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Mahler functions

Definition
Let k ≥ 2. A power series f (z) = ∑∞n=0 anzn ∈ QJzK is a k-Mahler
function (M-function) if

p0(z)f (z) + p1(z)f (zk) +⋯ + pd(z)f (zkd
) = 0,

with polynomials p0(z), . . . , pd(z) and p0(z)pd(z) ≠ 0.

Coefficient recurrence: For n ≥ 0 sufficiently large,

an =
s
∑
j=1
−αjan−j +

d
∑
i=1

s
∑
j=0

βi,ja n−j
ki

(aq = 0 for q ∈ Q/Z≥0).
Coefficients in a number field.
Meromorphic in open unit disk (for every absolute value).



Logarithmic height
How to measure size of coefficients? 2n vs. 1/2n.

If α = a/b ∈ Q/{0} a reduced fraction, set

h(α) = logmax{∣a∣, ∣b∣}.

Local point of view: Archimedean absolute value ∣⋅∣ = ∣⋅∣∞ and
for each p ∈ P a non-archimedean one:

∣α∣p = p−vp(α).

E.g., ∣2
352

7
∣
p
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/8 if p = 2,
1/25 if p = 5,
7 if p = 7,
200/7 if p = ∞,
1 otherwise.

∏
p∈P∪{∞}

∣α∣p = 1. (Product formula).



Logarithmic height

h(a/b) = logmax{∣a∣, ∣b∣} = log ∏
p∈P∪{∞}

max{1, ∣a/b∣p}.

Because (say b = pe1
1 ⋯per

r , gcd(a,b) = 1),

∏
p∈P∪{∞}

= max{1, ∣ ab ∣p} = max{1, ∣ ab ∣}∣
a
b ∣p1⋯∣ ab ∣pr

= max{1, ∣ ab ∣}p
e1
1 ⋯per

r = max{1, ∣ ab ∣}∣b∣.

max{1, ∣ ab ∣} ∣b∣ =
⎧⎪⎪⎨⎪⎪⎩

∣ ab ∣∣b∣ = ∣a∣ if ∣a∣ ≥ ∣b∣
∣b∣ if ∣a∣ ≤ ∣b∣.

If α ∈ K , K a number field:
h(α) ∶= log ∏

v∈MK

max{1, ∣α∣v}.

h(α−1) = h(α).
Only finitely many α ∈ Q of bounded degree and height.
h(α) = 0 ⇔ α is a root of unity ⇔ ∣α∣ = 1 for all ∣⋅∣.



Height Gap Theorem

(bn) ∈ O ∩Ω(g(n)) ⇔ (bn) ∈ O(g(n)) and (bn) /∈ o(g(n)).

Theorem (Adamczewski–Bell–S. 2020)

Let f (z) = ∑∞n=0 anzn ∈ QJzK be an M-function. Then h(an) falls
into one of the following classes.

1 O ∩Ω(n).

2 O ∩Ω(log2 n).

3 O ∩Ω(log n).

4 O ∩Ω(log log n).

5 O(1). k-automatic
k-regular

So h(an) ∈ o(n) ⇒ h(an) ∈ O(log2(n)) etc.













k-automatic/k-regular sequences



k-automatic sequences

Definition
(an)n is k-automatic if it can be produced a finite automaton
(with outputs):
Input: Base k representation of the number n = ⟨bm⋯b0⟩k .
Output: an.

Example
Thue-Morse sequence: tn = parity of number of 1s in binary
expansion of n.

0 1
1

1

0 0



k-regular sequences

Definition (Allouche–Shallit)

(an)n in Q is k-regular if there exist u ∈ Q1×d , v ∈ Qd×1 and
M(0), . . . , M(k − 1) ∈ Qd×d such that

sn = uM(bm)M(bm−1)⋯M(b0)v if n = ⟨bm⋯b0⟩k .

Example

If an = number of 1s in binary representation of n, the
sequence is 2-regular but not 2-automatic.
Cantor sequence: numbers where 1 doesn’t appear in ternary
representation.

Theorem
k-regular sequence (an)n: k-automatic ⇔ {an ∶ n} finite.



Connection to M-functions

Theorem (Becker ’94)

k-regular series ⇒ M-function.

Idea: se,r ∶= (aken+r)n, 0 ≤ r < ke , fe,r(z) ∶= ∑∞n=0 aken+rzn.

s0,0 = (an)n k-regular ⇔
k-kernel { se,r ∶ e ≥ 0, 0 ≤ r < ke } spans fin-dim. Q-vector space.

fe,r(z) ∈ spanQ(z) { fe′,r ′(z k̃) ∶ e′ ≤ E , 0 ≤ r ′ ≤ ke′ − 1}, k̃ = kE+1.

⇒ f (z) contained in fin.-dim. Q(z)-vector space in QJzK, closed
under z ↦ z k̃ .

⇒ f (z), f (z k̃), …, f (z k̃ j), … linearly dependent over Q(z).

⇒ f (z) k-Mahler.



Connection to M-functions

Conversely: M-function /⇒ k-regular.

Theorem (Becker ’94)

If f (z) is k-Becker, i.e., satisfies an equation of the form

1 ⋅ f (z) + p1(z)f (zk) +⋯ + pd(z)f (zkd
) = 0,

then f (z) is k-regular.

Idea: f (z) = ∑d
i=1 pi(z)f (zk i ).

Consider Q-vector space V spanned by z j f (zk i ) (i ≤ d , j ≤ D).

Cartier operators ∆r(f (z)) ∶= ∑∞n=0 ank+rzn,

∆r(z j f (zk i
)) =∆(z j)f (zk i−1

), (i ≥ 1)

and functional equation ⇒ V closed under ∆r ⇒ f is k-regular.



k-Becker ⇒ k-regular, k-regular /⇒ k-Becker,

But:
If f (z) is k-Mahler with p0(z)f (z) = ∑d

i=1 pi(z)f (zk i ) and
p0(0) = 1, then

f (z) = g(z)
∏∞n=0 p0(zkn)

,

with g(z) being k-Becker (Dumas ’93).
If f (z) is k-regular, then there exists a polynomial q(z) such
that

f (z) ⋅ 1
zγq(z)

∈ QJz±1K

is k-Becker. Here q(0) = 1 and 1/q(z) k-regular. (Becker’s
conjecture, proven by Bell, Chyzak, Coons, Dumas ’19.)



Gaps



Height Gap Theorem

(bn) ∈ O ∩Ω(g(n)) ⇔ (bn) ∈ O(g(n)) and (bn) /∈ o(g(n)).

Theorem (Adamczewski–Bell–S. 2020)

Let f (z) = ∑∞n=0 anzn ∈ QJzK be an M-function. Then h(an) falls
into one of the following classes.

1 O ∩Ω(n).

2 O ∩Ω(log2 n).

3 O ∩Ω(log n).

4 O ∩Ω(log log n).

5 O(1). k-automatic
k-regular



The Mahler denominator

Definition
Let f (z) ∈ KJzK be a k-Mahler series, and let

I = {p(z) ∈ K[z] ∶ p(z)f (z) ∈
∞

∑
i=1

K[z]f (zk i
) } .

The k-Mahler denominator of f (z) is the unique generator
d(z) ∈ K[z] of the ideal I, with the lowest non-zero coefficient of
d(z) being 1.

d(z) divides p0(z) in any Mahler equation for f (z).
d(z) need not be p0(z) of a minimal homogeneous Mahler
equation of f (z).



Example

(z − 1/2)f (z) − (z − 1/8)(z3 − 1/2)f (z3) = 0

has a unique non-zero solution (up to scalars).

However d(z) = 1, because

1 ⋅ f (z) = (z − 1/8)(z2 + 1/2z + 1/4)(z9 − 1/2)f (z9).



First gap

Let f (z) = ∑∞n=0 anzn ∈ QJzK be an M-function.

Proposition
TFAE:

1 h(an) ∈ o(n).
2 Every nonzero root of d is a root of unity.
3 f is analytic in B∣⋅∣(0,1) for all absolute values.
4 h(an) ∈ O(log2 n).



Sketch of proof

Show: h(an) ∈ o(n) ⇒ roots of d(z) in {0} ∪ {root of unity}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=µ(Q)

.

h(an) ∈ o(n) ⇒ f (z) has radius of convergence = 1 for all ∣⋅∣.
Suppose λ root of d(z), λ /∈ {0} ∪ µ(Q)
⇒ ∣λ∣ < 1 for some ∣⋅∣.

Take a minimal Mahler equation for f (z):

p0(z)f (z) + p1(z)f (zk) +⋯ + pd(z)f (zkd
) = 0,

with p0(z)pd(z) ≠ 0 and d minimal.
⇒ f (z), . . . , f (zkd−1) are linearly independent over K(z).
Transcendence result: (Adamczewski–Faverjon ’17)
⇒ for large m, also f (λkm), . . . , f (λkm+d−1) are linearly
independent over K .



Sketch of proof

Show: h(an) ∈ o(n) ⇒ roots of d(z) in {0} ∪ µ(Q).
Have: f (λkm), . . . , f (λkm+d−1) linearly independent over K .
Iterating p0(z)f (z) + p1(z)f (zk) +⋯ + pd(z)f (zkd ) = 0:

r0(z)f (z) + r1(z)f (zkm
) +⋯ + rd(z)f (zkm+d−1

) = 0

(r0(z), . . . , rd(z) ∈ Q[z] coprime).
d(λ) = 0 ⇒ r0(λ) = 0, so

r1(λ)f (λkm
) +⋯ + rd(λ)f (λkm+d−1

) = 0,

a contradiction!
Now: Coefficient recursion (in matrix form) ⇒ h(an) ∈ O(log2 n).



First gap

Let f (z) = ∑∞n=0 anzn ∈ QJzK be an M-function.

Proposition
TFAE:

1 h(an) ∈ o(n).
2 Every nonzero root of d is a root of unity.
3 f is analytic in B∣⋅∣(0,1) for all absolute values.
4 h(an) ∈ O(log2 n).



Second gap

Let f (z) = ∑∞n=0 anzn ∈ QJzK be an M-function.

Proposition
TFAE:

1 h(an) ∈ o(log2 n).
2 Every nonzero root ζ of d is a root of unity with order not

coprime with k (ζk j ≠ ζ for all j ≥ 1).
3 f is k-regular.
4 h(an) ∈ O(log n).



Sketch of argument

Suppose ζk = ζ ≠ 0 and h(an) ∈ o(log2(n)). Show: d(ζ) ≠ 0.

Strategy:
1 M-function structure and d(ζ) = 0 ⇒ lower bound for f (tjζ)

along some sequence (tj)j → 1, 0 < tj < 1.
2 Pigeonhole argument ⇒ lower bound for subsequence of an,

contradicting h(an) ∈ o(log2 n).



(1) Suppose d(ζ) = 0, p0 = d,

p0(z)f (z) =
d
∑
i=1

pi(z)f (zk i
).

(A) Try to get rid of p0:

g(z) ∶= f (ζz)
∞

∏
n=0

p0(ζzkn)
(1 − zkn)s

, so that g(z) =
d
∑
i=1

ri(z)g(zk i
)

with suitable s:

s ∶= min{ νi + (i − 1)ν0
i

∶ 1 ≤ i ≤ d } ∈ Q≥0,

with νi = vz−ζ(pi(z)), so that ri(z) ∈ Q[z], ri0(1) ≠ 0, s < ν0.



(B) Linear system for g: w(z) = (g(z), . . . ,g(zkd−1))T , and

w(z) = A(z)w(zk)

where A(z) ∈ Q[z]d×d .

(C) Suitable 1 − ε < t0 < 1 and tj ∶= t1/k
j−1 , (tj)j → 1.

w(tj) = A(tj)A(tj−1)⋯A(t1)w(t0).

Simplification: say A(1) invertible, c1 ∶= 2∣∣A(1)−1∣∣. So

0 < c0 ∶= ∣∣w(t0)∣∣ ≤ c j
1 ∣∣w(tj)∣∣.

That is
∣∣w(tj)∣∣ ≥ c0(1/c1)j > 0.

(Adamczewski-Bell ’17, in general: A(1) not nilpotent)
⇒ a similar bound for ∣g(tj)∣.



Now: ∣g(tj)∣ ≥ (1 − tj)a,

f (ζtj) = g(tj) ⋅
∞

∏
n=0

(1 − tkn
j )s

p0(ζzkn)
,

Mahler:
∞

∏
n=0
(1 − tkn

j )−1 ≥
∞

∑
n=m0

exp(c log2 n)tn
j ≥ exp(c log2 m)tm

j (m ≥ m0).

Combining:

∣f (ζtj)∣ ≥ (1 − tj)a
′

exp(cb log2 m)tmb
j

(for some sequence (tj)j → 1 and all m ≥ m0)



Have: Using d(ζ) = 0, ζk = ζ,

∣f (ζtj)∣ ≥ (1 − tj)a
′

exp(cb log2 m)tmb
j

(for some sequence (tj) → 1 and all m ≥ m0)

(2) Now split

f (ζtj) =
M
∑
n=0

an(ζtj)n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=SM

+
∞

∑
n=M+1

an(ζtj)n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣⋅∣≤1

.

with sufficiently small M =M(tj) s.t. pigeonhole principle gives
log∣an∣ > c log2 n infinitely often for some c > 0.

Can take M ≈ ⌈m log2 m⌉ with m ≈ c ′(1 − tj)−1.

Contradicts h(an) ∈ o(log2 n).



... on to regularity

Now we have p0(z)f (z) = ∑d
i=1 pi(z)f (zk i ) where the roots ζr of

p0 are roots of unity with ζk j ≠ ζ for j ≥ 0.

Factoring d(zkn):

f (z) = g(z)
±

k-Becker

⋅∏
r

∞

∏
n=0

1
1 − ζ−1

r zkn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k-regular

,

and products of k-regular sequences are k-regular.

So:

h(an) ∈ o(log2 n) ⇒ d “harmless” ⇒ f (z) k-regular.

Now h(an) ∈ O(log(n)) is elementary.



Second gap

Let f (z) = ∑∞n=0 anzn ∈ QJzK be an M-function.

Proposition
TFAE:

1 h(an) ∈ o(log2 n).
2 Every nonzero root ζ of d is a root of unity with order not

coprime with k (ζk j ≠ ζ for all j ≥ 1).
3 f is k-regular.
4 h(an) ∈ O(log n).



Third gap

Now f is k-regular; let S be the matrix semigroup of a minimal
linear representation, i.e.,

f (n) = uM(bk)⋯M(b0)v with n = ⟨bm⋯b0⟩k

and S = ⟨M(i) ∶ 0 ≤ i ≤ k − 1⟩ ⊆ Kd×d .

Proposition
TFAE:

1 h(an) ∈ o(log n).
2 S is tame (every nonzero eigenvalue is a root of unity).
3 The sequence (an)n≥0 is a Q-linear combination of

word-convolution products of k-automatic sequences.
4 h(an) ∈ O(log log n).



an = uM(w)v with M ∶ {0, . . . , k − 1}∗ → Kd×d , u ∈ K1×d , v ∈ Kd×1

and w a base-k representation of n.

“h(an) ∈ o(log n) ⇒ S tame” follows by pumping argument
(uM(w0wk

1 w2)v blows up in some absolute value).

Matrix semigroup S is tame if and only if

T−1ST ⊆

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

S1 Qd1×d2 Qd1×d3
. . . Qd1×dr

0 S2 Qd2×d3
. . . Qd2×dr

0 0 S3 . . . Qd3×dr

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . Sr

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

with Si finite semigroups.



Fourth gap

Let S be the matrix semigroup of a minimal linear representation.

Proposition
TFAE:

1 We have h(an) ∈ o(log log n).
2 S is finite.
3 f is k-automatic.
4 We have h(an) = O(1). Equivalently, { an ∶ n ≥ 0} is finite.



Height Gap Theorem

(bn) ∈ O ∩Ω(g(n)) ⇔ (bn) ∈ O(g(n)) and (bn) /∈ o(g(n)).

Theorem (Adamczewski–Bell–S. 2020)

Let f (z) = ∑∞n=0 anzn ∈ QJzK be an M-function. Then h(an) falls
into one of the following classes.

1 O ∩Ω(n).

2 O ∩Ω(log2 n).

3 O ∩Ω(log n).

4 O ∩Ω(log log n).

5 O(1). k-automatic
k-regular



Corollaries for other fields

Corollary
Let K be a field of characteristic 0 and f (z) a k-Mahler series over
K . Then f (z) is k-automatic if and only if it has finitely many
distinct coefficients.

In positive characteristic:
holds if k is a power of p;
false if k and p are coprime (Becker 1994).

Corollary
Let K be a field of characteristic 0 and f (z) a k-Mahler series over
K . Then f (z) is k-regular if and only if all nonzero roots of the
Mahler denominator in K are roots of unity with order not coprime
to k.



Decidability



Decidability

Theorem (Adamczewski–Bell–S. 2020)

The cases in the main theorem are decidable.

Contrast with:
Theorem (Krenn–Shallit 2020)

If f (n) is k-regular with values in Q, it is undecidable whether
∣f (n)∣ is bounded (in the archimedean absolute value).

Reason: It is
decidable if a f.g. matrix semigroup is tame (eigenvalues in
{0} ∪ µ(Q))
undecidable if it has joint spectral radius ≤ 1
(lim supn→∞∣∣X1⋯Xn∣∣1/n ≤ 1) (Blondel–Tsitsiklis ’00).
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