Variations on the Sequence of Apéry Numbers

Frédéric Chyzak
{Version of January 9, 1998)

| In the early 199 s, Doron Zeilberger and Herbert Wilf, developped a new methodology for
svmbolic summation and integration (Wilf, Herbert 5. and Zeilberger, Doron (1992 ):An
al gorithmic proof theory for hypergeometric (ordinary and “g™") multisum/integral identities,
fnventiomes Mathemaricae, VI8:575-633). One of the most famous successes of this so-called
UWE-method™™ has been to provide a computer proof of the combinatorial identity
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and o prove that the sequence of these numbers o, satisfies the second order recurrence equation
_ (n+2 = ((n+2Y +(n+1) +4(2n+3Fhu_,  +in+1) u =0

Proving this recurrence was a crucial step of Apéry's proof for the irrationality of

— |
(=L
i ]"‘:.

| On the other hand, the identity itself stems from a number-theoretic question raised by Schmidt in
{(Schmidr, Asmus L. (1990 Generalized Legendre polvnomials, S refne angew. Marh., 404
192-202).

| Several proofs of the identity above, that relates the Apéry numbers a_tothe Franel numbers

f.= )" binomial(n, kY’
L=
were given in (Strehl, Volker (1994): Binomial ldentties, Combinatorial and Algorithmic Aspects,

Discrete Math., 136:3009-346). One of them in particular is based on Zeilberger’s algorithm for
hypergeoametric summation, and vields the recurrence equation above as a byv-product. In the
following sections, we first recall how Apéry was led to the identity, borrowing from Van der
Foorten’s report (Van der Poorten, Alfred (1979): A Proof that Enler missed... Apérv's Proof of

the Irrationality of C(3 ), Math. Intelligencer, 1: 195-203); we next give a proof for both results
using our package Mefun, and finallv exploit the recurrence equation to beat Maple computing
many digits of £ 3).

Sketch of Apéry’s Proof
[ Apdry's first remark is that the double sequence
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tends to 5O 3y uniformly in k for & in (1 .. oo ) when a tends to infinity. This stems from the

L |

|
alternating series being uniformly bounded by —. However, the convergence of this series is
A

not strong encugh so as to show the irrationality of 5f 3). Apéry used summation methaods o
| accelerate the convergence. Namely, define

[
a = Ehlnnmm{n. EY binomialin + & kY ¢, and

k=0

L
b o= Z binomial{n, k¥ binomial{n + & £,

k=0

i
then .b_ﬁ also tends to 0(3 ). Here appears the crocial recurrence of Apéry: one remarks that it

L

15 satisfied by both sequences a and b, with initial conditions
[ dy=0, a;=6, and b,=1, b =5
| By a number-theoretic argument, it follows from this recurrence that

o (—1+&}

E{J}_b__mqﬂ'

[

[ with

. ain(1+42)-3
g.=2lemf 1,2, ., nY b, and &= . which is positive.
| 41n(1+4/2)+3
| This is sufficient to prove that O 3) is irrational, and vields an irrationality measure of at least

[
| +—= =13.417820 ..
&

Proof of Apéry’s Recurrence

| In this session, we chiefly use the nser-orie nted package Mgfun,
[ = with{Mgfun) ;

[elfarg e sys, int_of svs, pod_fo sys, sum_of sys, sysFsys, sys+sys |
Recurrence for the Left-Hand Side
| We first prove that the Apéry numbers, as defined by the lefi-hand side

[
a = E binomial{n, &) binomial(n + &, k7,
k=i
| satisfy the announced recurrence.

| The summmnd

| > f=hinomiall n, k" binomial{ n+ k& kY

| satisfies both following equations:

[ = h{n+l, k) /hi{n,k)=facter{normal {subs (n=n+1, £) /£, expanded) ) ;
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hin+ 1,k (n+1+k)
_ W k) (—n—1+kY
* hin, k+1)/hin, ki=factor{normal {subs (k=k+1, £) /£, expanded) ) ;
WM, k+1} (n+1+kV{-n+ky
_ him k) (E+13
| This vields the following svstem

[ = sysi=collect (map (numer, map {eq-rop{l, eq) —op{2,eq), (""", "} ),
s

sys = |
(" +2n-2nk+1-2k+E hMn+ Lk +(-2nk—1-n"=2n—-2k-&hin, k)
=t =m0k 2 A 2k 20k = =2 =y hin, k)
P+ A 6 +4k+ 1) hin k+1))

where each element expr in the set denotes the equation expr =0, The definite summation

over & in (0, n ) is performed by the following call to Mefun[sum of svs]:
> gum_of_sys{gys, k=—infinity..infinity,takayama_algo) ;

(' +3 0 +3n+ 1 Mn)+(=34n" =231 n =153 0" = 11T hn + 1}
+(n + 6 +12n+8)hin+2)]

[ = rec[left] =cp{callect (", h, factor));
reciy =(n+ 1Y ha)+(n+25 hn+2)=(2n+3) (170" + 51 n+39 ) hin+ 1)
| This is the announced recurrence in disguoise.
. Recurrence for the Inner Sum

| We next compute the right-hand side, beginning with the Franel numbers [ given by

&
= E binomial (s, k).
. k=t
| We first obtain a svstem to describe the summand:

[ > f = binomial( n, ky

h I, & subs{ n = 1,
» M—ﬁjﬂm{ numml( bz ﬂ.expanded ]
hi n, k) ! 1
h{n.k+|}_ _ subs(k=Ek+ L f)
> —h{n.k} ﬁma{ nnnn.n[ ¥ » expanded ]]

: > aysr=collect (map {numer, (""", "}),H);
sys = (- +3n k=3nk +E M k) + (F + 38 +3k+ Dhim k+1),
(= =3 +3m k=3n+6nk=3nk =1 +3k=3E +k ) hin+1, k)

+(n' +30° +3n+ 1) hin k))
| Summing, we get a recurrence for the Franel rumbers [
> aysi=sum_of_sysi{sys, k=—infinity..infinitvy,natural_boundari

as);

svs = (=56 - 136n— 1040 =240 b hin)+(3n +220° + 51 n+36) hin+3)
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(=450 =240 =240 0" =419 n ) h{n + 1)
|| (=18 =148 = 114 0" =232 n) hin +2})
System for the Right-Hand Product

Letus multiply the f by binomial( n, &) binomial{ n + £ k). To do so, we prepare two
L swstems of recurrence equations, one for each factor.

| The following svstem describes [, which is independent from n.
[ = saysl:;={h{n+l,k)-hi{n,k)} unicn eval {subs{h=proci{k) hin, k)
end, subs{n=k,sys5)));

svsd = [hin+ 1, k) =him, k), (=56 — 136 k- 104 &" =24 & Y hin, k)
A+ 28+ 51 E+36) M b+ 1)+ (45K =240 =240 " =19 k) hin, k + 1)
(=18 = 148 = 114K = 232 k)Yhin, k+ 2} )
[ We next obtain a swstem that describes binomiall n, &) binomial{n + &, &}, the weight o
L multiply with:
: > f=hinomiall n, k) binomialf n + & k)

h{n+l.k}_ f subs(n=n+1,r}
> —h{n.k} ﬁma{ numl.u[ ¥ -f-"if-"“"d"d]]]

J

hin &k +1 subs(k=Ek+1,
> M—ﬁmm[nmnm( st - ﬂ,e.qmnded]
hn, k) i oy

[ = aya2i=collect (map (numer, {"","}) k) ;

sys2 = [(—n =+ k+ E b by +(E +2k+ 1) hin, k+ 1),
_ (=n=1+kyhin+ L Ey+{n+1+k}hin k)]
| We finally perform the product by a call to Mgfun| sys®sys']:

[ = sys:i="ays*sys (aysl,sys2);
svi = [(=n=1=kyhin ky+(n+1=kyhin+1 k), (=672 k+ 672 n—2724"

+ 224 + 23 k- 2528 K 4+ 1608 o k+ 2664 17 i + 3048 n K - 3816 &

~ 2060 + 600k 0" + 720" n-280n" - B40 " + 1944 & n+ 720" k+ 560"
3 - 136B 0 k1680 + 240" k- T6R A K — 6240t k-T2 0 0}

~ 144 600K n - 24 k" + 18728 0" = 1248 & + 727 "y i m, k) + ( 288D
+ 11748 k= 1920 n + 600 1" = 1680 0" = 5272 n k + 20132 k" — 4853 0" k
—SS12n° = S5752n 5+ 1BB1T &Y + 10372 k% -840 1* n® =00 1 n + 240 n*

+ 480 =3B E n+ 240 + 8380  k+ 4800 K+ 4190  k+ 45 1 0
FO00E =B 445K 3073 0T 33748 =00 1 nTy Wl ko 1)+
1T - 1TOR A+ 15320 K+ 1B + 1B n+ 760k 0" +1532n k"

+ 1520 E+ 186 n+ 760k n+592n+ 1520 n k- 18 =276 " — 13740 &
+ 592 0" — 12080 & - 3552 - 6448 k* + 186 k* n' b n, k+2)

F(=SI184E =524 =31 =3675 1 = 1540 K = 3996 k= 1296 =382 " Y hin, k +3)
]
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I Recurrence for the Right-Hand Side

| We obiain a recurrence for the right-hand side by applying Mgfun[sum of svs] on the

L system computed in the previous section.
> sum_of_sys{sys, k=—infinity..infinity,takayama_algo) ;

(=112 =466 0 —=T75n" =205 n* =655 0" — 60" =67 0" Y hin)
+ (37042 1" + 14280 + 204 0" + 13611 n* + 2612 0" + 55685 n” + 43966 0} hin+ 1)
(6" + 113 0" + 870 1’ + 3495 0" + TT00 1" + BT84 n + 4032 ) hin + 4) +
(—88200 - 92178 n” — 189205 n” — 204 n” — 3508 0’ - 202734 n - 24811 n' ) hin + 3)

_ +{—5?97ﬁn3—T?E4D— 140445 n” = 167086 1 — 11775 1 =942 n"}h{n+2}]
| This recurrence is different from the one obtained for the lefi-hand side.

[  rec[right] i=opi{cellect(",h,factor));

e, == 2a+T)(2n+3)(n+3) {510 +469 " + 1418 n + 1400 ) hin + 3)

F(2n+3)(3n+THn+3)(n+4) hin+4)
—(3n+83{(2n+Tn+2)(n+1  hin)
— (2 +51(4TLn* + 4710 0" + 17213 0" + 27190 n + 15568) hin + 2)

+{2n+TH2n+3)(n+2) 5l n t 296 0" +553n+ 340 Mn+ 1)
WE thus need more work w prove that both sides agree.

B Final Proof of the Identity and of the Second Order Recurrence

Let i1, be anvy soluton of the second order recurrence which has been obtained for the
lefi-hand side:

[ » rec[left];

_ (n+ 1V Wy +(n+2Y Wn+2)=(2n+3)(1Tn" +5ln+39) hin+1)

| Thus:

[ = hin+2)=coellect {sclve (", h{n+2) ), h,normal);

(n +3nm +3n+|}h{n} (340 +153n +231n+ 117 hin+ 1)

Mun+2)=- " " "
.r:|+fr.r:| + 12n+8 4o +12n+8

[ = subs{n=n+l, ");
((n+1V +3(n+1V+3n+4)hin+1)
(n+1Y +6(n+1Y +12n+20
{34{n+|} +153(n+ 1Y +2301 n+ 348 hin+2)
{n+|} +'E||{.r:|+|]- + 121+20

Mn+3)=-

[ and
> subs{n=n+l1,");
(n+2Y +3(n+2Y+3n+T)hin+2)
(n+2F +6(n+2Y +12n+ 32
{34{n+2} +153(n+2)Y +231n+ 579 hin +3)

(n+2Y +6(n+2) +12n+32

hin+4)=-
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| Then, h_ also solves the recurrence for the right-hand side:

[ > cellect {subs (", """, """ rec|[right]),h, normal);

0
| At this point, we have proved that both sides of the equation satisfy the same recurrence of
order 4. To prove the announced equality, we simplv need o check 4 initial conditions,
| since the leading coefficient of the recurrence of order 4,
[ » copffl{rec(right] . hi{n+3));
~(2n+T 2 n+3){n+31(50n +469n" + 1418 n + 1400)
| never vanishes for non-negative n. Now the proof of the identity

[
> egi= z, binomial( s, &) binomial(n + &, k) =
k=0

& k
Z binormiali a, &y binoimial{n + £, k}[ Zbinumhl{k.jf]
L k=i J=0 J
| simplify follows from
[ = ewval {subs {n=0, Sur=add , eq) ) ;

=1
[ = aval {subs{n=1, Sum=add, aq) ) ;
i=35
[ = ewval {subs{n=2, Sur=add,eq) ) ;
| T3=T3
> aval {subs{n=3, Sum=add, aq) ) ;
| 1445 = 1445
| Therefore, the Apéry numbers also satisfy the announced second order recurrence.

i Computation of {(3) Using Standard Maple and the
Holonomic Approach
Standard Maple

Maple has numerical routines for almost all special functions it knows about. Here 15 the
| corresponding caleulation for 5 3 ).

[ = cd[0] :=tima () :
[ = E3[standard] r=evalf{Zeta(3),332);
Z3 g = 1202056903 15959428539973816151 1449990764986292 34040888 1 792

2TI55534 18382057863 1 30901 8645587360033 5258 1461991 377952607 194 1 549199,
SO9R6TI2RIZIITTOI90EI 720700 6145394 1 TR294936000667 19191 575522242494 24
43961563909664 103291 1 59095 TR0PO55 1465 1 27991 B405 1057 1 525598801 5437109
TRIID20398275325667TRT60352233608494 166181 10570147 157TR63O499TITI2ITE
53

[ = ti[standard] ;=time{)—-ti[0];

Hriorg = 38315

Page 6



I Holonomic Approach
| We compute an approximation of 0 3) using Apéry’s recurrence. More precisely, we

1] e
compute it as —. {Remember that — tends o {(3 ).)
lt'il.l.l 'b.':-
[ = £i[0]r=time {)
> Hi=200;:

| To do so, we use the gfun package by Salvy and Zimmermann {Salvy, Bruno and
Zimmermann, Paul {1994} Gfun: a Maple package for the manipulation of generating and
holonomic funcuons in one variable, ACM Trans. Math. Soffware, 20021 163-177).

[ = with{gfun);

| Laplace, algebraicsubs, al gegiodi ffeq, algegtose res, algfuntoalgeg, borel,

cauchvproduct, diffeg¥diffeq, diffeq+diffeq, diffeqiohomdiffeq, diffegrorec, puesseqgn,
puessgf, hadamardproduct, helexprodiffeg, inviorel, lismoalgeg, {istodiffeg,
farrhrype rgeom, [ismodiss, sttoraipoly, lsiorec, lsimose res, lismose desaplace,
listroseriesde gf, listtosertesdgdegf, listtoserie lgdogl, listmoserie sogf,
listroserfesirevegl, lisnoserte srevogf, maxde geoeff, maxdegegn, maxorderegn,
mindegeoelf, mindegegn, minorderegn, optionsgl, poltodi ffeqg, poltorec, nal polytocoeff,
rec¥rec, rectrec, reclodiffeq, reclohomrec, recloproc, serfestoalgeq, seriestodiffeq,
serfestohypergeom, senestolist, serestoraipoly, sedesforec, serfestoseres |

| The gfin package provides us with a routine for transforming a recurrence equation like

> eg=auin)—(Ma =S1a+2Tn=5 uln= 1) +{n=1) uln-2)

| into a procedure. Each of the following procedures encodes the calculation of a sequence

| u, given by the equation eg and its initial values u, and o,

[ = Br=rectoproc{{eg,u{d)=0,u{l)=&},uin) );

A =procin}
bocal @, wl), ul, u2;
wll =10,
ul =6

-

forifrom 2 ton -1 do
w2 == =l + S0 ]
+ {30pl) = 2T0g] + (=300 + 510u] + (w0 — 340 ] yofyeiyof)y s M3,
wl) =l
wl =2
ol
= (=l + F0uf +{ 3oul) = 2Topud + (=3%00 + 31 0ud + () = 3doud yon Yon you) !
n"3
end
#{0)=0
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#({l)=6
[ = Br=rectoproc{{eg,u{d)=1,u{l)=5},uin) );
# = procin}
local i, wl, ul, ul:
wl =1,
ul =5,
forifrom 2 ton -1 do
w2 == =l + S0 ]
+ (30pl) =270y ] + (=300 + 5100l + (w0 = 340 yoiyeiyof)y s M3,
wl) =l
wl =2
ol
= (=l + F0uf +{ 3oul) = 2Topud + (=3%00 + 31 0ud + () = 3doud yon Yon you) !
n"3
end
#{0)=1
[ #(1l)=35

: Compure dyy, and by
[ = ar=B{H);

a = 271202 145254047964858 18 105490587 35697 3722905867 369270689468 37 TRIM
4422456 1403894 1 2839608 TO4EB00T2692282601 501 TEI64 109623384971 164250
SE401545583 169451 199761039685 1 346694886025 1 98400296564952 202267534 1 BY
S60B9TT3IB0O5E6202555981247213662 16659076995 569703 83597872501 75700600
TRA9TR0ST22RT41 507593525 200640230547 195432404 735627435 1955 1 BHS 2493
S5 19767521 1923855456200 50079010 1320684 1 50908528361 6289600327 3396454
2698834961 720547642429000993 24 103833 143545 5976846849 19761 3458 TRTIS 3TN
6105624983505466901079580207B038561 59353 TR42855077T5R45216322373238824

TA26TTII55723555299 / 1748898468341 B1 7226483886145 1418941 3474473,

AIBO2ROS9BR491 19209 1 BREI1PIBS3TI0V95996 1683 1471 72089686841 121791950
49160149943 56846 TRO4TT 0485001 3TEIOTOO32T I BOTI(44962 1 46 7B 266600377434
45063238007 484223695 5459054 74439344 1 648002 194 10494 | 46401 BHS64654T

. 250302 0 e WMy
[ = B:=B{H);

b= 129004094966 39264260168 205845938654 72795450287 304300 1 B46622201 173
4254061922238 148079 1 SOR924TR24TH0RGOAB4B693 30303027456 102 1434381 1234
TA50092T62RTSS 29150161 873461645 1 40207 04592374743659821 7 1435 1 37TRO54800
4T730575921340322343 759008895642 33805 1968350490635 346050623 3080769650

Page &



4354733147636155936662958465207425
| A priori, it is not clear how many digits we can guarantee.
[ Pr=round{evalf{ln{a) In{l0))*1.1);

_ P=332
[ = E3[helonomy ] r=evalf{asb,P);

L3, ey = 12020569031 595942853909738 16151 1449000764986 202 34040888 1 792\
2TI55534 18382057863 1 30901 8645587360033 5258 1461991 377952607 194 1 549199,
SO9R6TI2RIZIITTOI90EI 720700 6145394 1 TR294936000667 19191 575522242494 24
43961563909664 103291 1 59095 TR0PO55 1465 1 27991 B405 1057 1 525598801 5437109
TRIID20398275325667TRT60352233608494 166181 10570147 157TR63O499TITI2ITE

53
[ The time used is
[ = ti[helonomy ] ;=time{)-ti[0];
|| M ooy = 1-286
Comparison

The holonomic approach is several tme faster.
[ > ti[standard]/ti[holonomy];
5.258715344
Moreover, this ratio would increase with the accuracy of the calculations. In this session,
| we have obtained O 3 ) up to 332 digits.
[ » Z3[standard]-Z3[holonomy];

0

| However, Maple would be able to compute Jf £ ) for any complex value z, while the
| holonomic approasch only works for z = 3.
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