Gaps in the growth of coefficients of Mahler functions

Daniel Smertnig

joint work with Boris Adamczewski and Jason Bell

DRN+EFI Conference, June 12, 2024, Anglet, France

Mahler functions

Definition

Let $k \ge 2$. A power series $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[\![z]\!]$ is a *k*-Mahler function (*M*-function) if

$$p_0(z)f(z) + p_1(z)f(z^k) + \dots + p_d(z)f(z^{k^d}) = 0$$

with polynomials $p_0(z)$, ..., $p_d(z)$ and $p_0(z)p_d(z) \neq 0$.

• Coefficient recurrence: For $n \ge 0$ sufficiently large,

$$a_n = \sum_{j=1}^s -\alpha_j a_{n-j} + \sum_{i=1}^d \sum_{j=0}^s \beta_{i,j} a_{\frac{n-j}{k^i}}$$

 $(a_q = 0 \text{ for } q \in \mathbb{Q} \setminus \mathbb{Z}_{\geq 0}).$

- Coefficients in a number field.
- Meromorphic in open unit disk (for every absolute value).

Logarithmic height

How to measure size of coefficients? 2^n vs. $1/2^n$. If $\alpha = a/b \in \mathbb{Q} \setminus \{0\}$ a reduced fraction, set

 $p \in \mathbb{P} \cup \{\infty\}$

 $h(\alpha) = \log \max\{|\mathbf{a}|, |\mathbf{b}|\}.$

■ Local point of view: Archimedean absolute value $|\cdot| = |\cdot|_{\infty}$ and for each $p \in \mathbb{P}$ a non-archimedean one:

$$|\alpha|_{p} = p^{-v_{p}(\alpha)}$$

E.g.,
$$\left|\frac{2^{3}5^{2}}{7}\right|_{p} = \begin{cases} 1/8 & \text{if } p = 2, \\ 1/25 & \text{if } p = 5, \\ 7 & \text{if } p = 7, \\ 200/7 & \text{if } p = \infty, \\ 1 & \text{otherwise.} \end{cases}$$

$$\prod |\alpha|_{p} = 1. \qquad (\text{Product formula}).$$

Logarithmic height

$$\begin{split} h(a/b) &= \log \max\{|a|, |b|\} = \log \prod_{p \in \mathbb{P} \cup \{\infty\}} \max\{1, |a/b|_p\}.\\ \text{Because (say } b &= p_1^{e_1} \cdots p_r^{e_r}, \ \gcd(a, b) = 1\},\\ \prod_{p \in \mathbb{P} \cup \{\infty\}} &= \max\{1, |\frac{a}{b}|_p\} = \max\{1, |\frac{a}{b}|\}|\frac{a}{b}|_{p_1} \cdots |\frac{a}{b}|_{p_r}\\ &= \max\{1, |\frac{a}{b}|\}p_1^{e_1} \cdots p_r^{e_r} = \max\{1, |\frac{a}{b}|\}|b|.\\ \max\{1, |\frac{a}{b}|\} \ |b| &= \begin{cases} |\frac{a}{b}||b| &= |a| & \text{if } |a| \ge |b|\\ |b| & \text{if } |a| \le |b|. \end{cases} \end{split}$$

If $\alpha \in K$, K a number field:

$$h(\alpha) \coloneqq \log \prod_{v \in M_K} \max\{1, |\alpha|_v\}.$$

 $(b_n) \in O \cap \Omega(g(n)) \quad \Leftrightarrow \quad (b_n) \in O(g(n)) \text{ and } (b_n) \notin o(g(n)).$

Theorem (Adamczewski–Bell–S. 2020)

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[[z]]$ be an *M*-function. Then $h(a_n)$ falls into one of the following classes.

So $h(a_n) \in o(n) \Rightarrow h(a_n) \in O(\log^2(n))$ etc.

$$O \cap \Omega(n)$$

$$\frac{1}{1-2z} = \sum_{n=0}^{\infty} 2^n z^n$$

$$\prod_{n=0}^{\infty} \frac{1}{1-2z^{k^n}}$$

$O \cap \Omega(n)$ $\frac{1}{1-2z} = \sum_{n=0}^{\infty} 2^n z^n$ $\prod_{n=0}^{\infty} \frac{1}{1-2z^{k^n}}$

 $O \cap \Omega(\log^2(n))$

$$\prod_{n=0}^{\infty} \frac{1}{1-z^{k^n}} = \sum_{n=0}^{\infty} a_n z^n$$

Partitions into k-powers: $n = j_1 k^{n_1} + \dots + j_r k^{n_r}$ $\log(a_n) \sim \log^2(n)/2 \log(k)$ (Mahler '40, de Bruijn '48, Dumas-Flajolet '96)

$O \cap \Omega(\log^2(n))$ $\prod_{n=0}^{\infty} \frac{1}{1-z^{k^n}} = \sum_{n=0}^{\infty} a_n z^n$ Partitions into k-powers: $n = j_1 k^{n_1} + \dots + j_r k^{n_r}$ $\log(a_n) \sim \log^2(n)/2 \log(k)$ (Mahler '40, de Bruijn '48, Dumas-Flajolet '96)

k-automatic/*k*-regular sequences

Definition

 $(a_n)_n$ is *k*-automatic if it can be produced a finite automaton (with outputs): *Input:* Base *k* representation of the number $n = \langle b_m \cdots b_0 \rangle_k$. *Output:* a_n .

Example

Thue-Morse sequence: t_n = parity of number of 1s in binary expansion of n.

k-regular sequences

Definition (Allouche-Shallit)

 $(a_n)_n$ in $\overline{\mathbb{Q}}$ is k-regular if there exist $u \in \overline{\mathbb{Q}}^{1 \times d}$, $v \in \overline{\mathbb{Q}}^{d \times 1}$ and $M(0), \ldots, M(k-1) \in \overline{\mathbb{Q}}^{d \times d}$ such that

 $s_n = uM(b_m)M(b_{m-1})\cdots M(b_0)v$ if $n = \langle b_m \cdots b_0 \rangle_k$.

Example

- If a_n = number of 1s in binary representation of n, the sequence is 2-regular but not 2-automatic.
- Cantor sequence: numbers where 1 doesn't appear in ternary representation.

Theorem

k-regular sequence $(a_n)_n$: *k*-automatic $\Leftrightarrow \{a_n : n\}$ finite.

Theorem (Becker '94)

k-regular series \Rightarrow *M*-function.

Idea:
$$s_{e,r} \coloneqq (a_{k^e n+r})_n$$
, $0 \le r < k^e$, $f_{e,r}(z) \coloneqq \sum_{n=0}^{\infty} a_{k^e n+r} z^n$.
 $s_{0,0} = (a_n)_n k$ -regular \Leftrightarrow
 k -kernel $\{ s_{e,r} : e \ge 0, 0 \le r < k^e \}$ spans fin-dim. $\overline{\mathbb{Q}}$ -vector space.
 $f_{e,r}(z) \in \operatorname{span}_{\overline{\mathbb{Q}}(z)} \{ f_{e',r'}(z^{\widetilde{k}}) : e' \le E, 0 \le r' \le k^{e'} - 1 \}, \quad \widetilde{k} = k^{E+1}$.
 $\Rightarrow f(z)$ contained in fin.-dim. $\overline{\mathbb{Q}}(z)$ -vector space in $\overline{\mathbb{Q}}[z]$, closed
under $z \mapsto z^{\widetilde{k}}$.
 $\Rightarrow f(z), f(z^{\widetilde{k}}), ..., f(z^{\widetilde{k}^j}), ...$ linearly dependent over $\overline{\mathbb{Q}}(z)$.
 $\Rightarrow f(z) k$ -Mahler.

Connection to *M*-functions

Conversely: *M*-function \neq *k*-regular.

Theorem (Becker '94)

If f(z) is k-Becker, i.e., satisfies an equation of the form

$$1 \cdot f(z) + p_1(z)f(z^k) + \dots + p_d(z)f(z^{k^d}) = 0,$$

then f(z) is k-regular.

Idea:
$$f(z) = \sum_{i=1}^{d} p_i(z) f(z^{k^i})$$
.

Consider $\overline{\mathbb{Q}}$ -vector space V spanned by $z^j f(z^{k^i})$ $(i \le d, j \le D)$. Cartier operators $\Delta_r(f(z)) \coloneqq \sum_{n=0}^{\infty} a_{nk+r} z^n$,

$$\Delta_r(z^j f(z^{k^i})) = \Delta(z^j) f(z^{k^{i-1}}), \quad (i \ge 1)$$

and functional equation $\Rightarrow V$ closed under $\Delta_r \Rightarrow f$ is k-regular.

k-Becker \Rightarrow *k*-regular, *k*-regular \Rightarrow *k*-Becker,

But:

If f(z) is k-Mahler with $p_0(z)f(z) = \sum_{i=1}^d p_i(z)f(z^{k^i})$ and $p_0(0) = 1$, then

$$f(z)=\frac{g(z)}{\prod_{n=0}^{\infty}p_0(z^{k^n})},$$

with g(z) being k-Becker (Dumas '93).

If f(z) is k-regular, then there exists a polynomial q(z) such that

$$f(z) \cdot \frac{1}{z^{\gamma}q(z)} \in \overline{\mathbb{Q}}[\![z^{\pm 1}]\!]$$

is k-Becker. Here q(0) = 1 and 1/q(z) k-regular. (Becker's conjecture, proven by Bell, Chyzak, Coons, Dumas '19.)

Gaps

 $(b_n) \in O \cap \Omega(g(n)) \iff (b_n) \in O(g(n)) \text{ and } (b_n) \notin o(g(n)).$

Theorem (Adamczewski–Bell–S. 2020)

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[[z]]$ be an *M*-function. Then $h(a_n)$ falls into one of the following classes.

- 1 $O \cap \Omega(\mathbf{n})$.
- 2 $O \cap \Omega(\log^2 n)$.
- $\bigcirc O \cap \Omega(\log n).$
- $4 \quad O \cap \Omega(\log \log n).$

i<mark>g log n)</mark>. *k*-automatic **5** O(1).

k-regular

Definition

Let $f(z) \in K[[z]]$ be a k-Mahler series, and let

$$\mathfrak{I} = \left\{ p(z) \in K[z] : p(z)f(z) \in \sum_{i=1}^{\infty} K[z]f(z^{k^{i}}) \right\}.$$

The *k*-**Mahler denominator** of f(z) is the unique generator $\vartheta(z) \in K[z]$ of the ideal \Im , with the lowest non-zero coefficient of $\vartheta(z)$ being 1.

- $\mathfrak{d}(z)$ divides $p_0(z)$ in any Mahler equation for f(z).
- $\mathfrak{d}(z)$ need **not** be $p_0(z)$ of a minimal homogeneous Mahler equation of f(z).

Example

$$(z-1/2)f(z) - (z-1/8)(z^3 - 1/2)f(z^3) = 0$$

has a unique non-zero solution (up to scalars).

However $\mathfrak{d}(z) = 1$, because

$$1 \cdot f(z) = (z - 1/8)(z^2 + 1/2z + 1/4)(z^9 - 1/2)f(z^9).$$

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[\![z]\!]$ be an *M*-function.

Proposition

TFAE:

$$1 h(a_n) \in o(n).$$

- **2** Every nonzero root of ϑ is a root of unity.
- **3** f is analytic in $B_{|\cdot|}(0,1)$ for all absolute values.
- 4 $h(a_n) \in O(\log^2 n)$.

Sketch of proof

Show:
$$h(a_n) \in o(n) \Rightarrow$$
 roots of $\mathfrak{d}(z)$ in $\{0\} \cup \underbrace{\{\text{root of unity}\}}_{=\mu(\overline{\mathbb{Q}})}$.

• $h(a_n) \in o(n) \Rightarrow f(z)$ has radius of convergence = 1 for all $|\cdot|$.

Suppose
$$\lambda$$
 root of $\mathfrak{d}(z)$, $\lambda \notin \{0\} \cup \mu(\overline{\mathbb{Q}})$
 $\Rightarrow |\lambda| < 1$ for some $|\cdot|$.

• Take a minimal Mahler equation for f(z):

$$p_0(z)f(z) + p_1(z)f(z^k) + \dots + p_d(z)f(z^{k^d}) = 0,$$

with $p_0(z)p_d(z) \neq 0$ and d minimal.

• $\Rightarrow f(z), \ldots, f(z^{k^{d-1}})$ are linearly independent over $\overline{K}(z)$.

■ Transcendence result: (Adamczewski–Faverjon '17) ⇒ for large *m*, also $f(\lambda^{k^m}), \ldots, f(\lambda^{k^{m+d-1}})$ are linearly independent over \overline{K} .

Sketch of proof

Show:
$$h(a_n) \in o(n) \Rightarrow \text{roots of } \mathfrak{d}(z) \text{ in } \{0\} \cup \mu(\overline{\mathbb{Q}}).$$

Have: $f(\lambda^{k^m}), \ldots, f(\lambda^{k^{m+d-1}})$ linearly independent over $\overline{K}.$
Iterating $p_0(z)f(z) + p_1(z)f(z^k) + \cdots + p_d(z)f(z^{k^d}) = 0:$
 $r_0(z)f(z) + r_1(z)f(z^{k^m}) + \cdots + r_d(z)f(z^{k^{m+d-1}}) = 0$
 $(r_0(z), \ldots, r_d(z) \in \overline{\mathbb{Q}}[z] \text{ coprime}).$
 $\mathfrak{d}(\lambda) = 0 \Rightarrow r_0(\lambda) = 0, \text{ so}$
 $r_1(\lambda)f(\lambda^{k^m}) + \cdots + r_d(\lambda)f(\lambda^{k^{m+d-1}}) = 0,$

a contradiction!

Now: Coefficient recursion (in matrix form) $\Rightarrow h(a_n) \in O(\log^2 n)$.

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[\![z]\!]$ be an *M*-function.

Proposition

TFAE:

$$1 h(a_n) \in o(n).$$

- **2** Every nonzero root of ϑ is a root of unity.
- **3** f is analytic in $B_{|\cdot|}(0,1)$ for all absolute values.
- 4 $h(a_n) \in O(\log^2 n)$.

Let
$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[\![z]\!]$$
 be an *M*-function.

Proposition

TFAE:

- $1 h(a_n) \in o(\log^2 n).$
- 2 Every nonzero root ζ of ∂ is a root of unity with order not coprime with k (ζ^{kj} ≠ ζ for all j ≥ 1).
- 3 f is k-regular.
- 4 $h(a_n) \in O(\log n)$.

Suppose $\zeta^k = \zeta \neq 0$ and $h(a_n) \in o(\log^2(n))$. Show: $\vartheta(\zeta) \neq 0$. Strategy:

- *M*-function structure and $\vartheta(\zeta) = 0 \Rightarrow$ lower bound for $f(t_j\zeta)$ along some sequence $(t_j)_j \rightarrow 1$, $0 < t_j < 1$.
- 2 Pigeonhole argument \Rightarrow lower bound for subsequence of a_n , contradicting $h(a_n) \in o(\log^2 n)$.

(1) Suppose $\mathfrak{d}(\zeta) = 0$, $p_0 = \mathfrak{d}$,

$$p_0(z)f(z) = \sum_{i=1}^d p_i(z)f(z^{k^i}).$$

(A) Try to get rid of p_0 :

$$g(z) \coloneqq f(\zeta z) \prod_{n=0}^{\infty} \frac{p_0(\zeta z^{k^n})}{(1-z^{k^n})^s}, \quad \text{so that} \quad g(z) = \sum_{i=1}^d r_i(z)g(z^{k^i})$$

with suitable s:

$$s \coloneqq \min\left\{\frac{\nu_i + (i-1)\nu_0}{i} : 1 \le i \le d\right\} \in \mathbb{Q}_{\ge 0},$$

with $\nu_i = \mathsf{v}_{z-\zeta}(p_i(z))$, so that $r_i(z) \in \overline{\mathbb{Q}}[z]$, $r_{i_0}(1) \neq 0$, $s < \nu_0$.

(B) Linear system for g: $w(z) = (g(z), \dots, g(z^{k^{d-1}}))^T$, and $w(z) = A(z)w(z^k)$

where $A(z) \in \overline{\mathbb{Q}}[z]^{d \times d}$.

(C) Suitable $1 - \varepsilon < t_0 < 1$ and $t_j \coloneqq t_{j-1}^{1/k}$, $(t_j)_j \to 1$.

$$w(t_j) = A(t_j)A(t_{j-1})\cdots A(t_1)w(t_0).$$

Simplification: say A(1) invertible, $c_1 \coloneqq 2 ||A(1)^{-1}||$. So

$$0 < c_0 \coloneqq ||w(t_0)|| \le c_1^j ||w(t_j)||.$$

That is

$$||w(t_j)|| \ge c_0(1/c_1)^j > 0.$$

(Adamczewski-Bell '17, in general: A(1) not nilpotent) \Rightarrow a similar bound for $|g(t_j)|$. **Now:** $|g(t_j)| \ge (1 - t_j)^a$,

$$f(\zeta t_j) = g(t_j) \cdot \prod_{n=0}^{\infty} \frac{(1-t_j^{k''})^s}{p_0(\zeta z^{k^n})},$$

Mahler:

$$\prod_{n=0}^{\infty} (1-t_j^{k^n})^{-1} \ge \sum_{n=m_0}^{\infty} \exp(c\log^2 n) t_j^n \ge \exp(c\log^2 m) t_j^m \quad (m \ge m_0).$$

Combining:

$$|f(\zeta t_j)| \ge (1-t_j)^{a'} \exp(cb \log^2 m) t_j^{mb}$$

(for some sequence $(t_j)_j \rightarrow 1$ and all $m \ge m_0$)

Have: Using $\mathfrak{d}(\zeta) = 0$, $\zeta^k = \zeta$,

$$|f(\zeta t_j)| \ge (1-t_j)^{a'} \exp(cb \log^2 m) t_j^{mb}$$

(for some sequence $(t_j) \rightarrow 1$ and all $m \ge m_0$)

(2) Now split

$$f(\zeta t_j) = \underbrace{\sum_{n=0}^{M} a_n(\zeta t_j)^n}_{=S_M} + \underbrace{\sum_{n=M+1}^{\infty} a_n(\zeta t_j)^n}_{|\cdot| \le 1}.$$

with sufficiently small $M = M(t_j)$ s.t. pigeonhole principle gives $\log |a_n| > c \log^2 n$ infinitely often for some c > 0. Can take $M \approx \lceil m \log^2 m \rceil$ with $m \approx c'(1 - t_j)^{-1}$.

Contradicts $h(a_n) \in o(\log^2 n)$.

... on to regularity

Now we have $p_0(z)f(z) = \sum_{i=1}^d p_i(z)f(z^{k^i})$ where the roots ζ_r of p_0 are roots of unity with $\zeta^{k^j} \neq \zeta$ for $j \ge 0$.

Factoring $\vartheta(z^{k^n})$:

and products of k-regular sequences are k-regular.

So:

 $h(a_n) \in o(\log^2 n) \implies \mathfrak{d}$ "harmless" $\implies f(z)$ k-regular. Now $h(a_n) \in O(\log(n))$ is elementary.

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[\![z]\!]$ be an *M*-function.

Proposition

TFAE:

- $1 h(a_n) \in o(\log^2 n).$
- 2 Every nonzero root ζ of ∂ is a root of unity with order not coprime with k (ζ^{kj} ≠ ζ for all j ≥ 1).
- 3 f is k-regular.
- $4 h(a_n) \in O(\log n).$

Now f is k-regular; let S be the matrix semigroup of a minimal linear representation, i.e.,

 $f(n) = uM(b_k)\cdots M(b_0)v$ with $n = \langle b_m \cdots b_0 \rangle_k$

and $S = \langle M(i) : 0 \le i \le k - 1 \rangle \subseteq K^{d \times d}$.

Proposition

TFAE:

 $1 h(a_n) \in o(\log n).$

2 S is tame (every nonzero eigenvalue is a root of unity).

- 3 The sequence (a_n)_{n≥0} is a ^Q-linear combination of word-convolution products of k-automatic sequences.
- $I \quad h(a_n) \in O(\log \log n).$

 $a_n = uM(w)v$ with $M: \{0, \ldots, k-1\}^* \to K^{d \times d}$, $u \in K^{1 \times d}$, $v \in K^{d \times 1}$ and w a base-k representation of n.

" $h(a_n) \in o(\log n) \Rightarrow S$ tame" follows by pumping argument $(uM(w_0w_1^kw_2)v)$ blows up in some absolute value).

Matrix semigroup ${\mathcal S}$ is tame if and only if

$$\mathcal{T}^{-1}\mathcal{S}\mathcal{T} \subseteq \begin{pmatrix} \mathcal{S}_1 & \overline{\mathbb{Q}}^{d_1 \times d_2} & \overline{\mathbb{Q}}^{d_1 \times d_3} & \dots & \overline{\mathbb{Q}}^{d_1 \times d_r} \\ 0 & \mathcal{S}_2 & \overline{\mathbb{Q}}^{d_2 \times d_3} & \dots & \overline{\mathbb{Q}}^{d_2 \times d_r} \\ 0 & 0 & \mathcal{S}_3 & \dots & \overline{\mathbb{Q}}^{d_3 \times d_r} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \mathcal{S}_r \end{pmatrix}$$

with S_i finite semigroups.

Let ${\mathcal S}$ be the matrix semigroup of a minimal linear representation.

Proposition

TFAE:

- 1 We have $h(a_n) \in o(\log \log n)$.
- **2** \mathcal{S} is finite.
- **3** *f* is *k*-automatic.
- 4 We have $h(a_n) = O(1)$. Equivalently, $\{a_n : n \ge 0\}$ is finite.

 $(b_n) \in O \cap \Omega(g(n)) \iff (b_n) \in O(g(n)) \text{ and } (b_n) \notin o(g(n)).$

Theorem (Adamczewski–Bell–S. 2020)

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[[z]]$ be an *M*-function. Then $h(a_n)$ falls into one of the following classes.

- 1 $O \cap \Omega(\mathbf{n})$.
- 2 $O \cap \Omega(\log^2 n)$.
- $\bigcirc O \cap \Omega(\log n).$
- $4 \quad O \cap \Omega(\log \log n).$

i<mark>g log n)</mark>. *k*-automatic **5** O(1).

k-regular

Corollary

Let K be a field of characteristic 0 and f(z) a k-Mahler series over K. Then f(z) is k-automatic if and only if it has finitely many distinct coefficients.

In positive characteristic:

- holds if k is a power of p;
- false if k and p are coprime (Becker 1994).

Corollary

Let K be a field of characteristic 0 and f(z) a k-Mahler series over K. Then f(z) is k-regular if and only if all nonzero roots of the Mahler denominator in \overline{K} are roots of unity with order not coprime to k.

Decidability

Theorem (Adamczewski-Bell-S. 2020)

The cases in the main theorem are decidable.

Contrast with:

Theorem (Krenn–Shallit 2020)

If f(n) is k-regular with values in \mathbb{Q} , it is undecidable whether |f(n)| is bounded (in the archimedean absolute value).

Reason: It is

- decidable if a f.g. matrix semigroup is **tame** (eigenvalues in $\{0\} \cup \mu(\overline{\mathbb{Q}})$)
- undecidable if it has joint spectral radius ≤ 1 (lim sup_{$n\to\infty$} $||X_1 \cdots X_n||^{1/n} \leq 1$) (Blondel–Tsitsiklis '00).