>;
j=0

j=0

2. compute the vectd® = ZL;I C®/k and output it as an estimate Gf

Fig. 2. Algorithm MC.

experimental results (Section 5) show that the round-off error causes no apparent loss of
validity of the theoretical predictions. Yet, an unavoidable restriction is that the precision
of the numerical calculations be less than the inverse of the prodiet 2) kMo .

Note that one could encode the alphabet into a finite field instead of the complex, and
use FFT in this framework. This would avoid any round-off errors, but would require
fields[F . for a large primep, and to compute with the same number of bits as in the
complex case.

3. Probabilistic Analysis of the Output Estimate. We now study the mean and the
variance of the estimato@s. It turns out that the mean(g) is ¢;, and that the standard
deviation of is bounded by(M — ¢;)/v/k. This result was already summarized in
Theorem 1.
Allthe random variable§ are defined in a similar way; hence we generically consider

the random variable

R L ey O (t))—0O (p;)

S= K Z w” 7,

=1 j=

where thet;’s and thep;’s are fixed and the mappings®’s are independent and uni-
formly distributed random mappings frol to [0, o). The numbeic of matches be-
tweenty - - -ty_pandpg--- pm_1is

A Randomized Algorithm for Approximate String Matching OF7

The random variablé is the mean ok independent identically distributed random
variabless®. Hence it suffices to consider the random variable

M-1
s= Y oo,
j=0

for the mean and variance sfare then
Vi
E(8) =E(s) and Va(3)= ?9.

We start by evaluating the mean®ivith the following lemma.

LEMMA 1. Themeand isthe numberc of matches betwegntty_;and @ - - pv_1-

Proor The mean ofis
M-1
E($) =E(® =) E(@®®~*®),
i=0

Now, observe that the mean inside the sum is zero utjessp;, becausey® =P
is equally likely to be any of theth roots of unity, whose sum is zero. More precisely,
we have the equality

E(wq)(t])_cb(p])) = & b
jo Pj?

from which the result follows. |

Next, we consider the variance &f We mention the corresponding result now for
the purpose of exposition, but postpone its proof to the next section where it is proved
in more generality.

LEMMA 2. The variance o$ is bounded as follows
(M —¢)?

Var(§) < k

Theorem 1 now follows from Lemmata 1 and 2.

4. Generalized String Matching. We extend the previous technique in several direc-
tions. The main contribution here is to show that classical generalizations also apply to
our algorithm and to perform the corresponding complexity analyses. The first exten-
sion to be analyzed is a weighted version of the problem. This allows for more general
functions than the characteristic function of matches, and is used by the other exten-
sions. Then we show how our algorithm extends to pattern matching of arrays in place
of words, or more generally to higher-dimensional arrays. Next, a different extension of
our algorithm allows us to accommodate classes of letters, class complements, “never
match” and “always match” symbols in the patterns and when possible in the texts. For
the simplicity of the exposition, we present each extension separately, but they could all
be merged in the same algorithm and implementation.

OF8 M. J. Atallah, F. Chyzak, and P. Dumas

Weighted Case The method and results we developed apply to weighted versions of
the problem, i.e., to the problem of computing weighted scores defined by

M-1

G=Y wP)d,.p

j=0

wherew is a complex-valued function defined over the alphabet. In fact, we consider
scores of the form
M-1
G = f(tieIP)B,; .
j=0
where f and g are complex-valued functions defined over the alphabet. These two
formulations may seem equivalent. Nonetheless, we use the second formulation because
it suggests a better intuition of the algorithm and enables the further extensions of the
next sections.
In the algorithm, the encoding of the alphabet using roots of unity has to be changed
accordingly: when creating © we now replace every symbolin T by f (t)w®“®,
while when creatind®® we replace every symba in P by g(p)w=®"(™,
As a matter of fact, we proceed to perform our analysis in the even more general case
of weighted scores of the form

M-1

G = Z h(tprj, pj)Stqupi’
=

whereh is a complex-valued function on pairs of letter$iA. We do this essentially for

the purpose of mathematical analysis, although our convolution-based algorithm can only

deal with the special case bfa, b) = f (a)g(b). The randomized vectd& we obtain

still has the property to b& in the mean, and the variance®to beO((M — ¢;)/VK).

However, the restriction to the special case of weights is crucially needed from the

computational point of view to represent, and compute, the vector score by a convolution.
Once again, we generically consider the random variable

M-1

Kk
> hdy, pe® @ e,

=1 j=

S=

Xl

where thetj’s and thep;’s are fixed and theb®’s are independent and uniformly
distributed random mappings fromto [0, o). The weighted score betwegn - - ty_1
andpo--- pum-1is

M-1
c=) het. pdy.p-
=0

The random variablé is the mean ok independent identically distributed random
variabless®. Hence it suffices to consider the random variable
M-1
s = h(t]‘ , pj)w<b(tj)*¢(pj)’
j=0

A Randomized Algorithm for Approximate String Matching OF9

for a single random renumberir. The mean and variance §fare then

\Y
E(5) =E(s) and Va($§) = ali(s)‘
The analysis differs from the unweighted case in that the ralg pin the unweighted

case is now played bly(x, y)dy y. We start with the mean.

LEMMA 3. The mean o$ is the weighted score

M-1
c=Y_hdtj, p)éy.p
j=0

betweend:--ty_1and p-- - pm-1.

ProOE The mean ofis

<
i

E(8) =E(s) = - E(ht;, pj)wfb(tl)—d)(pj))

z._
o

=) ht, pE@*W ™) =c,

o

since Eo®W~*M) =5 . O
We now turn to the variance, proving Lemma 2 as a particular case.

LEMMA 4. The variance o$ is bounded by
[1h]]oo(M — ©)?
B E—

where||h||« denotes the maximum value|bfx, y)| over =2.

Var($) <

PrROOF To express Vas) = E(|s|?) — |E(s)|?, we first derive an explicit form for the
mean of|s|? = s, starting with the equality

E(S§) _ Z h(t| , pi)WE(wq)(ti)*q)(p\)*‘b(tj)*’q)(pj)).
0<i,j<M

Wheno®®=®P=®E)+®(P) — 1 independently frond, i.e., whert; =t andp; = pj,
or whent; = p; andt; = p;, the inner mean
E(a)¢(ti)—¢(pi)—¢(tj)+¢(pj))

is 1; otherwise, it is 0.
By a simple inclusion—exclusion argument, it follows that

E(S§) = Z h(ti» pi)h(tjv pj)((st.A,p‘(StJ,pJ +8t‘,t,5p.,p, - 8t.,t,(Sp..p,(st.,p.st,,p,)~
0<i,j<M

OF10 M. J. Atallah, F. Chyzak, and P. Dumas

With the first product of Kronecker symbols, one recognizes the expansi@if?,
so that

Var(s) = E(|s]?) — |E(s)|?
= Z h(ti, pON(, PS4 8p,p (1 — 8,p . p)-

0<i,j <M

We introduce the real symmetric matiix= [y ;] of sizeo x o with (i, j)th entry
given by

Vi = Stlvtjaplxpj (1_ Stlsp\(stppj)’

and the vectoH with ith entryh(t;, p;). We obtain Va¢s) = WTF H, where T denotes
the transpose of matrices. Call{I") the spectral radius df, i.e., the largest modulus

of its eigenvalues. SincE is positive semidefinite (because it describes variances), its
eigenvalues are nonnegative gind") is the largest eigenvalue. We have

Vars) = H'TH < p(T)H ' H.

To improve on the previous upper bound and make it more explicit, we need to take the
numberc of matches into account.
The numbew; j isOunless =t; # pi = p;. Itentails thatin case of amatgh= p;,
both thei th row and théth column ofT" are 0. After renumbering the rows and columns
in T andH, we part them as follows:

= and H = ,
O]F’ H’

wherel” = [yifj] is a matrix of sizd M —c) x (M —c) andH’ is a vector of sizéM —c).
It follows that

HTH=HT'H < p()H H'

On the other hand, the spectral radiu@"’) of I'” is bounded by the Schur norM(I")
which is defined by

NI = > Iy jP<M-c?

1<i,j<M-c
Furthermore, setting
[Ihlloc = max_[h(x, y),
(x,y)ex?
we obtain
HH' < [Ih|iZM —c).
Finally,

var) _H'TH _ H'I'H' _ [lhZM —)2

var(K K Kk = K

[0
~
Il

A Randomized Algorithm for Approximate String Matching OF11
The two lemmata above together prove the following theorem.

THEOREM2. For the weighted version of the problean estimateC for the score C
between a text string of length N and a pattern string of length M can be computed by
a Monte-Carlo algorithm in deterministic time (®N log M) with mean and variance

lIhIZ%(M —c)?

EC)=C and Var@) < ”

Most commonly when the weights are defined by a single funciioas in the
introduction of this section,

IThllse = llwlleo = Maxjw(x)].
Xex
Also note that the variance is once again particularly small vehénclose toM.

Higher-Dimensional Arrays We sketch the extension to two-dimensional arrays in the
nonweighted case; similar ideas would extend it to three and higher dimensions, and to
mixed weighted higher-dimensional versions as well.

For the sake of simplicity, we assume in what follows theandN are the squares
of two integersM = m? andN = n?, and thatN > M. The textT is now a matrix of
sizen x n, the patternP is a smaller matrix of sizen x m, and the result we seek is
an(n+1—m) x (n+ 1 — m) matrixC where

=

m-1

3

G,j = 8'ﬂ+k.j+l,Pk,|ﬂ
0

=~
Il

for 0 <i, j <n—m. The time to compute our estimafeof C is now O(kN log M),
and we still have é) =CandValG ;) < (M — Ci,j)z/ k. We next briefly sketch how
this is done.

We justify our focus to achieving a time complexity©{k M log M) for the casen =
2m by the following standard reduction [6] to this case from the generalrtas@m:

— CoverT with N/M overlapping squarek ; of size 2n x 2meach, wherd; j consists
of the square submatrix of of size 2Zn x 2m that has its top-left corner at posi-
tion (im, jm) in T. HenceT; j; andT;,1 j+1 overlap over aregion of of sizem x m,
T;,; andT; j41 overlap over a region of size"2x m, andT; ; andT; 1 ; overlap over
a region of sizem x 2m.

— The algorithm for the case = 2m is then used on each of tié/M pairs(T; j, P)
of text and pattern. It is easy to see that th&s@M answers together contain a
description of the desired matri2. The overall time complexity to compute them
is O(N/M)kMlogM) = O(kNlog M), as required.

Therefore, we henceforth assume that 2m.

The extension of the one-dimensional solution to two dimensions works by transform-
ing the two-dimensional problem into a one-dimensional one [6], and in the process intro-
duces “never match” symbols: that is}ifis the alphabet for the two-dimensional prob-
lem, then the corresponding alphabet for the one-dimensional probem{ig} where#

OF12 M. J. Atallah, F. Chyzak, and P. Dumas

is a “never match” symbol in the sense that ibr y (or both) equait, thendy y = 0 as
a convention.

More specifically, from the text matrik of size 2n x 2m, we create the corresponding
text vectorV by concatenating the rows &f. ThusV has length #?. From the pattern
matrix P of sizem x m, we create a pattern vectdy of length 2n? by augmenting
each of the rows oP by appending to the end of each of themsymbols# and then
concatenating the augmented rows. Kebe the score vector withl as text andV as
pattern, i.e.,

2m?—

1
Ki = Z Ovias W
j=0

for 0 < i < 2m? and with the understanding th&t, is zero if eitherx or y equals the
special symbot.

The connection betweed and the score matri for text T and patternP is now
given by

G,j = Komi—1+j-

Therefore, computing the matrixreduces to computing the vectér The computation

is not complicated much more by the presence of the new, spesiahbol: we simply
follow the rules of Algorithm MC except that, at the place where the algorithm is required
to createw®® (resp.w~®®), we only do so ift (resp.p) is not the# symbol, and we
creat a O instead it (resp.p) is the# symbol. Hence we use the weighted model
introduced in the previous section, with the weight functions

f(@=g@=1
for any lettera € ¥ except from

f(#) =g@#) =0.
Lemmata 1 and 2 simply lead to the following theorem.

THEOREM 3. For the two-dimensional version of the probleam estimateC for the
score array C between a text array of sizexm (for n> = N) and a pattern array of
size mx m (for m®> = M) can be computed by a Monte-Carlo algorithm in deterministic
time O(kN log M) with mean and variance

(M —cij)?

ECC)=C and VarG)) < -

String Matching with Classes Let a, be letters in an alphabet. Bycdass[a; - - - &]
we mean a new symbol that matches any of the letigrén particular, letters can be
viewed as classes: the classes consisting in a single letter. Another special class is the
full class i.e., the class consisting of the whole alphabet.

We first restrict to allowing classes in either the text or the pattern. Without loss of
generality, we focus on classes in patterns. Each symbola patterrP = po - - - pm-1

A Randomized Algorithm for Approximate String Matching OF13

is now a classf; 1 - - - pj.r;]. We modify our algorithm by replacing each clggsin the
pattern by
rj)
3 (e
v=1
while creatingP®. The convolution vecto€® is thus
M—1 Tj

14 [10) tisi —® .
€@ = 33 w(py e e e,

j=0 v=1

so that the modified algorithm still has the same time and space complexities. For mean
and variance analyses, we once again generically consider the random variable

M-1 T1j

d(t) —D(p.
S = Zzw(pJ,U)a) (t])a) (pj.v.).

j=0 v=1
By the linearity of the mean, we have

M—-1 Tj

E®) =) Y wp)byp,

j=0 v=1

For the variance analysis, we mentally repliogtémes eachij in the text, while men-
tally replacing eactp; by pj1--- pjr, in the pattern. We are thus led to two strings of
lengthM’ = Zj r;, whole convolution yields the same score as above. This yields the
following theorem.

THEOREM4. When allowing classes in the patteran estimateC for the score C
between a text string of length N and a pattern string-fo - - - pm—1 Of length M for
classes p=[pj0- - pj.r;] canbe computed by aMonte-Carlo algorithm in deterministic
time O(kN log M) with mean and variance

IIh[[2,(M" — ¢i)?

EC)=C and Var@) < ”

M
for M = er > M.
=1

So far, we have only weighted letters uniformly with respect to positions in the text
and in the pattern, by the weight functian It is additionally possible to weight letters
within a class, allowing different weights for the same letter according to its position in
the text or in the pattern: we denote by

Py

theweighted classonsisting of the letterg 's weighted by thep;'s. This notion extends
that of classes, since we have

[;a;}ﬂalmar]-

OF14 M. J. Atallah, F. Chyzak, and P. Dumas

As another example, thg’s can be viewed as probabilities when thés add up to 1. It
is then possible to allow classes both in the pattern and in the text, and to get a consistent
interpretation for this: for a second weighted class

we define the match between both classes to be

r S
ZZ Pi 0 8 b -

i=1 j=1

In this probabilistic interpretation, the score counts the matches according to the prob-
ability of occurrence of each letter in each class. Algorithmically, computing this score
by Algorithm MC is achieved by using to encode the;’'s andg to encode the;'s.

“Never Match” and “Always Match” Symbols To allow more flexible string matching
on a given alphabef and achieve a better accuracy of the estimates, we adjoin two new
special symbols, a “never match” symbiodnd an “always match” symbol.

The “never match” symbat was already introduced in the previous section. It cor-
responds to a symbol that nevers matches any other letter; in other words, it satis-
fiesd, # = oz , = O for any lettera € X. It may be used simultaneously in the pattern
and in the text and the weighted model extends to this new symbol by simply assuming

f(#) = g#) = 0.

Working with the extended alphabgtU {#} does not change the analysis of the previous
sections.

The “always match” symbdl corresponds to a symbol that matches any other letter;
in other words, it satisfie§, » = &+ , = 1 for any lettera € X. It may be used
simultaneously in the pattern and in the text and the weighted model extends to this new
symbol by simply assuming

f)=1 and g(*)=w(*).

Inthis respect, itis very much like the full class (the class consisting of all the elements of
the alphabet). Still, it is of a different nature, differing in the way weights are dealt with.
Only as an exception, both notions share the same semantics in the simple case when
no weights are used, i.e., when matches are counted by ones and mismatches by zeros
(w = 1). As a convention, the “always match” symbol matches itself, whether “always
match” and “never match” symbols match each other is irrelevant in what follows. In all
the cases, we get an algorithm that is only four times slower to yield sharper estimates.
This algorithm (Figure 3) is based on four applications of our algorithm in the following
way. Letu be a new symbol, which we adjoin to the alphabet and view as a letter (i.e.,
it only matches itself).

As an optimization, steps 2 and 3 of the algorithm could be avoided when “always
match” symbols are not used in the text (and when “never match” symbols do not match

A Randomized Algorithm for Approximate String Matching OF15

Input atextT =ty --thy_1 and a patteri® = pg - - - pu_1 Where the
ti's and thep;’s are letters frone U {x};
Output an estimate for the score vector

1. Replace alt by # in both the text and the pattern, and apply Algorithm MC;
this matches letters in the text against letters in the pattern;

2. replace alt by u and all letters by# in the text, and all letters by and all*
by # in the pattern, and apply Algorithm MC; this matches “always match”
symbols in the text against letters in the pattern;

3. replace all letters by and all* by # in the text, and alt by u and all letters
by # in the pattern, and apply Algorithm MC; this matches letters in the text
against “always match” symbols in the pattern;

4. replace alF by u in both the text and the pattern and all letters#hyand
apply Algorithm MC; this matches “always match” symbols in the text against
“always match” symbols in the pattern;

5. add the four estimates previously obtained and return the sum as the result of
the algorithm.

Fig. 3. Algorithm MC with “always match” symbols.

“always match” symbols). In this case, one would simply count the nhumber of “always
match” symbols in the pattern, and add the corresponding contribution to the result. The
algorithm then only requires twice as much time as the original Algorithm MC.

Noting that steps 2—4 yield exact estimates makes the analysis of the algorithm easy,
and we obtain the following theorem.

THEOREM5. When allowing “never match” and “always match” both in the text and
in the pattern an estimateC for the score C between a text string of length N and a
pattern string of length M can be computed by a Monte-Carlo algorithm in deterministic
time O(kNlog M) with mean and variance

P[5 (M —c)?

EC)=C and Var@) < »

To compare the analyses obtained when using the “always match” syrobtiie full
class, consider the extreme case of a pattern consistikgyfmbols* (and disallow#
in the text). The variance obtained by Theorem 5 is then zero, sineeM for all i.
Now, consider a pattern made bf copies of the full class. The variance obtained by
Theorem 4 is now
|Ihl5,(0 — 1)*M?
K ,
whereo is the cardinality of the alphabet. Consequently, the use of the full class in-
troduces a lot of noise for a not too small alphabet, due to the randomization of the
algorithm. To achieve reasonable variances anyway then requires a nkiobieera-
tions of the algorithm of the order ef, thus to increase the time complexity. The same
phenomenon arises in fact for all “large” classes, i.e., classes with cardinality clese to
this motivates the next section.

OF16 M. J. Atallah, F. Chyzak, and P. Dumas

Input atextT =ty---toy_1 and a patteri® = pg - - - pm_1 Where the
t's and thep;’'s are letters fronk U {x}, classes or class complements
overy;

Output an estimate for the score vector

1. Replace alF by # and each class complemdr, - - -] by the weighted
class p-I_, — &] in both the text and the pattern, and apply Algorithm MC;

2. replace alt and all class complement loyand all letters byt in the text, and
all letters byu and all* and all class complement #in the pattern, and apply
Algorithm MC;

3. replace all letters by and all* and all class complement lyin the text, and
all * and all class complement loyand all letters byt in the pattern, and apply
Algorithm MC;

4. replace alt and all class complement loyin both the text and the pattern and
all letters by#, and apply Algorithm MC;

5. add the four estimates previously obtained and return the sum as the result of
the algorithm.

Fig. 4. Algorithm MC with class complements.

Class Complements Allowing “large” classes in the pattern or in the text yields large
variances, as described by the formulae in Theorem 4. To avoid this, it can be advanta-
geous in some cases to describe each “large” class astiglemenof a “small” class:
foraclass§; - - - &], we introduce a new symbgdy - - - a] that matches any letters but
thea,’s. As we previously did for classes, we allow class complements in the patterns
only, in order to get a sensical interpretation. Moreover, we deal with a nonweighted
alphabet. In this case, the match of a lebiegainst the class complemdat - - -] is
counted by the match d&fagainst minus the match db against &; - - - & /]. This yields
the algorithm shown in Figure 4, where class complements are basically viewed as an
“always match” symbol and a correcting contribution is removed at step 1.

Theorem 4 still holds after replacing “classes” by “classes and class complements.”

5. Implementation and Experimentation. We have implemented and tested our al-
gorithm, performing several experiments on several types of data: randomly generated
text, sequenced genes, domains in proteins, literature in several natural languages, and
MIDI encoding of classical music. Although the kind of string matching without inser-
tion and deletion discussed here may not always be well suited in real-life applications,
the examples chosen verify the robustness of the algorithm on a broad variety of sample
types. What is observed is excellent agreement of the experiments with the phenomena
predicted by the theory: the algorithm returns accurate results as soon as the pattern is
sufficiently large (typically, of sizé larger than 32 or 64 bytes), even for a small value

of the parametek that controls the number of repetitions in the algorithm. Typically, a
number ofk = 3 repetitions suffices for small values bf, andk = 1 already yields
reliable results for patterns of siZd = 256 or more if we disregard the scores that
correspond to more than 20% of the estimated mismatch.

A Randomized Algorithm for Approximate String Matching OF17

Randomly Generated TextIn order to demonstrate the accuracy of the approximations

of our algorithm, a first experiment was performed with randomly generated text and
pattern according to a Bernoulli model. Specifically, a text of 8192 bytes was drawn at
random according to the uniform distribution over the ASCII alphabet. The first 4096
bytes were picked, and a pattern was obtained by modifying them at random, so as to
keep 4042 matches. For this case, the parameterblate 2M = 8192,0 = 256,

and we performed the algorithm far= 1, 2, and 3. We obtained and compared the
estimated scores with the corresponding exact scores. Apart from the almost complete
match with exact score 4042, all other positions have an exact score less than or equal
to 59. The almost complete match is detected by an estimated score with an error of less
than 0.2%. Additionally the program behaves well on all other shifts, with scores that
were not overestimated by more than a factor of 5: all other estimated scores are not
more than 5< 60 = 300, which is much less than 4096.

Classical Music The next experiment shows that that the accuracy of the algorithm is
preserved in the case of small patterns in a real-life application: we considered the search
for approximate occurrences of a clarinet theme in Beethoven’s Fifth Symphony. The
experiment consisted in selecting a theme from the symphony and searching for slices
in the whole musical piece that are similar to this theme. The data were MIDI code,
and the length of the selected theme wWs= 128, so that we sdil = 2M = 256,

o = 128, and we ran the algorithm flar= 1, 2, and 3. A threshold of = 0.5 was used

in order to filter out approximate matches (i.e., the program outputs only those matches
with ¢ > AM). Selected parts of the output for= 3, sorted by decreasing scores, are
displayed in Figure 5. Each block corresponds to a slice of the text which approximately
matches the theme. For each block, the fidtl gives the estimated scotg/ M, the

field exact gives the exact scoe/M, and the fieldatio gives the ratic /¢;. Note

the accuracy of the algorithm on this execution: the rétj@; varies little around 1.

Each approximate match is illustrated by a string which locates the matches between
musical notes: the symbotsand- represent a match and a mismatch, respectively.
Beside the exact occurrence of the theme (first block), we catch several occurrences
where the pattern and the text almost match during long sequences (next four blocks), as
well as an occurrence where intermediate-sized sequences of exact match are interlaced
with sequences of full mismatch (last block).

estd = 1.000000; exact= 128/128 = 1.000000; ratio=1.000000

estd = 0.753018; exact= 88/128 = 0.687500; ratio=1.095299

estd = 0.550580; exact= T70/128 = 0.546875; ratio=1.006775

estd = 0.507331; exact= £9/128 = 0.539062; ratio=0.941137

estd = 0.568381; exact= 65/128 = 0.507812; ratio=1.119273

estd = 0.526136; exact= 61/128 = 0.476562; ratio=1.104024

Fig. 5. Searching for a clarinet theme in Beethoven'’s Fifth Symphony.

OF18 M. J. Atallah, F. Chyzak, and P. Dumas

Sequenced Proteins Algorithm MC has a low asymptotical complexity butis not meant

to be a fast practical one. In a last experiment, we proposed evaluating thresholds with
respect to the siz& of the patterns for which it becomes faster than the other ones.
To this end, we performed the search of prefixes of a sequenced protein in a protein
database using implementations for the naive algorithm, the “shift-add” algorithm by
Baeza-Yates and Gonnet [4], the “counting” algorithm by Baeza-Yates and Perleberg [5],
and our Monte-Carlo algorithm. Although the proteins were encoded over an alphabet
with a few dozen symbols only, the database also contained various information and
comments, so that we kept the alphabet consisting of all ASCII codes §withl28).
Beside this, we allowed “never match” symbols both in the patterns and in the text, since
the protein database we used contained such “never match” symbols. The patterns used
were of sizeM = 2P for p from 7 to 12 (fromM = 256 toM = 4096).

For each of the algorithms, the observed time complexity closely agrees with the
theory. From numerical regression formulae we obtain that our Monte-Carlo algorithm
becomes faster than the “shift-add” approach for patterns larger than a few hundreds,
and faster than the naive algorithm beyond roughly twice as large a threshold. The fact
that the “shift-add” method is roughly twice as slow as the naive algorithm comes from
the large values df1 that we used, and does not contradict the observation in [4] that the
“shift-add” method gets three times faster than the naive algorithrivifer 9. Indeed,
this phenomenon stems from the fact that several parameters of the algorithm can only
be packed in the same machine word and processed simultaneously for verfvismall

As far as the “counting” algorithm is concerned, the threshold heavily depends on
the parametefax. In the experiment, the value observed fapy was%; indeed, the
symbolsinthe patterns appear with frequency less than 5% except for one special padding
symbol of frequenc%. The threshold obtained in this situation is roughly 2 kB. A simple
extrapolation yields the thresholds 12, 150, and 410 kB for vallygs= . 155, andsz;,
respectively. As already mentioned, we used a soft implementation of FFT which suffers
from large constant factors in its time complexity. Although our algorithm should work
better with the FFT step performed by dedicated chips, even a speed-up of a factor 1000

in our implementation would not yield a threshold lower than 3 kB figgx = 1—%)0.

Acknowledgment. The authors warmly thank Roberto Sierra who sequenced the
whole symphony in MIDI code, together with other musical pieces, and made them
freely available on the WEB.

References

[1] Abrahamson, K. Generalized string matchiSgAM J Comput 16(6) (1987), 1039-1051.

[2] Atallah, M. J., Gnin, Y., and Szpankowski, W. A pattern matching approach to image compression.
In Proceedings of the Third IEEE International Conference on Image Procedsmganne, 1996,
pp. 349-356.

[3] Atallah, M. J., Jacquet, P., and Szpankowski, W. Pattern matching with mismatches: a simple random-
ized algorithm and its analysis. Bombinatorial Pattern MatchingProceedings of the Third Annual
Symposium held in Tucspfrizona April 29-May1, 1992), A. Apostolico, M. Crochemore, Z. Galil,
and U. Manber, eds., vol. 644 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1992,
pp. 27-40.

A Randomized Algorithm for Approximate String Matching OF19

(4]
(3]
(6]
(7]

(8]
El

(10]
[11]

Baeza-Yates, R. A., and Gonnet, G. H. A new approach to text seardBorgm ACM 35 (1992),
74-82.

Baeza-Yates, R. A., and Perleberg, C. H. Fast and practical approximate string matofong.
ProcessLett 59(1) (1996), 21-27.

Crochemore, M., and Rytter, Wext AlgorithmsThe Clarendon Press, New York, 1994. With a preface
by Z. Galil.

Fischer, M. J., and Paterson, M. S. String-matching and other produdBoriplexity of Computa-
tion (Proceedings of the SIAM-AMS Applied Mathematics Sympobiam York 1973), SIAM—AMS
Proceedings, Vol. VII, American Mathematical Society, Providence, RI, 1974, pp. 113-125.
Karloff, H. Fast algorithms for approximately counting mismatchefrm. ProcessLett 48(2) (1993),
53-60.

Knuth, D. E.The Art of Computer Programminyol. 2, second edn., Series in Computer Science and
Information Processing, Addison-Wesley, Reading, MA, 1981.

Kosaraju, S. R. Efficient string matching. Manuscript, Johns Hopkins University, 1987.

Kumar, S., and Spafford, E. H. A pattern-matching model for intrusion detectidtrobeedings of the
National Computer Security Conferend®94, pp. 11-21.

