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SMALL PLANAR MAPS
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A CHRONOLOGY OF PLANAR MAPS

1960 1978 1981 1995 2000

Random maps

Recursive approach (enumeration)

Matrix integrals (enumeration)

Bijections (enumeration)

• Recursive approach: Tutte, Brown, Bender, Canfield, Richmond,
Goulden, Jackson, Wormald, Walsh, Lehman, Gao, Wanless, Bonzom...
•Matrix integrals: Brézin, Itzykson, Parisi, Zuber, Bessis, Ginsparg,
Kostov, Zinn-Justin, Boulatov, Kazakov, Mehta, Bouttier, Di Francesco,
Guitter, Eynard...
• Bijections: Cori & Vauquelin, Schaeffer, Bouttier, Di Francesco & Guitter
(BDG), Bernardi, Fusy, Poulalhon, Bousquet-Mélou, Chapuy...

• Geometric properties of random maps: Chassaing & Schaeffer, BDG,
Marckert & Mokkadem, Jean-François Le Gall, Miermont, Curien,
Albenque, Bettinelli, Ménard, Angel, Sheffield, Miller, Gwynne, Holden,
Budzinski, Louf, Carrance
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MAPS EQUIPPED WITH AN ADDITIONAL STRUCTURE

How many maps equipped with...
a spanning tree [Mullin 67, Bernardi]
a spanning forest? [Bouttier et al., Sportiello et al., Bousquet-Mélou
& Courtiel]
a self-avoiding walk? [Duplantier & Kostov; Gwynne & Miller]
a proper q-colouring? [Tutte 74-83, Bouttier et al.]
a bipolar orientation? [Kenyon, Miller, Sheffield, Wilson, Fusy,
Bousquet-Mélou...]

Additional structures in this talk:
Maps equipped with an height function (H-maps)
Maps equipped with an Eulerian orientation (EO-maps)
Quadrangulations equipped with a height function (H-quads)
Quartic maps equipped with an Eulerian orientation (EO-quarts)
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BACKGROUND

2000: EO-quarts problem non-rigorously “solved” with weight ω
[Kostov]
2013: Bijective link between H-quads and H-maps [Ambjørn and
Budd]
2017: EO-maps enumeration problem posed [Bousquet-Mélou,
Bonichon, Dorbec, Pennarun]
2018: Bijective link H-maps to EO-maps and H-quads to
EO-quarts [E.P., Guttmann], conjectured Asymptotics
2020: Exact solution for ω = 0, 1 [E.P., Bousquet-Mélou] (using
guess and check of functional equations)
2023: Exact solution for all ω [E.P., Zinn-Justin] (using complex
analysis, following Kostov)

This work:
Exact solution for all ω (using algebraic methods)
Exact solution for ω = 0, 1 with new weight v
Functional equations for all ω, v.
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THE MODEL (H-QUADS)

Height-labelled quadrangulations:
Each face has degree 4
Adjacent labels differ by 1
Root edge labelled from 0 to 1
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THE MODEL (H-QUADS)

Height-labelled quadrangulations:
Each face has degree 4
Adjacent labels differ by 1
Root edge labelled from 0 to 1

Aim: determine the generating function Q(t) = 4t + 35t2 + . . . that
counts height-labelled quadrangulations by faces.

1 0 1 0

1 0

1 01 0

2−1
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EXACT SOLUTION [E.P., BOUSQUET-MÉLOU, 2020]

Let R(t) ∈ tZ[[t]] be the unique series satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R(t)n+1.

Theorem: The generating function of height-labelled
quadrangulations is given by

Q(t) := q0 + q1t + q2t2 + · · · = 1
3t2 (t − 3t2 − R(t)).

Asymptotically,

qn ∼ κ
µn+2

n2(log n)2 ,

where κ = 1/18 and µ = 4
√

3π.
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THE WEIGHTED MODEL

Recall: Height-labelled quadrangulations:
Each face has degree 4
Adjacent labels differ by 1
Root edge labelled from 0 to 1

Weights:
A weight v per local minimum
A weight ω per alternating face
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THE WEIGHTED MODEL

Recall: Height-labelled quadrangulations:
Each face has degree 4
Adjacent labels differ by 1
Root edge labelled from 0 to 1

Weights:
A weight v per local minimum
A weight ω per alternating face

Non-alternating Alternating
(weight ω)
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THE WEIGHTED MODEL

Recall: Height-labelled quadrangulations:
Each face has degree 4
Adjacent labels differ by 1
Root edge labelled from 0 to 1

Weights:
A weight v per local minimum
A weight ω per alternating face

Aim: determine the refined generating function

Q(t, ω, v) =
(
2v + ωv + ωv2) t + · · ·

1 0 1 0

1 0

1 01 0

2−1
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TALK OUTLINE

Part 1: Combinatorics→ Functional equations for Q(t, ω, v)
Part 2: Solution for Q(t, 0, v) and Q(t, 1, v)
Part 3: Complex analytic version of functional equations,
solution to Q(t, ω, 1)
Bonus (if time permits): Bijections to Eulerian orientations and
six vertex model
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Part 1: Combinatorics→ Functional
equations
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FUNCTIONAL EQUATIONS PREVIEW

Theorem: There is a unique seriesM(y) ∈ t
yZ[ω, v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)
(

1−M (y)− (1− v)t
y

− ωy
)
∈ K[[y]],

M (M(x)) = x,

The series Q(t, ω, v) is given by

Q(t, ω, v) = t−2[y−2]M(y)− v.

Meaning ofM(M(x)):

WritingM(x) =
∞∑

n=1

∞∑
j=−n

mn,j(ω, v)xjtn, we have

M(x)jtn ∈ xn(t/x)j+nZ(ω, v)[[x, t/x]],

so

M(M(x)) :=
∞∑

n=1

∞∑
j=−n

mn,j(ω, v)M(x)jtn ∈ Z(ω, v)[[x, t/x]]

is well defined.
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COUNTING HEIGHT-LABELLED QUADRANGULATIONS

Characterisation 1: There are series P(y) ∈ Z[[y, ω, v, t]] and
D(x, y),E(x, y) ∈ Z[[x, y, ω, v, t]], uniquely defined by:

D(x, y) = v +
y
v

D(x, y)[z1]D(x, z) + y[x≥0]

(
1
x

D(x, y)P
( t

x

))
,

(1− x)(D(x, y)− v) = [y>0]D(x, y)
(

yP(y) + y− vy + ω
t
y
+

t
v
[z1]D

(
t
y
, z
))

.

E(x, y) = E(y, x) =
1
v
[x≥0]

(
D
( t

x
, y
)

P(x)
)

The generating function Q(t, ω, v) is given by

Q = [y1]P(y)− v.

I will show one element of the proof.
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D-PATCHES

D-patch: Digons are allowed next to the root vertex and the outer face
may have any degree.

0
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1

1
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−1

0

2

2

0

0
−1

1

2

D

Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(x, y):
- x counts digons.
- y counts the degree of the outer
face (halved)
- t, ω, v same as before.
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DECOMPOSITION OF D-PATCHES

Colour the vertex two places clockwise from the root vertex around
the outer face.
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Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(x, y):
- x counts digons.
- y counts the degree of the outer
face (halved)
- t, ω, v same as before.
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DECOMPOSITION OF D-PATCHES

Highlight the maximal connected subgraph of nonpositive labels,
containing the coloured vertex.
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Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(x, y):
- x counts digons.
- y counts the degree of the outer
face (halved)
- t, ω, v same as before.
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DECOMPOSITION OF D-PATCHES

Add to the subgraph all vertices and edges contained in its inner
face(s).
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must be labelled 1.
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- y counts the degree of the outer
face (halved)
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DECOMPOSITION OF D-PATCHES

Record the subgraph with inverted labels.

This extracted map is a
patch!
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DECOMPOSITION OF D-PATCHES

Contract the highlighted map to a single vertex (labelled 0).

The new
vertex may be adjacent to digons.
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DECOMPOSITION OF D-PATCHES

Contract the highlighted map to a single vertex (labelled 0).

The new
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DECOMPOSITION OF D-PATCHES

Merge the new vertex with the root vertex.

The new map is now a
D-patch
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DECOMPOSITION OF D-PATCHES

Merge the new vertex with the root vertex. This new map is a
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SIMPLIFYING EQUATIONS

Equations:

D(x, y) = v +
y
v

D(x, y)[z1]D(x, z) + y[x≥0]

(
1
x

D(x, y)P
( t

x

))
[y>0](1− x)D(x, y) = [y>0]D(x, y)

(
yP(y) + y− vy + ω

t
y
+

t
v
[z1]D

(
t
y
, z
))

E(x, y) = E(y, x) =
1
v
[x≥0]

(
D
( t

x
, y
)

P(x)
)

DefineM(x) ∈ t
xZ[ω, v][[

t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),

that is
M
( t

x

)
= xP (x) +

t
v
[z1]D

( t
x
, z
)
.
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+
(

D
( t

x
, y
)( t

xv
[z1]D

( t
x
, z
)
+ P (x)

))
DefineM(x) ∈ t

xZ[ω, v][[
t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),

that is
M
( t

x

)
= xP (x) +

t
v
[z1]D

( t
x
, z
)
.
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SIMPLIFYING EQUATIONS

Equations:

[y>0](1− x)D(x, y) = [y>0]D(x, y)
(

yP(y) + y− vy + ω
t
y
+

t
v
[z1]D

(
t
y
, z
))

t
xy

D
( t

x
, y
)
+ vE (x, y) =

tv
xy

+ D
( t

x
, y
) 1

x
M
( t

x

)
DefineM(x) ∈ t

xZ[ω, v][[
t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),

that is
M
( t

x

)
= xP (x) +

t
v
[z1]D

( t
x
, z
)
.
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SIMPLIFYING EQUATIONS

Equations:

[y>0](1− x)D(x, y) = [y>0]D(x, y)
(
M
(

t
y

)
+ y− vy + ω

t
y

)
t

xy
D
( t

x
, y
)
+ vE (x, y) =

tv
xy

+ D
( t

x
, y
) 1

x
M
( t

x

)
DefineM(x) ∈ t

xZ[ω, v][[
t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),

that is
M
( t

x

)
= xP (x) +

t
v
[z1]D

( t
x
, z
)
.
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SIMPLIFYING EQUATIONS

Equations:

0 = [y>0]D(x, y)
(
−1 + x +M

(
t
y

)
+ y− vy + ω

t
y

)
vE (x, y) =

tv
xy

+ D
( t

x
, y
)(1

x
M
( t

x

)
− t

xy

)
DefineM(x) ∈ t

xZ[ω, v][[
t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),

that is
M
( t

x

)
= xP (x) +

t
v
[z1]D

( t
x
, z
)
.
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SIMPLIFYING EQUATIONS

Equations:

0 = [y<0]D
(

x,
t
y

)(
−1 + x +M (y) +

t
y
− vt

y
+ ωy

)
v− vt

xy
E
(

t
x
,

t
y

)
= D

(
x,

t
y

)(
1− 1

y
M (x)

)
DefineM(x) ∈ t

xZ[ω, v][[
t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),

that is
M
( t

x

)
= xP (x) +

t
v
[z1]D

( t
x
, z
)
.
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SIMPLIFYING EQUATIONS

Equations:

0 = [y<0]D
(

x,
t
y

)(
−1 + x +M (y) +

t
y
− vt

y
+ ωy

)
v− vt

xy
E
(

t
x
,

t
y

)
= D

(
x,

t
y

)(
1− 1

y
M (x)

)
DefineM(x) ∈ t

xZ[ω, v][[
t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

D
(

x,
t
y

)(
x− 1 +M (y) +

(1− v)t
y

+ ωy
)
∈ K[[y]]

v− vt
xy

E
(

t
x
,

t
y

)
= D

(
x,

t
y

)(
1− 1

y
M (x)

)
DefineM(x) ∈ t

xZ[ω, v][[
t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

D
(

x,
t
y

)(
x− 1 +M (y) +

(1− v)t
y

+ ωy
)
∈ K[[y]]

D
(

y,
t
x

)(
1− 1

x
M (y)

)
= D

(
x,

t
y

)(
1− 1

y
M (x)

)
DefineM(x) ∈ t

xZ[ω, v][[
t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

D
(

x,
t
y

)(
x− 1 +M (y) +

(1− v)t
y

+ ωy
)
∈ K[[y]]

yD
(

y,
t
x

)
(x−M (y)) = xD

(
x,

t
y

)
(y−M (x))

DefineM(x) ∈ t
xZ[ω, v][[

t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

D
(

x,
t
y

)(
x− 1 +M (y) +

(1− v)t
y

+ ωy
)
∈ K[[y]]

yD
(

y,
t
x

)
(x−M (y)) = xD

(
x,

t
y

)
(y−M (x))

M(x)D
(
M(x),

t
x

)
(x−M (M(x))) = 0

DefineM(x) ∈ t
xZ[ω, v][[

t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

D
(

x,
t
y

)(
x− 1 +M (y) +

(1− v)t
y

+ ωy
)
∈ K[[y]]

yD
(

y,
t
x

)
(x−M (y)) = xD

(
x,

t
y

)
(y−M (x))

M (M(x)) = x

DefineM(x) ∈ t
xZ[ω, v][[

t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

D
(

x,
t
y

)(
x− 1 +M (y) +

(1− v)t
y

+ ωy
)
∈ K[[y]]

y (x−M (y)) /D
(

x,
t
y

)
= x (y−M (x)) /D

(
y,

t
x

)
∈ K[[y]]

M (M(x)) = x

DefineM(x) ∈ t
xZ[ω, v][[

t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

y (x−M (y))
(

x− 1 +M (y) +
(1− v)t

y
+ ωy

)
∈ K[[y]]

y (x−M (y)) /D
(

x,
t
y

)
= x (y−M (x)) /D

(
y,

t
x

)
∈ K[[y]]

M (M(x)) = x

DefineM(x) ∈ t
xZ[ω, v][[

t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

y (x−M (y))
(

x− 1 +M (y) +
(1− v)t

y
+ ωy

)
∈ K[[y]]

M (M(x)) = x

DefineM(x) ∈ t
xZ[ω, v][[

t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

x2y−x
(
y− (1− v)t − ωy2)+yM (y)

(
1−M (y)− (1− v)t

y
− ωy

)
∈ K[[y]]

M (M(x)) = x

DefineM(x) ∈ t
xZ[ω, v][[

t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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SIMPLIFYING EQUATIONS

Equations:

yM (y)
(

1−M (y)− (1− v)t
y

− ωy
)
∈ K[[y]]

M (M(x)) = x

DefineM(x) ∈ t
xZ[ω, v][[

t
x , x]] by

M(x) =
t
x

P
( t

x

)
+

t
v
[z1]D(x, z),
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CHARACTERISATION OFM(x)

Theorem: There is a unique seriesM(y) ∈ t
yZ[ω, v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)
(

1−M (y)− (1− v)t
y

− ωy
)
∈ K[[y]],

M (M(x)) = x,

The series Q(t, ω, v) is given by

Q(t, ω, v) = t−2[y−2]M(y)− v.

Next section: Solution for ω = 0, 1
Following section: Solution for v = 1
Still open: General solution
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CHARACTERISATION OFM(x)

Theorem: There is a unique seriesM(y) ∈ t
yZ[ω, v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)
(

1−M (y)− (1− v)t
y

− ωy
)
∈ K[[y]],

M (M(x)) = x,

The series Q(t, ω, v) is given by

Q(t, ω, v) = t−2[y−2]M(y)− v.

Next section: Solution for ω = 0, 1
Following section: Solution for v = 1
Still open: General solution
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Part 2: Solution for ω = 0, 1
(Eulerian (partial) orientations by edges and vertices).
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[ω, v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)
(

1−M (y)− (1− v)t
y

− ωy
)
∈ K[[y]],

M (M(y)) = y,

The series Q(t, ω, v) is given by

Q(t, ω, v) = t−2[y−2]M(y)− v.
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)
(

1−M (y)− (1− v)t
y

)
∈ K[[y]],

M (M(y)) = y,

The series Q(t, 0, v) is given by

Q(t, 0, v) = t−2[y−2]M(y)− v.
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)
(

1−M (y)− (1− v)t
y

)
∈ K[[y]],

M (M(y)) = y,
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)− yM (y)2 − (1− v)tM (y) ∈ K[[y]],

M (M(y)) = y,
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)− yM (y)2 − (1− v)tM (y) ∈ K[[y]],

(1−M(y))(yM(y)− t(v− 1)) ∈ K[[y]],

M (M(y)) = y,
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)− yM (y)2 − (1− v)tM (y) ∈ K[[y]],

R(y) := (1− y)(1−M(y))(yM(y)− t(v− 1)) ∈ K[[y]],

M (M(y)) = y,
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)− yM (y)2 − (1− v)tM (y) ∈ K[[y]],

R(y) := (1− y)(1−M(y))(yM(y)− t(v− 1)) ∈ K[[y]],

M (M(y)) = y,

So, R(y) ∈ K[[y]] satisfies R(M(y)) = R(y) ∈ K[[y]], which is only
possible if R(y) doesn’t depend on y.
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)− yM (y)2 − (1− v)tM (y) ∈ K[[y]],

(1− y)(1−M(y))(yM(y)− t(v− 1)) = R ∈ tZ[v][[t]],
M (M(y)) = y,

So, R(y) ∈ K[[y]] satisfies R(M(y)) = R(y) ∈ K[[y]], which is only
possible if R(y) doesn’t depend on y.
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)− yM (y)2 − (1− v)tM (y) ∈ K[[y]],

(1− y)(1−M(y))(yM(y)− t(v− 1)) = R ∈ tZ[v][[t]],
M (M(y)) = y,

Solution forM(y):

M(y) =
y + t(v− 1)

2y

(
1−

√
1− 4y

t(v− 1) + R/(1− y)
(y + t(v− 1))2

)

=
tv− t

y
+
∑

n,k,j≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
n + j

n

)
tk(v− 1)kRn+1yj−n−k−1
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SOLUTION FOR ω = 0

Recall: There is a unique seriesM(y) ∈ t
yZ[v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)− yM (y)2 − (1− v)tM (y) ∈ K[[y]],

(1− y)(1−M(y))(yM(y)− t(v− 1)) = R ∈ tZ[v][[t]],
M (M(y)) = y,

Solution forM(y):

M(y) =
y + t(v− 1)

2y

(
1−

√
1− 4y

t(v− 1) + R/(1− y)
(y + t(v− 1))2

)

=
tv− t

y
+
∑

n,k,j≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
n + j

n

)
tk(v− 1)kRn+1yj−n−k−1

tv = [y−1]M(y) =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k

n

)
tk(v− 1)kRn+1
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SOLUTION FOR ω = 0

Solution forM(y):

M(y) =
y + t(v− 1)

2y

(
1−

√
1− 4y

t(v− 1) + R/(1− y)
(y + t(v− 1))2

)

=
tv− t

y
+
∑

n,k,j≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
n + j

n

)
tk(v− 1)kRn+1yj−n−k−1

tv = [y−1]M(y) =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k

n

)
tk(v− 1)kRn+1
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SOLUTION FOR ω = 0

Solution forM(y):

M(y) =
y + t(v− 1)

2y

(
1−

√
1− 4y

t(v− 1) + R/(1− y)
(y + t(v− 1))2

)

=
tv− t

y
+
∑

n,k,j≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
n + j

n

)
tk(v− 1)kRn+1yj−n−k−1

tv = [y−1]M(y) =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k

n

)
tk(v− 1)kRn+1

Solution for generating function Q:
Q(t, 0, v) = t−2[y−2]M(y)− v.

= −v +
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k − 1

n

)
tk(v− 1)kRn+1.
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SOLUTION FOR ω = 0

Theorem: Let R(t, v) ∈ Z[v][[t]] be the unique series with constant
term 0 satisfying

tv =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k

n

)
tk(v− 1)kRn+1.

The generating function Q(t, 0, v) for height-labelled
quadrangulations (with no alternating faces) counted by faces and
local minima is given by

Q(t, 0, v) = −v+
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k − 1

n

)
tk(v−1)kRn+1.

Corollary: Q(t, 0, v) and R(t, v) D-algebraic in t, v.
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SOLUTION FOR ω = 0

Theorem: Let R(t, v) ∈ Z[v][[t]] be the unique series with constant
term 0 satisfying

tv =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k

n

)
tk(v− 1)kRn+1.

The generating function Q(t, 0, v) for height-labelled maps counted
by edges and faces is given by

Q(t, 0, v) = −v+
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k − 1

n

)
tk(v−1)kRn+1.

Corollary: Q(t, 0, v) and R(t, v) D-algebraic in t, v.
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SOLUTION FOR ω = 0

Theorem: Let R(t, v) ∈ Z[v][[t]] be the unique series with constant
term 0 satisfying

tv =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k

n

)
tk(v− 1)kRn+1.

The generating function Q(t, 0, v) for Eulerian orientations counted
by edges and vertices is given by

Q(t, 0, v) = −v+
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
2n + k − 1

n

)
tk(v−1)kRn+1.

Corollary: Q(t, 0, v) and R(t, v) D-algebraic in t, v.
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SOLUTION FOR ω = 1

Theorem: Let R(t, v) ∈ Z[v][[t]] be the unique series with constant
term 0 satisfying (in some domain)

t =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
3n + 2k
n + k

)
tk(v− 1)k Rn+1.

The generating function Q(t, 1, v) for height-labelled
quadrangulations counted by faces and local minima is given by

Q(t, 1, v) = −v+
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
3n + 2k − 1

2n + k

)
tk(v−1)k Rn+1

1 .

Corollary: Q(t, 1, v) and R(t, v) D-algebraic in t, v.
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SOLUTION FOR ω = 1

Theorem: Let R(t, v) ∈ Z[v][[t]] be the unique series with constant
term 0 satisfying (in some domain)

t =
∑

n,k≥0

1
n + 1

(
2n
n

)(
2n + k

k

)(
3n + 2k
n + k

)
tk(v− 1)k Rn+1.

The generating function Q(t, 1, v) for Eulerian partial orientations
counted by edges and vertices is given by

Q(t, 1, v) = −v+
1
t2

∑
n,k

1
n + 1

(
2n
n

)(
2n + k

k

)(
3n + 2k − 1

2n + k

)
tk(v−1)k Rn+1

1 .

Corollary: Q(t, 1, v) and R(t, v) D-algebraic in t, v.
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Part 3: Analytic functional equations

0
z 7→ χ(z)

0 π

γ/2 γ/2 + π

χ(γ/2)

π/2

χ(0) χ(π/2)
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ANALYTIC FUNCTIONAL EQUATIONS

Recall: There is a unique seriesM(y) ∈ t
yZ[ω, v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)
(

1−M (y)− (1− v)t
y

− ωy
)
∈ K[[y]],

M (M(x)) = x,

Claim: For sufficiently small t, there is an even meromorphic
function χ on C and some γ ∈ iR>0 satisfying

M(χ(z)) = χ(γ − z),

and

1 +
t(v− 1)
χ(z)

= χ(γ + z) + ωχ(z) + χ(z− γ).

Last section: Solved for ω = 0, 1.
Next section: Solution for v = 1.
Still open: All other values ω, v.
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ANALYTIC FUNCTIONAL EQUATIONS

Recall: There is a unique seriesM(y) ∈ t
yZ[ω, v][[y, t/y]] with

[y−1]M(y) = tv satisfying

yM (y)
(

1−M (y)− (1− v)t
y

− ωy
)
∈ K[[y]],

M (M(x)) = x,

Claim: For sufficiently small t, there is an even meromorphic
function χ on C and some γ ∈ iR>0 satisfying

M(χ(z)) = χ(γ − z),

and

1 +
t(v− 1)
χ(z)

= χ(γ + z) + ωχ(z) + χ(z− γ).

Last section: Solved for ω = 0, 1.
Next section: Solution for v = 1.
Still open: All other values ω, v.
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Part 4: Six vertex model (v = 1)
(Previous solution: Kostov (2000)/EP and Zinn-Justin (2019)).
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RECALL: SOLUTIONS AT ω = 0, 1

The generating function Q(t, 0, 1) is given by

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R0(t)n+1,

Q(t, 0, 1) =
1

2t2 (t − 2t2 − R0(t)).

The generating function Q(t, 1, 1) is given by

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R1(t)n+1,

Q(t, 1, 1) =
1

3t2 (t − 3t2 − R1(t)).
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SOLUTION FOR Q(t, ω, 1)

Define

ϑ(z, q) =
∞∑

n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ

′′′(α, q)
ϑ′(α, q)2 +

ϑ′′(α, q)
ϑ′(α, q)

)
.

Define R(t, γ) by

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)
ϑ′(α, q)

+
ϑ′′′(0, q)
ϑ′(0, q)

)
.

Then
Q(t, γ) =

1
(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
.
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Thank you!
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Bijection 1: height-labelled
quadrangulations to weakly height-labelled

maps

(Miermont (2009)/Ambjørn and Budd (2013)).
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QUADRANGULATIONS TO MAPS

Start with a height-labelled quadrangulation.

The new map is now a
D-patch

1

0

1

0

−1

0

−1

−2

2 1
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H-QUADRANGULATIONS TO H-MAPS

Start with a height-labelled quadrangulation.

The new map is now a
D-patch

1

0

1

0

−1

0

−1

−2

2 1

`+ 1

`

`+ 1

`+ 2

`+ 1

`

`+ 1

`
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H-QUADRANGULATIONS TO H-MAPS

Draw a red edge in each face according to the rule.

The new map is
now a D-patch

1

0

1

0

−1

0

−1

−2

2 1

`+ 1

`

`+ 1

`+ 2

`+ 1

`

`+ 1

`
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H-QUADRANGULATIONS TO H-MAPS

Remove all of the original edges.

This invisible bit needs to be long
enough to get to the next line.

1

0

1

0

−1

0

−1

−2

2 1
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H-QUADRANGULATIONS TO H-MAPS

Remove any isolated vertices.

This invisible bit needs to be long
enough to get to the next line.

1

0

1

0

−1

0

2 1
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H-QUADRANGULATIONS TO H-MAPS

The new map is a weakly height-labelled map (adjacent labels differ
by at most 1).

1

0

1

0

−1

0

2 1

These are counted by edges (t), mono-value edges (ω) and faces (v).
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H-QUADRANGULATIONS TO H-MAPS

The new map is a weakly height-labelled map (adjacent labels differ
by at most 1).

1

0

1

0

−1

0

2 1

These are counted by edges (t), mono-value edges (ω) and faces (v).
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Bijection 2: H-maps to Eulerian
orientations (EO-maps)

Same Bijection: H-quads to
EO-quarts

(EP and Gutmann (2018)).
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EO-QUARTS

EO-quarts: each vertex has two incoming and two outgoing edges.
Counted by vertices (t), alternating vertices (ω) and clockwise faces
(v)
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H-QUADS TO EO-QUARTS

Start with a height-labelled quadrangulation.

1

0

1

0

−1

0

−1

−2

2 1
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BIJECTION TO THE ICE MODEL

Draw the dual with edges oriented according to the rule.

1

0

1

0

−1

0

−1

−2

2 1

`+ 1 `
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BIJECTION TO THE ICE MODEL

Each red vertex has two incoming and two outgoing edges.

1

0

1

0

−1

0

−1

−2

2 1

`+ 1

`

`+ 1

`+ 2

`+ 1

`

`+ 1

`
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BIJECTION TO THE ICE MODEL

Each red vertex has two incoming and two outgoing edges.
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BIJECTION TO THE ICE MODEL

Each vertex has two incoming and two outgoing edges.
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BONUS SLIDE: BIJECTION TO A LOOP MODEL

Let C(t, ω) be the generating function for partially oriented cubic
maps in which each vertex is one of the following types.

Right turn
(weight ω−1

√
t)

Left turn
(weight ω

√
t)

Theorem: Q(t, ω2 + ω−2) = C(t, ω).
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BONUS SLIDE: BIJECTION TO A LOOP MODEL

Let C(t, ω) be the generating function for partially oriented cubic
maps in which each vertex is one of the following types.

Right turn
(weight ω−1

√
t)

Left turn
(weight ω

√
t)

Theorem: Q(t, ω2 + ω−2) = C(t, ω).
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Bijection 3: A loop model
(Kostov (2000)).
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BONUS SLIDE: BIJECTION TO A LOOP MODEL

Theorem: Q(t, ω2 + ω−2) = C(t, ω)

(weight t)

(weight ω2t) (weight ω−2t)

OR

(weight t)

(weight γt)

OR
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BONUS SLIDE: BIJECTION TO A LOOP MODEL

Theorem: Q(t, ω2 + ω−2) = C(t, ω)

OR

(weight t)

(weight γt)

(weight t)

(weight ω2t) (weight ω−2t)

OR
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