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Mahler functions

Definition
Let k>2. A power series f(z) = 3520 a,z" € Q[z] is a k-Mahler
function (M-function) if

po(2)F(2) + p1(2)F(2X) + - + pa(2)F(2X") = 0,
with polynomials po(z), ..., pg(z) and po(z)py(z) # 0.

m Coefficient recurrence: For n > 0 sufficiently large,

an = Z ~Qjan-j + Z Zﬁlua"—!
j=1 i=1j=0
(aqg =0 for g € Q\Zyo).
m Coefficients in a number field.
m Meromorphic in open unit disk (for every absolute value).



Logarithmic height

How to measure size of coefficients? 2”7 vs. 1/2".
m If a=a/beQ\{0} a reduced fraction, set

h(«) = log max{|al, |b|}.

m Local point of view: Archimedean absolute value || = || and
for each p € P a non-archimedean one:

alp = (.

1/8 if p=2,
9352 1/25 if p=5,
E.g., T =37 If pP = 7,
P~ 1200/7 if p = oo,
1 otherwise.

[T lalp=1. (Product formula).
pePu{oco}



Logarithmic height

h(a/b) = logmax{|al,|b|} =log [] max{1,]a/b|p}.
pePu{oco}

Because (say b = p;*---pf’, ged(a, b) = 1),
[T =max{1,|2|p} = max{L,|2[}2]p|2lp
pePu{oco}
=max{1, |%|}pfl---p;e = max{1,[7[}|bl.

21|b| = if |a|>|b
max{1’|%|} |b|= |b|| | |3| I |3| | |

|b| if |a| < |b|.
If « € K, K a number field:

h(a) =log [] max{1,|al.}.
VEMK
m h(a™t) = h(a). -
m Only finitely many « € Q of bounded degree and height.
m h(a) =0 < «is aroot of unity < |af =1 for all |.



Height Gap Theorem

(bn) € OnQ(g(n)) <« (bn) € O(g(n)) and (by) £ o(g(n))-

Theorem (Adamczewski—Bell-S. 2020)

Let f(z) = 520 a,z" € Q[z] be an M-function. Then h(a,) falls
into one of the following classes.

O nQ(n).

0 nQ(log?n).

O nQ(log n).

O nQ(loglogn). k-regular
O(1). k-automatic

)

So h(a,) € o(n) = h(a,) € O(log?(n)) etc.



oOnNQ(n)
% = Lo 22"

o o
n=0 1-2zF




0N Q(n)

1 _ oo O N Qlog?(n
=% = Xne2"2" . ( i( ) .

) 1 n=0 1—zF" — Zn:ﬂ an%
Hn=0 1-22F"

Partitions into k-powers:
n =j1k’n1 + ... +kanT
log(ay) ~ log?(n)/2log(k)
(Mabhler ’40, de Bruijn 48,

Dumas-Flajolet 96)



oOnNQ(n)

ZOO on ,m OﬂQ(lOgQ( ))
n= Om’r Zn Oa"Z

o] 1
H’n,:() o kT
1-2= Partitions into k-powers:

n= kM -4 ok

log(an) ~ log%(n)/2log(k)
0 N Q(log(n)) (Mahler ’40, de Bruijn "48,
Dumas-Flajolet 96)
Tz = =Y aonz"

2% qup(nh)z® vp(n!) ~n/(p—1)




oOnNQ(n)

ZOO on ,m OﬂQ(lOg2( ))
n= OW’T Zn Oa’"Z

o] 1
H’n,:O o kT
1-2= Partitions into k-powers:

n= kM -4 ok

log(an) ~ log%(n)/2log(k)
0 N Q(log(n)) (Mahler ’40, de Bruijn "48,
Dumas-Flajolet 96)
Tz = =Y aonz"

Yo vp(n)z® vp(nl) ~n/(p—1) 0 N Q(loglog(n))

> ooen Sn2"

$p = digit sum in base k




oOnNQ(n)

ZOO on n on Q(10g2 (n))
oo 1 o =l anz"
Hn=o T "

Partltlons into k-powers:
n= jlknl + ... .|_jrkm

log(an) ~ log®(n)/2log(k)
on Q(log(n)) (Mahler ’40, de Bruijn ’48,
n Dumas-Flajolet '96)

O N Q(loglog(n))
2o Sn2"
t, € {0,1} = parity of no. of s, = digit sum in base k

binary digits of n

k-automatic sequences onQl)




k-automatic/k-regular sequences




k-automatic sequences

Definition

(an)n is k-automatic if it can be produced a finite automaton
(with outputs):

Input: Base k representation of the number n = (bp,---bo)k-
Output: ap,.

Example

Thue-Morse sequence: t, = parity of number of 1s in binary
expansion of n.



k-regular sequences

Definition (Allouche=Shallit)

(an)n in Q is k-regular if there exist u € @IXd, ve @dXI and
M(0), ..., M(k-1) e@dXd such that

Sp = UM(bm)M(bm_l)---M(bo)v if n= (bm"'b0>k-

m If a, = number of 1s in binary representation of n, the
sequence is 2-regular but not 2-automatic.

m Cantor sequence: numbers where 1 doesn't appear in ternary
representation.

k-regular sequence (ap),:  k-automatic < {a, : n} finite.




Connection to M-functions

Theorem (Becker '94)

k-regular series = M-function.

Idea: s. = (akenir)n, 0<r<k® for(2)=Yn0akenirz".
50,0 = (an)n k-regular <
k-kernel {s.,:e>0,0<r < k®} spans fin-dim. Q-vector space.

fe,r(2) €spang,, {fur(Z) e’ <E, 0<r <k® -1}, k=kEL

= f(z) contained in fin.-dim. Q(z)-vector space in Q[z], closed
under z — z*.
= f(z2), f(zz), f(zzj), .. linearly dependent over Q(z).

= f(z) k-Mabhler.



Connection to M-functions

Conversely: M-function = k-regular.

Theorem (Becker '94)

If f(z) is k-Becker, i.e., satisfies an equation of the form

1-£(2) + pr(2)F(25) + -+ pa(2)F(2¥') = 0,
then f(z) is k-regular.

Idea: f(z) = ¥4, pi(2)f(z¥).
Consider Q-vector space V spanned by zjf(zki) (i<d, j<D).

Cartier operators A,(f(z)) = Y020 ank+r2",
A(FF(K)) = AT, (1)

and functional equation = V closed under A, = f is k-regular.



k-Becker = k-regular, k-regular > k-Becker,

But:
= If f(2) is k-Mahler with po(2)f(z) = £, pi(2)f(z¥') and
po(0) =1, then
g(2)
1(2) = ==
) M po(e)
with g(z) being k-Becker (Dumas '93).
m If f(z) is k-regular, then there exists a polynomial g(z) such

that
1

f2): z7q(z)

is k-Becker. Here g(0) =1 and 1/q(z) k-regular. (Becker's
conjecture, proven by Bell, Chyzak, Coons, Dumas '19.)

c @[[Z:tl]]



Gaps




Height Gap Theorem

(bn) € OnQ(g(n)) <« (bn) € O(g(n)) and (by) £ o(g(n)).

Theorem (Adamczewski—Bell-S. 2020)

Let f(z) = 220 a,z" € Q[z] be an M-function. Then h(a,) falls
into one of the following classes.

O nQ(n).

0 nQ(log?n).

O nQ(log n).

O nQ(loglogn). k-regular
O(1). k-automatic



The Mahler denominator

Let f(z) € K[z] be a k-Mahler series, and let

3= { p(z) e K[2] : pl2)F(2) € iK[z]f(zk’) .

The k-Mahler denominator of f(z) is the unique generator
0(z) € K[z] of the ideal J, with the lowest non-zero coefficient of
0(z) being 1.

m 0(z) divides pg(z) in any Mahler equation for f(z).

m 0(z) need not be py(z) of a minimal homogeneous Mahler
equation of f(z).



(z-1/2)f(z) - (z-1/8)(2* -1/2)f(z%) = 0

has a unique non-zero solution (up to scalars).

However 9(z) = 1, because

1-f(2) = (z-1/8) (22 +1/2z+1/4)(2° - 1/2)f(2°).



First gap

Let f(z) = %020 anz" € Q[z] be an M-function.

TFAE:
h(an) € o(n).
Every nonzero root of 0 is a root of unity.

f is analytic in Bj(0,1) for all absolute values.
h(a,) € O(log? n).



Sketch of proof

Show: h(ay,) € o(n) = roots of 9(z) in {0} U {root of unity}.
(S —

=u(Q)

h(ap) € o(n) = f(z) has radius of convergence =1 for all |-

Suppose A root of 9(z), A¢ {0} uu(Q)
= |\ <1 for some ||.

m Take a minimal Mahler equation for f(z):

po(2)f(2) + p1(2)f(25) + -+ pa(2)F(2*) = 0,

with po(z)p4(z) # 0 and d minimal.

= f(z), ..., f(zkd_l) are linearly independent over K(z).

Transcendence result: (Adamczewski-Faverjon '17)
= for large m, also f(A¥"), ..., AR
independent over K.

) are linearly



Sketch of proof

Show: h(a,) € o(n) = roots of d(z) in {0} U u(Q).
m Have: F(AF7), ..., f()\km+d_1) linearly independent over K.
m Iterating po(2)f(2) + pr(2)f(2¥) + - + pd(z)f(zkd) =0:

km+d—1

n(2)f(2) + n(2)F (") + -+ rg(2)F(z )=0

(ro(z2), ..., ry(z) € Q[z] coprime).
B 0(\)=0= rn(A\) =0, so

km+d—1

n(FO) + 4 g F) =0,

a contradiction!

Now: Coefficient recursion (in matrix form) = h(a,) € O(log? n).



First gap

Let f(z) = %020 anz" € Q[z] be an M-function.

TFAE:
h(an) € o(n).
Every nonzero root of 0 is a root of unity.

f is analytic in Bj(0,1) for all absolute values.
h(a,) € O(log? n).



Second gap

Let f(z) = %020 anz" € Q[z] be an M-function.

Proposition
TFAE:
h(an) € o(log? n).
Every nonzero root ¢ of 0 is a root of unity with order not
coprime with k (¢¥ # ¢ for all j > 1).
f is k-regular.
h(an) € O(logn).



Sketch of argument

Suppose ¢X = ¢ %0 and h(a,) € o(log?(n)). Show: d(¢) # 0.

Strategy:
M-function structure and 9({) =0 = lower bound for f(t;()
along some sequence (tj); - 1, 0 < t; <1.

Pigeonhole argument = lower bound for subsequence of a,,
contradicting h(a,) € o(log? n).



(1) Suppose 2(¢) =0, po =D,

d .
po(2)f(z) = ;Pi(Z)f(zk')-

(A) Try to get rid of py:

z d
g(z)—f(@z)n”"“k)l sothat g(2) = 3 ri(2)g(2")

i=1

with suitable s:

i 1
s:zmin{w léigd}eon,

1

with v; = v,_¢(pi(z)), so that r;(z) € Q[z], r;,(1) # 0, s < 1.



(B) Linear system for g: w(z) = (g(z), . ,g(zkd_l))
w(z) = A(Z)w(z*)
where A(z) e Q[z]9*.
(C) Suitable 1 -e<tg<1and tj:= tjl_/f, (t);— 1L
w(tj) = A(tj)A(tj-1)---A(t1)w(to).
Simplification: say A(1) invertible, ¢ = 2||A(1)7Y]]. So
0<cp=|lw(to)l < o [[w(t)ll

That is '
lw(t)ll = co(1/cr) >0.

(Adamczewski-Bell '17, in general: A(1) not nilpotent)
= a similar bound for |g(t;)|.



Now: |g(t)] > (1-£)?,
k")s

F(Ct) = (1) H [y

Mahler:
11—ty exp clogzn t! > exp(clog”m)t m>mg).
j J
n=0 n=mg
Combining:
mb
tj

IF(¢t)] > (1- ;)™ exp(cblog? m)

(for some sequence (t;); = 1 and all m > mg)



Have: Using 9(¢) =0, ¢k =¢,
F(Ct))] 2 (1- 1)) exp(cblog® m)t™

(for some sequence (tj) - 1 and all m > mg)

(2) Now split
M %)
F(Ct) =D an(Ct)"+ D an(Cty)".
n=0 n=M+1
=Sum <1

with sufficiently small M = M(t;) s.t. pigeonhole principle gives
log|an| > clog? n infinitely often for some ¢ > 0.

Can take M =~ [mlog2 m] with m~ ¢’(1 - tj)_l-

Contradicts h(aj,) € o(log?n).



... on to regularity

Now we have po(2)f(z) = 2_7:1 p,-(z)f(zki) where the roots ¢, of
po are roots of unity with ¢¥ = ¢ for j > 0.

Factoring 2(z¥"):

f(z) = g(2) HH Cl —

r n= 0
k Becker

k-regular

and products of k-regular sequences are k-regular.
So:
h(a,) € o(log’?n) = 0 “harmless” = f(z) k-regular.

Now h(ap) € O(log(n)) is elementary.



Second gap

Let f(z) = X%, a,2z" € Q[z] be an M-function.

TFAE:

h(a,) € o(log? n).

Every nonzero root ¢ of 0 is a root of unity with order not
coprime with k (¢¥ % ¢ for all j > 1).

f is k-regular.

h(an) € O(logn).




Third gap

Now f is k-regular; let S be the matrix semigroup of a minimal
linear representation, i.e.,

f(n) = uM(by)--M(bg)v with n=(bpy-bo)k

and S=(M(i):0<i<k-1)c K9

Proposition
TFAE:
h(an) € o(log n).
S is tame (every nonzero eigenvalue is a root of unity).

The sequence (ap)ns0 is a Q-linear combination of
word-convolution products of k-automatic sequences.

h(ap) € O(loglog n).



an = uM(w)v with M:{0,..., k-1}* > K9 ye K*9 v e K91
and w a base-k representation of n.

“h(ap) € o(log n) = S tame” follows by pumping argument
(uM(wows wa)v blows up in some absolute value).

Matrix semigroup & is tame if and only if

Sy @dl xdp @dl xd3 @dl xdy
—dpxd —dpxd,
., 0 S Q L Q 2
T8Telo o Sy ... Q&
0 0 0 S,

with S; finite semigroups.



Fourth gap

Let S be the matrix semigroup of a minimal linear representation.
TFAE:

We have h(ap,) € o(loglog n).

S is finite.

f is k-automatic.

We have h(a,) = O(1). Equivalently, {a,:n> 0} is finite.




Height Gap Theorem

(bn) € OnQ(g(n)) <« (bn) € O(g(n)) and (by) £ o(g(n)).

Theorem (Adamczewski—Bell-S. 2020)

Let f(z) = 220 a,z" € Q[z] be an M-function. Then h(a,) falls
into one of the following classes.

O nQ(n).

0 nQ(log?n).

O nQ(log n).

O nQ(loglogn). k-regular
O(1). k-automatic



Corollaries for other fields

Corollary

Let K be a field of characteristic 0 and f(z) a k-Mahler series over
K. Then f(z) is k-automatic if and only if it has finitely many
distinct coefficients.
In positive characteristic:

m holds if k is a power of p;

m false if k and p are coprime (Becker 1994).

Corollary

Let K be a field of characteristic 0 and f(z) a k-Mahler series over
K. Then f(z) is k-regular if and only if all nonzero roots of the
Mahler denominator in K are roots of unity with order not coprime
to k.



Decidability




Decidability

Theorem (Adamczewski—Bell-S. 2020)

The cases in the main theorem are decidable.
Contrast with:

Theorem (Krenn-Shallit 2020)

If £(n) is k-regular with values in Q, it is undecidable whether
|f(n)| is bounded (in the archimedean absolute value).

Reason: It is

m decidable if a f.g. matrix semigroup is tame (eigenvalues in
{0} u(Q))

m undecidable if it has joint spectral radius <1
(limsup,,_, oo || X1+ X,||" < 1) (Blondel-Tsitsiklis '00).
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