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The polynuclear growth (PNG) model

Consider a height function h(x,t) € Z>( at position x € R evolving in time

t € R>q as follows:

A h(x,t)
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max width 2t

e At t =0, h(z,0) =0 for all .

e At random points (x«,t.) with |x.| < t., islands

nucleate:

h(ze,te +90) = h(xs,ts) + 1.

e The islands spread laterally with speed 1, and
coalesce when their interfaces meet.
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The polynuclear growth (PNG) model

Consider a height function h(x,t) € Z>( at position x € R evolving in time

t € R>q as follows:

e At t =0, h(z,0) =0 for all .
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h(ze,te +90) = h(xs,ts) + 1.

e The islands spread laterally with speed 1, and
coalesce when their interfaces meet.
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e At random points (x«,t.) with |x.| < t., islands
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We focus on the statistic L(t) := h(0,t), i.e. the PNG height at the origin.
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The polynuclear growth (PNG) model

Consider a height function h(x,t) € Z>( at position x € R evolving in time
t € R>q as follows:

e At t =0, h(z,0) =0 for all .

e At random points (x«,t.) with |x.| < t., islands
nucleate:

|J ] L(t) | M(@a, te +8) = h(za, ts) + 1.
| e The islands spread laterally with speed 1, and

coalesce when their interfaces meet.

droplet of

max width 2t t_*’ i :l_**¢_|:* _’:li* ':‘

L
We focus on the statistic L(t) := h(0,t), i.e. the PNG height at the origin.

Universality: PNG has characteristics of KPZ random growth: local height, mechanism to
fill gaps in, the right scaling exponents... (Prahofer & Spohn '00)

Integrability: We have exact expressions P|L(t) < ¢] and other marginal distributions in the
model.
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where P(t) is this set of nucleation points in
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PNG height and longest increasing subsequences
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We have
L(t) = PnNP(t
() =, max #PNP{)
P(t P increasing
where P(t) is this set of nucleation points in
t* * t* T Lk
coordinates (ws, 2x) = ( —I;az 3 a )
>
x

Ordering the coordinates of the points in P(t), we have
L(t) = max |inc. subseq.(o)| for some random permutation o.

The Robinson—Schensted bijection associates each o € S,, with
a partition A = (A1 > A2 > A3 > ...) of n along with two SYT

of shape A, such that max |i. s.(0)| = 1.



PNG fluctuations, random matrix distributions and Painlevé Il

Consider “classical” droplet PNG with P(t)
made up of N ~ Poi(t?) points sampled
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PNG fluctuations, random matrix distributions and Painlevé Il

Consider “classical” droplet PNG with P(t)
made up of N ~ Poi(t?) points sampled
P(t) : Poi(t?) independently and uniformly inside (0,1) x (0, 1).

Lo(t) = PN {
o(t) P:(O,r(gl)a/}‘{(l,l)# P(t)

>
e We have e Baik—Deift—Johansson '99:
Lo (1) P, , Lo(t) — 2t
n »2 ast — o0 tlggloPl 173 < s| = FGUE(S)

Faur(s) is the limiting distribution of the fluctuations in the largest eigenvalue of a random
Hermitian matrix in the Gaussian unitary ensemble.

It can be written
Foug(s) =exp [ v(z)dx

where v(z) = [*__u(y)®dy in terms of a solution u of the Painlevé Il equation

w'(x) = 2u(x)® + zu(x) with u(z) ~ —Ai(x) as x — 0.
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e Baik—Deift—Johansson '98:

lim P[Lo(t) — 2t s] = Fque(s)
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One route to a proof: We have L,(t) = max|i.s.(0)| where ¢ is a uniform random
permutation of (1,..., N) with N ~ Poi(¢?). By the Robinson—Schensted bijection,
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PNG fluctuations in half-space

In half-space PNG, we take nucleation points only at z. > 0 (or a symmetric set).

$:

L(t
Q Take P(t) composed of Poi(t*/2) independent
- s points on {(z,y)|0 < y < z < 1} and Poi(at)
Poi(t”/2) independent points on {(z,x)|0 < = < 1}.
Poi(at)
> >
x x
o If0< a<1, e Baik—Rains '01:
Lo(t) .
» 2 as t — 0. . Lb(t)—Qt FGSE(S), 0<a<l
¢ lim [P s| =
t— 00 t1/3 FGQE(S), a=1

Fcor/asr(s) gives the asymptotic fluctuations in the largest eigenvalue of a random
symmetric/quaternionic matrix in the Gaussian orthogonal /symplectic ensemble, and

Fcor(s) = exp fsoo ’U(x)_gu(w)da;, Faose(s) = %[FGOE(S) + exp fsoo U(x>;“(x) daz] .




PNG fluctuations in half-space

In half-space PNG, we take nucleation points only at z. > 0 (or a symmetric set).

$:

L(t
Q Take P(t) composed of Poi(t*/2) independent
- s points on {(z,y)|0 < y < z < 1} and Poi(at)
Poi(t”/2) independent points on {(z,x)|0 < = < 1}.
Poi(at)
> >
x x
o If0< a<1, e Baik—Rains '01:
Lo(t) .
» 2 as t — 0. . Lb(t)—Qt FGSE(S), 0<a<l
t lim P 73 < s| =
t— 00 / Foor(s), a=1

« For a > 1, Ly(t) ~ (1 4+ «)t with Gaussian fluctuations.
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PNG fluctuations in half-space

e Baik—Rains '01:

Poi(t?/2 _ F, 0< 1
(t°/2) o P[LD(? : 2t - S] _ ) Fasg(s), <a<
t1/ Foor(s), a=1

t— 00

Poi(at)

e [,(t) = max|i.s.(0)| where o is a sampled uniformly from involutions in Sy,
N ~ Poi(t?) + Poi(at), with Poi(at) fixed points.

e By Robinson—Schensted, L (t) ~ A1 where X is a random partition of N with
P()) o affeddrows(N) - gy T ()).

e Whereas Fougr appears universally in random growth with droplet initial conditions,
Fcor appears with flat initial conditions. The a« = 1 case corresponds to a uniform
involution.

An equivalence in law of L (%):




PNG fluctuations with external sources

In full-space PNG, different regimes are obtained by adding
sources on the edges.

Take P(t) with Poi(t%) independent points on (0,1) x (0, 1),
Poi(at) on 0 x (0,1) and Poi(8t) on (0,1) x 0.




PNG fluctuations with external sources

<S] = { Feor

In full-space PNG, different regimes are obtained by adding
sources on the edges.

Take P(t) with Poi(t%) independent points on (0,1) x (0, 1),
Poi(at) on 0 x (0,1) and Poi(5t) on (0,1) x O.

(Faue(s), 0<a,B<1.
(5)?, 0<a<1,B=1or vice versa

\FBR(S), ()425:1

FBr has not been observed in any matrix models. It can be written

FBr(s) = [1+ (s +2u/(s) + 2u(s)?)v(s)] exp [2 [7° u(z)dz| Four(s).
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PNG fluctuations in half-space with external sources

To find a third regime in half-space PNG, we add
external sources.

Take P(t) with Poi(t*/2) independent points on
{(z,y)|0 <y <z <1}, Poi(at) on
{(x,z)|0 < x < 1} and Poi(Bt) on (0,1) x 0.
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PNG fluctuations in half-space with external sources

To find a third regime in half-space PNG, we add
external sources.

Take P(t) with Poi(t*/2) independent points on
{(z,y)|0 <y <z <1}, Poi(at) on
{(x,z)|0 < x < 1} and Poi(Bt) on (0,1) x 0.

Ly (t)

e Betea—Ferrari—Occelli ’20:

%2 ast — o0
’ ' Limiting Fredholm pfaffian distribution for L.

o If0 < a,B <1,

e Cafasso—Qccelli-Ofner-W. '24+4:

rFGSE(S)7 O§&,6< 1
lim IP[ 173 < S] = ¢ Feor(s), 0<a<1,B8=1or vice versa
\F1gr($), a=p=1

2

We find a half-space analogue of Fr (not found elsewhere)

F%BR(S) = [1+ (s+2u/(s) 4+ 2u(s)?) ”<S)gu(8)] exp |2 [7° u(z)dx| Faor(s).
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An expression for the Painlevé |l solution

Can we use saddle point analysis? Is there an expression for the Painlevé Il solution
u(s) (or v(s)) similar to

C —xq
A(z, ) d(dw

e _wa o
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An expression for the Painlevé |l solution

Can we use saddle point analysis? Is there an expression for the Painlevé Il solution
u(s) (or v(s)) similar to

1 s ¢ dCdw
— ?
Alw.y) = o //F et

1 oS¢

Cauchy: g(¢;z,y) = Dy C—w
I'y

— 9+(¢;z,9) Zg—(C;w,y)+ecg_””C for ( €.

dw,

Riemann—Hilbert problem (RHP): Find a 2 x 2 complex matrix m(z; s) such that

(

m(z; s) is analytic in z € C\ R

1 _6—213(%234—82)
m4(z;8) = m_(z;5) for z € R

e—2i(%z3—|—sz) 0

_/\

m(z;8) =1 +0(z") as z — oo.
e m(z;s) is unique
e expanding around z = 0o as m(z;s) = I +mi(s)z~ " + O(z72), we have

= — v(s)  —u(s) iImbo iwa; Flaschka ewell
mi(s) = (u(s) —v(s))' (Jimbo & Miwa; Flaschka & N Il '81)



To recover a limiting distribution in terms of u, v we express P(L;(t) < £) in terms of
a RHP, at fixed t, /.
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From PNG to RHP in half-space

To recover a limiting distribution in terms of u, v we express P(L;(t) < £) in terms of
a RHP, at fixed ¢, /.

Set Lg(t) := Ly (t) + geom (). By
Robinson—Schensted—Knuth, we have
1
P(LE(t) < £) = ~ Z o Frodd rowS(A)SA[ﬁ;t]
A A<l

sx|B;t] an evaluated Schur function.
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From PNG to RHP in half-space

To recover a limiting distribution in terms of u, v we express P(L;(t) < £) in terms of
a RHP, at fixed ¢, /.

Set Lg(t) := Ly(t) + geom(ap). B
Robinson—Schensted—Knuth, we have

1 O TOwSs
PLE() < £) = o > ooty 5.y

AN <k

1
— EEUEO(@ det [(1 —+ OéU)(l -+ BU)etU]

{Ue€O):detU = —|—1}/ \{U € O) :detU =

= - [det T 5.(0) +det T, g (8)]

[
Tjﬁ .(€) has size {? 1 ) odd and entries of the form ¢,_; +t;1 44,

where >tz = (1 + az)(1+az )1+ B2)(1+ Bz~ etz N,
We can express detT 5,¢ In terms of orthogonal polynomials on the unit circle.

sx|B;t] an evaluated Schur function.

-1}



From PNG to RHP in half-space

To be precise, in terms of the monotone polynomials 7y, and numbers N, satisfying

me(2) = z° + lower order, 7{ m(z)z_ket(z+z_l)dz = d¢x Ny,
|z|=1
for £ even we have

(B2 F afmy(0)) o1 (—0)Tp1(—B) — (1F aBme(0)) ,

det T~ ,(¢) =

(—a)my_1(=B)

2 - 2 7r

== (Oﬁ + CY_B K(O))Wﬁ—l(_a)ﬂ?—l(_ﬁ) . (5 + Ot_ﬁ E(O))ﬂ_z_l(_a)ﬂ_e_l(_ﬁ)
a— [ a—f

.NO'NQ'NAL"'NE 1

here 7, (2) := =) 2¢
1 F m(0) where 7 (2) W(z>z

and for odd ¢ we have

(a*B £ afme(0)) (1 £ aBm(0))

det Tjﬁ’t(é) = my_1(—a)my_1(=B)

Te—1(—a)me—_1(—B) —

af —1 af —1
a? 4+ afw *+afn

Nj-Ns-Ns--- Ny
1 ¥ 7me2(0)




From PNG to RHP in half-space

To be precise, in terms of the monotone polynomials 7y, and numbers N, satisfying

me(2) = 2* + lower order, 7{ m(z)z_ket(z+z_l)dz = Op. Ny,
|z|=1
for ¢ even we have

( B a:; _61 E(O))T‘-E—l(_a)ﬂ-ﬁ—l(_ﬁ) . (1 :Faﬁﬁ_ 61(0))7_‘_;_1

det Ty 5 ,(0) = (—a)m_1(=B)

a2 = abr 2F afn
== ( q; _BBK(O))Wg_l(—a)WZ_l(—B) _ ZI; _5B£(O)) my_1(—a)me—1(=p)
No-Np-Ny--- Ny

1
here 75 — iy P
1 7(0) where e (2) W(z>z

and for odd ¢ we have

C¥2 2 apTr apTr
@ L), —ayrgy(-p) - LEBTO)

(a2 + aBm(0)) (B2 £ aBm(0))

det T 5 ,(0) =

()1 (=5)

+ o— 3 m—1(—a)my_1(—B5) o— B m,_1(—a)me_1(—p)
. N1 -N3-Ns---Ny
1 Fme2(0)

e An ugly but convenient expression! (via Baik, Deift & Johansson '99.)



From PNG to RHP in half-space

)/
For LE(t) := Ly (t) + geom (), we have

1 _
Poi(t?/2) P(LE(t) < 0) = — [det T, 5 ,(€) + det T, 5 ,(¢)]
Poi(Gt) we can write det Tiﬁ,t(é) in terms of the {m;, N¢}
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Poi(at)
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e Mini problem: We can’t compare det Tiﬁ,t(ﬁ) and det Tiﬁ’t(é — 1). But we can
instead look at

P(Ly(t) < £+ 1) +afP(Ls(t) <€) PLE(E) < l+1) —a®B°P(LE() < £ —1) |

2 2(1 — ap)
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We identify a critical window around in which we recover a parametrised limiting distribution.

Intuition: At o, 8 =1, O,(t'/3) points on the boundary contribute to L (t).

Cafasso—Occelli-Ofner—W. '244: In a regime where oo ~ 1 — ﬁ"fg, g ~1— tf%,

l; _
lim IED( > (1) — 2 < s> = Hy.(w,y;s)

t— o0 t1/3

b(w,s)b(y,s)—a(w,s)a(y,s
— [a(w,s)a(y,s)—l—v(S) ) (y4()w+?§) —

a(y,s)b(w,s)—b(y,s)a(w,s
() 22 2be) by s)a )]FGSE(S)

ya(y,a:)b(w,s)—’wb(y,a:)a(w,s) b(w,s)b(y,s)—a(w,s)a(y,s)
+[ (w—y) -+ le) 4(wty)

—v(s) a(y’s)b(wﬂu—fgf’s)a(w’s)] (Faor(s) — Fase(s))

where a(w, s) := m(—iw; s)22 and b(w, s) := m(—iw; s)12, in terms of the entries of the
solution m(z; s) of the Painlevé Il RHP.

We use the fact that P(L(t) < £)+ aBP(L(t) < £ —1)] + O(t=2/3)
< PLE) <€) < I[PL() <L41)+aBP(L(t) < £)] + O ?/?).

N
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Cafasso—Occelli-Ofner-W. '24+: In a regime where o ~ 1 — 575 g ~1— ﬁ%

limt%mp(% < 5) = H(w,y; s)
- [Cb(’w, s)aly, s) + U<S>b(w,S)b(yf&U—f;;U,S)a(y,S) _ u<8>a(y,S)b(wﬁzu—_bgﬁ)a(wﬁ)} Fesr(s)
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e The RHP formulation also allows complete asymptotics of m to be found:

(Fasu(s),  w,y — o0
Hy(w,y;s) — < Fcor(s), w — 00,y = 0 or vice versa
|\ Fipgr(s), w=y=0.
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Critical scaling and interpolating distribution

Cafasso—Occelli-Ofner-W. '24+: In a regime where o ~ 1 — 7521% g ~1— %
limt%mp(% < 5) = H(w,y; s)
b(w,s)b(y,s)—a(w,s)a(y,s a(y,s)b(w,s)—b(y,s)a(w,s
— [a(w, s)aly, s) +v(s) eesletislalun) _ y(g)olyion) Hysdaws)] o o)

a(y,s)b(w,s)—wb(y,s)a(w,s b(w,s)b(y,s)—a(w,s)a(y,s a(y,s)b(w,s)—b(y,s)a(w,s
_|_[y (y,8)b( (gU_y)(y Ja( )+u(s) (w,3) (y4(?w+:§) )a(y,s) — v(s) (y,3)b( 4(2{)_?% Ja( )](FGOE<S> — Fasp(s))
where a(w, s) ;== m(—iw; )2 and b(w, s) ;== m(—1iw; $)12 in terms of the PIl RHP solution m(z; s).

e Here, we see the full RHP solution m, not just the Painlevé Il solution u (and v).

e The RHP formulation also allows complete asymptotics of m to be found:

(Fasu(s),  w,y — o0
Hy(w,y;s) — < Fcor(s), w — 00,y = 0 or vice versa
\F%BR(S), w =1y =0.

e Baik—Rains '01: In full space, in the same regime there is an analogous
interpolating distribution

Ho(w,; s) = |a(w, s)a(y, s) + v(s) Wetsaluca®a) | fo g (s

which interpolates between Fgugr(s), Fcor(s)? and Fgr(s).



Perspectives

e We don't know much about the new distribution F%BR(S). How does it behave?
Can we find it elsewhere? Can we write it as a Fredholm determinant?

e Can we find these distributions from the Fredholm pfaffian of Betea, Ferrari &
Occelli?

e Can we find them from Fredholm determinant expressions found in Betea '187

e Next step: we are studying the discrete time totally asymmetric simple exclusion

process (TASEP) in a corresponding regime — we expect the same limit, but the
analysis is different.
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Thank you for your attention!



