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Aim of the talk He

Functional equations

Reflected Brownian motion
Introduced in the 80ies by Characterize the distribution,
Harrison, Varadhan, Williams stationary density, etc.

- V(XaY)SO(Xa)’) =
7103, ¥)p1(y)+72(x; y ) p2(x)

e Complex analysis
(boundary value problem)

e Combinatorial tools
(Tutte's invariants)

¢ Galois theory of difference
equations

® and more!
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A quest of simplicity HI
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Solution
rational gﬁ(x, y) D-algebraic
4 parameters

algebraic D-finite
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Talk based on joint work with... HIL

HENRT LEBESGUE

ON THE STATIONARY DISTRIBUTION OF
REFLECTED BROWNIAN MOTION IN A WEDGE:
DIFFERENTIAL PROPERTIES

M. BOUSQUET-MELOU, A. ELVEY PRICE, . FRANCESCHI, C. HARDOUIN, AND K. RASCHEL

ABsTRACT. We consider the classical problem of determining the stationary distribution of
the semimartingale reflected Brownian motion (SRBM) in a two-dimensional wedge. Under
standard assumptions on the parameters of the model (opening of the wedge, angles of the
reflections, drift), we study nature of the L this
stationary distribution. We derive necessary and sufficient conditions for this Laplace transform
to be rational, algebraic, differentially finite or more generally differentially algebraic. These
conditions are explicit linear dependencies between the angles of the model,

A complicated integral expression for this Laplace transform has recently been obtained by
two authors of this paper. In the differentially algebraic case, we provide a simple, explicit
intogral-free exprossion in terms of a hypergeometric function. It specializes to carlier expres-

J classical cases:

the
Dicker conditions on
the parameters). This paper thus closes, in a sense, the quest of all “simple” cases.

To prove these results, we start from a functional equation that the Laplace transform sat-
isfis, to which wo apply tools from diverse horizons. To establish differenial algebraicity, &
Joy ngrdint o Ttte's invarien epprosc, which orgaaes i emmernlve combinaoric. I
allows us to express the Laplace transform (or its square) as a rational function of a certain
amonial it  hypegoomenic fancion i ot conont. T cmablich difirenil o

[math.PR] 16 Dec 2022

. we turn
o the nature of the solutions to such cquations.

other works from Guy Fayolle, Sandro Franceschi, Tomoyuki
Ichiba, loannis Karatzas

t conference DRN + EFI



40 years

of reflected Brownian motion! HI

HENRT LEBESGUE

ROSEDFF

W5 40 YEARS loF
REFLECTED BROWNIAN MOTION
AND RELATED T0PICS

APRILDE 29
2023

OMireille: thanks for the inspiring talk!
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Reflected Brownian motion:
key ideas



Convergence of random walks Hi

HENRT LEBESGUE

Discrete random walks
S(n) = S(n—1)+ X(n), with $(0) = 0 and X(1), X(2),... iid

Central limit thm and Donsker (EX(n) =0 & EX(n)? = 1)
S(n)

NG — N(0,1) Gaussian distribution

S(Ltn]) -
<T)t>0 — (B(t))t=0 Gaussian process

Joint conference DRN + EFI



In dimension 2 HI
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Pair of independent Correlated BM Correlated BM
1d BM with drift
(Bu(t), Ba(t)) L(Bi(t), Bo(t))  (Bu(t), Ba(t)) + put

Joint conference DRN + EFI



Reflected Brownian motion in dim 1

A basic example
(IB(t)|)e=0 is a random process with values on R

Tanaka formula

|B(t)] = W(t) + L°(t), with
* W(t) a Brownian motion

® [O(t) local time at 0

La( )— lim _/ ]l{a 6<W(s)<a+e}d5

e—0 2¢

Reflected Brownian motion in dim 1
X(t) = X(0) + /o B(t) + pt 4+ LO(t), with
¢ X(0) starting point
® ¢ variance and p drift

Joint conference DRN + EFI



Reflected B rOWn ia n mOtiOn i n d i m 1 HENRI L‘EIESG\IE

A basic example
(|IB(t)|)e=0 is a random process with values on R

discrete time _
|B(t)| = W(t) + L°(t), with
* W(t) a Brownian motion

® LO(t) local time at 0

La( )— lim _/ ]l{a 6<W(s)<a+e}d5

e—0 2¢

Reflected Brownian motion in dim 1
X(t) = X(0) + /o B(t) + pt + LO(t), with
¢ X(0) starting point
® ¢ variance and p drift

10 /57
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Reflected Brownian motion in dim 2 HI
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Reflected Brownian motion in dim 1
X(t) = X(0) + o B(t) + ut + LO(t)

Obliquely reflected Brownian motion

in dim 2 [Varadhan Williams ’85]
X(t) =
12y [ LOX(2) 1 .

X(0)+ B(t)+pt+(RY|R )( LOv(1) ) AN

* X(0) starting point in R
B(t) = (Bui(t), B2(t)) covariance Rz/
w drift in R?
oblique reflections R! and R?

LO%(t) local time on the axis Ox

Y

4

Joint conference DRN + EFI 11 /57



The parameters HI
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“\\R1 > Id
j/ a0
R? /
Cone normalized Cone arbitrary
Covariance arbitrary Covariance normalized
9 parameters? 4 angles
1 X .
Y(x.y) = g(x,y)z( L)+ o) quadratic form
11(x,y) = (RY, (x,y)) linear forms
n(x,y) = (R, (x,y))

Joint conference DRN + EFI 12 /57



Invariant distribution

Invariant distribution = asymptotic proportion of time

w(A) = lim /O “a(X(s))ds

—00 t

In classical Markov chain theory...

7P = m, with P transition matrix 1/3 2/3

Analogue in continuous time and space

Transition matrix = Transition semigroup
Invariance 7P = m = PDE called basic adjoint relationship

Joint conference DRN + EFI



Functional equation Hi
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The bivariate Laplace transform

Density of the stationary distribution m(u, v)

o(x,y) = // e r(u, v)dudv
72

The functional equation [Dai Miyazawa ’11]

= (%, y)e(x, ¥) = 71(x, ¥)p1(y) + v2(x, ¥)p2(x)

W6y) = 306n)= () )+ (m (o)) PO
(6, ) = (R (x,y)) —
72(Xay):<R2v(X7y)> RZ/ N

e1(y) = Ap(0,y) + B ' -

Joint conference DRN + EFI 14 /57



Some history, from discrete random walks
to continuous diffusions



Random walks in the quarter plane

HENRT LEBESGUE

® Transition probability in the direction (/,/): pi;

® Characteristic polynomial: Z p,-Jx"yj
(ij)ez?

® Reflection (or killing) on the boundary

Main objectives in the early papers

Computation of the stationary distribution (7; ;) j>0

Joint conference DRN + EFI



Malyshev's work

HENRT LEBESGUE

Joxaaxs Axagexun mayx CCCP
1969, Tom 187, N 6

VK 517.948.32 MATEMATHEA
B. A. MAJIHIER

o BHHEPA — XOII®A
B YETBEPTB-IUIOCKOCTH

(Mpedcrasaeno anadexuxox A. H. Kosxosoposwx 16 XII 1968)

Jucxperisie ypanuenua Buiepa — Xonda B sersepri-miockocrs mieioT
g

W= E Gin ik, =0,1,2,. ..

@y = Enu it = 3 s
=
) Z100), 10 = Eo),
) = Gyt Gt G D) = 0y g

Heco/mste EMKTATKN nokagspaior, wro cicreMa (1) oxmmarentia ce-
Asoexy ypassenno » uporsvo dymunax (cnpon)

(e, y) =a(z, 9, y)— ;b(M(y) —?’1(1)5(1)*‘“-»-1?- %)

Introduction of the key ideas

AN ANALYTICAL METHOD IN THE THEORY OF
TWO-DIMENSIONAL POSITIVE RANDOM WALKS

V. A Malyshev DG 19,217

Consides  homoemoons disetetimo Maskor chain whoso et o i o 3 st Latcn [ 3
e sz | =0 e ioers. Lt P06/ D b

i &b i, 0 1 et =
T I o 7 0o Ases we aume 1 (e tollowing homs

The mumbor of nouzero prababilitos P(L,1/0,0) = py’ 1s hte.

relolals) o
o o

) =1 =+ ), 7w} =Pln) = a0

)= 70

Wa now procced o datermine £(:) 304 F).

® Functional equation

® Riemann surface }(; yez2 pijx' 'yl =1

e Difference equations

Joint conference DRN + EFI
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Fayolle-lasnogorodski-Malyshev

HENRT LEBESGUE

ellow book

The little y

Unifies Malyshev's approach and Fayolle-lasnogorodski's '79 paper

7. Wahrscheinlicheitstheorie verw. Gebicte
325351 (1979)

a7,

Zeitchrif for
‘Wahrscheinlichkeitstheorie
und verwandte Gebicte

© inger-Verlag 1979

Two Coupled Processors:
The Reduction to a Riemann-Hilbert Problem

Guy Fayolle" and Roudolf lasnogorodski

Iri

ia-Laboria, Domaine de Voluceau Rocquencourt, F-78150 Le Chesnay

# Université dOrléans, Orléans, France

® Statem
bounda

Résumé. Beaucoup de problémes liés au couplage de processeurs conduisent
4 des équations fonctionnelles. En général, les fonctions inconnues
représentent les fonctions génératrices d'un processus stationaire. Nous
étudions ici un probléme particulier, mais la méthode proposée est applica-
ble & des cas trés généraux de marches aléatoires i deux dimensions.

ent of a difference equation
ry value problem

® Explicit resolution in terms of
contour integrals

Joint conference DRN + EFI

rotabityThory

Guy Fayolle
| Roudalfasnogorodski
Vadim Malyshev

Random
Walks in the
Quarter PIane

£) Springer

Now joining together (5.4.9), (5.4.10), (5.4.17) and (5.4.18), we obtain the final
reduced B
POK() — pla®)K(a(0) = k), 1€ M, (54.19)

Theorem 5.4.3 Under the condition (5.4.4) the function = is given by

RWH @
2rPMSE)

kw0

0=
¢ [ my HH (K@) (w(r) = wix)

T, Vi€ Gy, (5421)
where

{8 Mdenotesheportonofthe curse M ocaednhe owerhlf lane 35 0
(ii) k and K have been introduced in (542
(iii) w is solution of the BVP (5.2.39) on the curve M (se Theorem 5.2.7);

)

o1



Introduction of reflected BM

Early study of reflected BM
[Harrison Reiman Varadhan Williams 80ies]

X | v} Aw nIN\

vy(n) Ad(n)

Ai(n),vi(n) = 3. /(A — vi) = p; and v} (n) — 15

[Reiman ’84]

Joint conference DRN + EFI



Analytic approach Hi
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In the 80ies

Independent works of [Foschini ’82, Foddy ’84, Baccelli
Fayolle ’87]

Equilibria for Diffusion Models of Pairs of
Communicating Computers— 7 S v ome, ConereD 10 4
Symmetric Case

symmetry “""""covariance

In some very particular cases
¢ realized functional equation approach inspired by F-I-M

® first few results

Sandro Franceschi & collaborators o

Sandro Franceschi

Optimal hypotheses + other models
(transient)

Joint conference DRN + EFI




Using different tools HI
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Combinatorics
[Bousquet-Mélou Elvey

Price etc.]

Galois theory
[Dreyfus Hardouin

Roques Singer etc.]

Complex analysis
[Fayolle Franceschi R.

etc.]

Probability

Joint conference DRN + EFI




Main results: characterization and
computation of the solutions



The parameters HI

HENRT LEBESGUE

“\51 > Id
4 ~
- P
R? /4
Cone normalized Cone arbitrary
Covariance arbitrary Covariance normalized
9 parameters? 4 angles

1060) = 30607 ( )+ (s (o))

’Yl(X,Y) = <R17(Xay)>
72(X7y) = <R27(X7y)>

Joint conference DRN + EFI 23 /57



The parameters HI

HENRT LEBESGUE

\31 Id
p o
- P

R? /4
Cone normalized Cone arbitrary
Covariance arbitrary Covariance normalized
9 parameters? 4 angles

Y(x,y) = 2(011x® + 2010xy + 020y?) + pax + poy

71(x,¥) = nix + riy
Y2(x,y) = nox + ray

Joint conference DRN + EFI 24 /57



Main results (1/3) HI
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A geometric quantity

Solution to a submartingale problem

The amount of time spent in the corner is 0

Process absorbed

The corner is not reached
at the corner

Semi-martingale Dirichlet process

atisfies an extended
Skorokhod problem

1 2 @

Satisfies a Skorokhod problem

a€ —-N a=0
Dieker and Moriarty Skew symmetry
Sum-of-exponential  Product form
stationary density Exponential density

Observation

Two new parameters govern
the evolution of reflected BM

Joint conference DRN + EFI



Main results (2/3) ”l

d+e—m 26 +60—pPB—m 20 — 00—
= y a1 = y 02 =
g g g
Necessary and sufficient condition for the Laplace transform
©(x, y) to be rational/algebraic/D-finite/D-algebraic
D-algebraic D-finite Algebraic | Rational
B8 - . N | €Z, or
= ¢ Q | Condition (C) | Condition (C’) 01,00 € 7 aeZ
3 —
e always Condition (C) aeZ

(C) a € Z+FZor an,cp € Z+

(C') a € —No+ FZ or
ar, a2 € ZU(-N+ 3Z)

Joint conference DRN + EFI 26 /57




Main results (2/3) ”l

a_5—|-€—71' N 2 +0-p—7 N 20—-0-m7
g 3 o 3

Necessary and sufficient condition for the Laplace transform

©(x, y) to be rational/algebraic/D-finite/D-algebraic
D-algebraic D-finite Algebraic | Rational
B Cond PN . N | €Z, or
~¢Q , ) | Condition (C') 01,00 € 7 aeZ
o€

B8 cQ | linedwestations Condition (C)

™

(C) QEZ+%Z or &, €Z+%Z

(C") ae —No+ %Z or
ar, a2 € ZU (=N + FZ)

Joint conference DRN + EFI 27 /57



Main results (3/3) HI
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Condition (C) = elementary expression of ¢(x,y) in terms of
(possibly irrational) powers

® ¢1(y) is a rational function in y and T g(ay + b), where a
and b are explicit and T.(z) is the generalized Chebychev
polynomial

Te(z)=1 ((z—i— VZ2-1)+ (z— V22 - l)c)

* Similar statement for > (x)
® Functional equation gives ¢(x, y)

=70, y)p(x, ¥) = 710x, ¥)p1(y) + 72(x, y)p2(x)

Condition (C) = ¢(x,y), ¥1(y) and @2(x) all D-algebraic

Joint conference DRN + EFI 28/5



Three examples



Rational cases: a € Z HIL
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If « € Z, then

_ 1
¢ 801(}/) ~ polynomial(y)
* Corresponding density: > kvie™

av

boundary invariant measure

If all poles of P(y) are distinct, then sum-of-exponential
density [Dieker Moriarty ’09]

Multiple poles may occur. For instance if  + ¢+ 8 =7 and
0 — 25 =25+ m, then

K
PrY)=7—"+v
v) (a—y)?

Erlang distribution, with density a’ve=2"

Joint conference DRN + EFI 30/57



A D-finite case: 0 + ¢+ =27 HiL
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Under the above assumption

. HTﬂ/ﬁ(ay—i- b) —A
Pl =" e —y)

with all constants explicit and

T(2) = % ((z—i— V22— 1)+ (z— V22 - 1)C)

® ¢1(y) is D-finite, even algebraic if 7/8 € Q

® Linear differential equation satisfied by T, yields an explicit

order-4 recurrence relation for the moments

probabilistic application

Joint conference DRN + EFI 31/57



A double algebraic case: a1 = ay, =0 Hi
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2e+6—B— 25—0—
a; = %ﬁw ap = - T

it 1 = ap = 0, we have

\,@
° 901(}/):\/:—_}/ ) —
6

—Vv/A
€ / 0+m

® density T e

m(rcosa,rsina) = — exp (—c or- cosz(%))
r

® Extends special case of [Harrison ’78]

Joint conference DRN + EFI



Some ideas of proofs



A functional equation for ¢1(y) HI
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Algebraic manipulations starting from the functional equation

=%, y)e(x, ¥) = 71(x, y)p1(y) + 72(x, ¥)p2(x)

2

Quadratic kernel

1(xy) = 4
I(o11x%+2010xy +020y %)+ p1 X+ oy

An involution -1 -05 05 11 15

y ¢y, with v(x,y) = vy(x,y’) =0 o

o If v(x,y) = v(x,y’), by elimination of ¢,(x)
Vl(Xay) ( ):Wl(Xv.y,)
2(x,¥) 2(x, )

® Equivalently, for some algebraic functions A(y) and B(y)

©1(B(y)) = Aly)p1(y)

e1(y")



Rational uniformisation of v(x,y) =0 Hi
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The Riemann surface
Y(x,y) = L(011%% + 2012xy + 020y?) + p1x + poy =0

X(s) = a1+ bl(s—i— %)
can be parametrized by

Y(s) = a+ bz(e%.: + %)
q= e2iB
2
X(1)=X(s) and Y(2)=Y(s) s

| A\

The involution y <+ y/

v(x,y) = v(x,¥") = 0 with x = X(s)
then y = Y(s) and y’ = Y(1) 4

vV

Joint conference DRN + EFI 35/57
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A g-difference equation Hi
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Former equation

e1(y") = Aly)ea(y)

We evaluate at y = Y/(s) and set {

A g-difference equation...
#1(as) = A(s)@1(s)

2
o
0O
=
—
=r
[«5)
—+
Q
Il
@
IS
S

s = —ei(28=2e=0) 5nd s = _ei(26-0)

(s—s1)(s2s — 1)

Then Z\(s) = =) (o5 —1)

Joint conference DRN + EFI 36 /57



Factorisation HIL
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Key observation

If there exists a rational function R(s) such that

A(s) = RR}(qss)) (decoupling)

then the g-diff equation $1(gs) = A(s)@1(s) becomes

(R#1)(as) = (Re1)(s)

® Then (R@1)(e) is 23 periodic

explicit trigonometric solution

* It may happen that A(s)? decouples



Computations under Condition (C) HI
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Decoupling <= (C)

Existence of a decoupling

~ v (s=s1)(s2s—1)  R(s)
Als) = (s —s)(sis—1)  R(gs)

0

(C)a€Z+ FZoroy,o0 €L+ FZ

Condition (C) = ¢(x,y), v1(y) and @2(x) all D-algebraic

Joint conference DRN + EFI 38/
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Converse statement uses Galois theory Hi

D-algebraicity = Condition (C)

Galois theory of g-difference equations gives necessary condition
on the function A(s) for @1 to be algebraic

If 31(gs) = A(s)@1(s) is D-algebraic, then with & = is 4
CO%A + 0 (%“) + o4 ey (%‘) = h(gs) — h(s)
Reasoning on the poles

yields Condition (C)

Joint conference DRN + EFI 39/57



Degenerate reflected Brownian motion



Degenerate reflected Brownian motion HI

Degenerate obliquely reflected BM in
dim 2 [Ichiba Karatzas]

X(t) =

X(0)+B(t)+,ut+(R1|R2)< fﬁ;gg ) R

* X(0) starting point in R3
o ¢ R?

e 4 drift in R? /

oblique reflections R! and R?

LO%(t) local time on the axis Ox

B(t) = (Bu(t), B2(t)) covariance ¥

rank 1

ey 1 _ 1 -1
Twooptlons.2—<1 1)and Z-(_l 1>

Joint conference DRN + EFI 41 /57
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Motivations



Rank-based diffusions H |

nnnnnnnnnnn

Competing three particle systems

[Ichiba Karatzas]
Joint conference DRN + EFI




Other motivations HIL
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Degeneracy of RBM

Reflected BM — Analytic description
' ! g— e 51

Degenerate RBM — ?

Space-time Brownian motion

(ta Bt)
[Bougerol Defosseux °’22]
[Franceschi ’24]

Joint conference DRN + EFI 44 /57



Main results



Main results (1/2) HI
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A particular model

]:u/: (:u17 /’LQ)

® Symmetric reflections
(rank-based diffusions)

® Normalisation p1 + o =1

® One parameter /i1

Theorem [Franceschi Ichiba Karatzas R.]

m(u,0) =
Ynez(n=1)n(n+1)(n—1+p1)(n+p1)(n+14p1)(n+ 15 )e(ntu)u

w(,0) = & (& +1-pm) (G +1+m)0u(e™)
with elil(q) = EnEZ(n AL %)qn(n-ﬂu)

e First proof: functional equation

¢ Second proof: Ansatz for the bivariate density 7(u, v)

Joint conference DRN + EFI 46 /57



First proof: functional equation HI
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Theorem [Franceschi Ichiba Karatzas R.]

m(u,0) =
Y nez(n—1)n(n+1)(n—14p1)(n+p1)(n+1+p ) (n+ 1 e~ (ntun)e

The Laplace transform

X(x+1—p1)(x+14p1) globally

o0
m(u,0)e” X du = |
/0 COS(W\/ﬂ) — cos(miy) meromorphic

Proof: infinite sum Infinite product

2
1 1 1 . X
= —1D S — sinx = x 1- ——
TR X,;ﬂ — (km)? ,{1;[1( (kﬂ)2)
Mittag-Leffler expansion m(u,0) = D k#1011 E(k(k+ 1))

v

Joint conference DRN + EFI 47 /57



Main results (2/2) HI

HENRT LEBESGUE

_ _ = g
m(u,v) = CZ cpe by CIZ ch e au=bnv

n>0 n>0

® Recursive computation of
the constants

® a,,b, quadratic
® cn = Pg(n) + (—1)"Qs(n)

same for a,, b/,

7(u,0) =
Ynez(n=1)n(n+1)(n—14p1)(n+p1)(n+14pu)(n+ 13 e (mtwne

Joint conference DRN + EFI 48 /5



Main results (2/2) HI
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® Recursive computation of
the constants

® a,,b, quadratic
® cn = Pg(n) + (—1)"Qs(n)

same for a,, b/,

Asymmetric reflections

More general reflections [Dreyfus Flin Franceschi ’24+]

Joint conference DRN + EFI 49/



Basic Adjoint Relationship HI
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PDE called basic adjoint relationship [Harrison Williams]

G*m(u,v) =0 (I
Or:m(0,v) + 2u1m(0,v) =0 (V)
Ory (U, 0) + 2pom(u,0) =0 (H)

~—

with )
_ 0 o) o 0
G = (F-%) +ms+uas

1 —%

R* = 4Y —2Rdiag(R)™! = (_2 _3>

== (4

Joint conference DRN + EFI 50 /57




Compensation approach Hi
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Main objective (discrete setting)

Use the invariance property 7P = m to compute directly the
stationary distribution 7; ; without the generating function

Z T jX iyj

ij=>0

Adv. Appl. Prob. 25, T83-817 (1993)
Printed in N. Ireland
© Applied Probabilty Trust 1993

A COMPENSATION APPROACH FOR TWO-DIMENSIONAL
MARKOV PROCESSES .
-1
L. B. F. ADAN. Eindhoven Universyof Technology :

F.
J. WESSELS.** Eindhoven Universityof Technology

W.H. M. ZUM,*** University of Twente 4

Abstract
Several queucing processes may be modeled as random walks on a mulidimen-

G-t o-i qi-

procedure. The object of the present paper is to investigate under which conditions thoy hx 1 hay hoy ki
such an elegant solution exists and may be found with a compensation approach. The . .
condiionscan b casly formlcd it of e random behaviot e e V b ha f\T/ o

area and the drift on the boundaries,

[Adan Wessels Zijm ’93]

Joint conference DRN + EFI



Compensation approach (1/2) Hi
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G*m(u,v) =0 (
Orem(0,v) +2pu1m(0,v) =0 (V) w(u,v) =) cpe 2~
Orsm(u,0) + 2uom(u,0) =0 (H) n

~—

e e~=bv solution to (1) &
(a, b) € P*

e e~=bv solution to (1) and (V) <
(a, b) = (ao, bo)

o coe Wu—bov 4 o emau—biv go|ytion
to (1) and (H) < condition cg, c1

en(v) e(n(v) e(n(v)

Coe—aou—bov + Cle—alu—blv + Cze—agu—bzv + C3e—agu—b3v + C4e—a4u—b4v 4+

e()n(H) €()n(H)

Joint conference DRN + EFI 52 /57



Compensation approach (2/2) Hi

possible starting points I

o gpewU—bov 4 o emau—biv go|ytion
to (1) and (H) < condition cg, ¢1
! / .

o cle~u=hv 4 cle=a1u=b1V solution
to (1) and (V) < condition ¢, ¢f
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Thank you for your attention HI

HENRT LEBESGUE

Stochastic reflection
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Appendix



Classes of functions

HENRT LEBESGUE

» Algebraic
T—P(x) +xb(x)? =0

« D-finite
x(1=16x)" (x) + (1 = 32x)/(x) —4Pp(x) =0
« D-algebraic

(2x + 59 (x) — 3xp’ (x) h " (x) = 48x

« D-transcendantal
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Probabilistic interpretation of 6, (q) HI

HENRT LEBESGUE

0#1(‘7) = ZneZ(” + %)qn(nﬂ“)

Not surprisingly, the Jacobi theta-like function 8, in (16) admits a direct probabilistic
interpretation (see (82) below) in terms of Brownian motion conditioned to stay forever in
the interval [0, 1]. More specifically, for ¢ > 0 and z,y € (0,1), let g;(z,y) be the associated
transition probability density. Using the recent results by Bougerol and Defosseux |7,
Eq. (2.1)], one has
sin(ry) o
(z,9) = sin(ra)© Pe(2,Y),
where py(z,y) is the transition probability density function of the killed Brownian motion
in [0, 1], namely,

pt(z'y)ZZ\/IZW"ze:Z(exP( (z—y 2t+2n )—exp( (Z+y*2t2+2n)2))’ )

see Section 6 in Appendix A.1 of []. As explained in [7, Sec. 2.1], it is actually possible
to start the process at © = 0 (using the idea of entrance density measure), and obtain the
density function

t
_1 J— . 202 b
@(0,9) = lim ¢,(z, y) = sin(ry) "557"51!1(1”11) exp( e (n 1)2)1 (81)

see [, Eq. (2.5)]. The Jacobi transformation of our Lemma 15 leads directly to

0 = s (“{)m exp (gj u t) (0, ). (52)

As a conclusion, up to a simple prefactor function, the theta function 6, exactly describes
the entrance density measure of the killed Brownian motion in [0, 1] starting from 0.
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