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|. INTRODUCTION



Object of study. Let a; € Q(2).

(E) : an(2)f("(2) + - + a1(2)f'(2) + a0(2)f(z) = 0

Formalism. f solution of (E) < L-f =0 where
L=2,0"+--+a10+a € Q(2)()

is a so-called linear differential operator.



Object of study. Let a; € Q(2).

(E) : an(2)f("(2) + - + a1(2)f'(2) + a0(2)f(z) = 0

Formalism. f solution of (E) < L-f =0 where
L=2,0"+--+a10+a € Q(2)()

is a so-called linear differential operator.

Leibniz rule: (zf) =zf' + f —| 0z=2z0+1

Example. L = 282 + (—4z3 +52)0 + 422 — 5
and an example of factorization:

20° + (423 +52)0 + 42> — 5 = (0 — 42° + 5)(z0 — 1)



Factoring a linear differential operator

Improvements of
> 1894: Beke (right-hand factor Beke's algorithm

of order 1) — 1989: Schwarz
» 1996: Singer (adaptation of — 1990: Grigor'ev

Berlekamp's algorithm) — 1994: Bronstein
> 1997: van Hoeij (algorithm of the — 1996: Tsarev

type “local — global™)
> 2004: Cluzeau, van Hoeij (modular algorithm)

2007: van der Hoeven (symbolic-numeric algorithm)

Complexity analysis (bounds on coefficients):
> 1990: Grigor'ev
» 2020: Bostan, Rivoal, Salvy



Let F denote Q(z) and consider a differential operator L € F(9).
Write L = q(ap0" + -+ - 4+ @10 + ao) with g € Q(2) such that the
a;j € Q[z] are coprime.

Definition. A point zg € C is an ordinary point of L if a,(z) # 0.
Otherwise, it is a singular point (or a singularity) of L.

Fix an ordinary point zy of L.

Proposition. For each 1 </ < n, there is a unique power series
hi —ZJ 5 hij(z — zo) such that:
> h; est solution of L in a neighborhood of z,

> hlg)(Zo) = 0j j41 for0<j < n.

Remark. The basis (h1,..., h,) gives an canonical identification of
the solution space Sol(L) := Spang(h, . . ., hy) with Q"



approximation — guessing — post-certification

1: compute an approximation X of a solution x € C (Newton's method)
2: guess the minimal polynomial m, € Q[X] from X (LLL algorithm)
3: check that m, divides P (Euclidean division)

1: compute an approximation j of a solution y € Q[[z — zo]]
(differential equation <+ recurrence relation on coefficients)

2: guess the minimal operator m, € Q[z]() from y
(Hermite—Padé approximants)

3: check that m, divides L in Q(z)(0) (right-Euclidean division)




approximation — guessing — post-certification

1: compute an approximation X of a solution x € C (Newton's method)
2: guess the minimal polynomial m, € Q[X] from X (LLL algorithm)
3: check that m, divides P (Euclidean division)

1: compute an approximation j of a solution y € Q[[z — zo]]
¥ (differential equation <« recurrence relation on coefficients)
if y is not
well-chosen
then m, =L

® 3: check that m, divides L in Q(z)(0) (right-Euclidean division)

2: guess the minimal operator m, € Q[z]() from y
(Hermite—Padé approximants)




[I. DIFFERENTIAL GALOIS GROUP



polynomial P € Q[X] operator L € F(0)
degree d order n
d roots x1,...,x4 € Q n linearly independent
counted with multiplicity solutions yi,...,yn € Q[[z — 20]]
splitting field L = Q(x;) Picard—Vessiot extension & = F(y;)
— : _ | o€eAut(E/F) }
Gal(P) := Aut (L/Q) Galgiee(L) 1= {S_t_ “AE/T)

linear left action of Galgis(L)
onSol(L)={fe&|L-f=0}

Proposition. There is a one-to-one correspondance:

subspace V invariant
L=1,1, under the action of the
V = Ker(Ls) differential Galois group




Example: L =z8%+ 0

(Iogl(z))

C -
(Iog(z)l+ 2i7r)

<2%ﬂ (1J> <Iog1(z)> - (Iog(z)l-l- 2i7r)

monodromy of L around the
singularity 0




Example: L =282+ 8 Theorem. [Schlesinger, 1885]
Let L € F(O) be an operator.
If L is Fuchsian then Galgg(L) is
(Iogl(z)> the Zariski-closure of the group
generated by the monodromy ma-

C . trices of L (with a fixed base-point).

1
(Iog(z) 4+ 2i7r) » How to check the Fuchsianity of L?
— Fuchs' Criterion [Fuchs, 1866]

1 0 1 1
_ e _—
<2i7r 1> <Iog(z)) (Iog(z) " 2,.7r) » What if L is no‘F Fuch5|.an.
- — add exponential matrices
monodromy of L around the and Stokes’s matrices

singularity 0 [Ramis, 1985]




If L is Fuchsian: . .
subspace V invariant
L=1Lil> < under the action of the
the monodromy matrices

L € Q(z)(0) with singularities s, ..., s,

monodromy matrices My, ..., M, € Mat,(C)

a non-trivial subspace V' C Sol(L)
invariant under the action of the M;'s

no non-trivial subspace of Sol(L) is l
invariant under the action of the M;’s Ly € Q(2)(d) a minimal
/ annihilator of a non-zero f € V

L is irreducible
L=L;L,




[1l. COMPUTING AN INVARIANT SUBSPACE



Let M = {M,...,M,} C Mat,(C) be a finite list of matrices.

e A := C[M)], the algebra of non-commutative polynomials in the M;'s
e Orby(v) :={Mv; M € A}, the orbit of v under the action of M

INPUT: a list M = {M,...,M,} C Mat,(C) and v € C"
OuTpPuT: the orbit of v under the action of the M;'s

Proposition. There is a non-trivial M-invariant subspace V C C”
iff there is a non-zero vector v € C" such that Orbp(v) € C".



Proposition [van der Hoeven, 2007]. Let (v1, ..., v,) be a basis
of C” such that the projection maps onto the Cv;’s belong to A.
Then there is a non-trivial M-invariant subspace V C C" iff there
is an index i such that Orba(v;) € C".

Remark. Let M € A. Denote by A1, ..., Ak the eigenvalues, with
multiplicities my, ..., my, of M. For each j, the projection map
onto the generalized eigenspace E; := Ker ((M — \jl,)™) is
polynomial in M (therefore it belongs to A).

Lemma 1. Assume that there is no non-trivial M-invariant
subspace. Then there is an M € A with exactly n eigenvalues.

Lemma 2. Consider Ny, ..., Ns € Mat,(C) and take a random
linear combination N € Spang(Ni, ..., Ns).
With probability 1, the number of eigenvalues of N is maximal.



INPUT: a list M = {My,..., M,} C Mat,(C)
OuTPUT: a non-trivial M-invariant subspace or None

1: take a random M € A := C[M)]
2: for each 1-dimensional generalized eigenspace E of M do

3:  if Orbit(M, E) # C" then

4: return Orbit(M, E)

5: if all the generalized eigenspaces of M are 1-dimensional then

6: return None

7: else

8:  take a generalized eigenspace E of M of dimension > 1

9:  select v € E such that Orbit(M, v) # C” /* (details hidden) */

10:  return Orbit(M, v)




V. VAN DER HOEVEN'S ALGORITHM



Implementation of operations +, —, X, =, 1/+,... on intervals in
such a way that the following invariant is respected.

The interval contains the exact value.

Example: Let v := [3.1415,3.1416] be an interval representing .
We require that /7 D {x € R such that 3.1415 < x? < 3.1416}.

e Complex numbers

e Overestimation

e Testing nullity e Vectors, matrices




rigorous output

INPUT: a list M ={My,...,M,} C Mat,(C)
OuTPUT: a non-trivial M-invariant subspace or None or Fail
1: take a random M € A := C[M]
2: for each 1-dimensional generalized eigenspace E of M do /* can Fail */
if Orbit(M, E) # C" then
return Orbit(M, E)
if all the generalized eigenspaces of M are 1-dimensional then
return None
: else
take a generalized eigenspace E of M of dimension > 1
select v € E such that Orbit(M, v) # C" /* can Fail (details hidden) */
return Orbit(M, v)

@

SRR O




INPUT: a Fuchsian operator L € Q(z)(9)
OuTPUT: a non-trivial right factor € Q(z)(9) of L or Irreducible
1: loop
2:  compute M = {My,..., M,} the monodromy matrices by
approximations with rigorous error bounds
3: V= Invariant_Subspace(M)
4: if V is Fail then
5: increase precision
6: else-if V is None then
T: return Irreducible
8: else
9: guess a candidate operator Ly from V
10: if L, divides L then
11: return Lo
12: else
13: increase precision and order of truncation




V. IMPLEMENTATION



In SageMath system, source available at
https://github.com/a-goyer/diffop_factorization.

> InvSub (interval version, with rigorous None)

» right_dfactor, dfactor
> and the structure ComplexOptimisticField

The code takes advantage of:
e ore_algebra package, in particular the subpackage analytic for
arbitrary-precision monodromy computation
(https://github.com/mkauers/ore_algebra)

e Arb library (https://arblib.org/)
e some Sage functions (the method .minimal_approximant_basis
of polynomial matrices for Hermite-Padé approximation, ...)


https://github.com/a-goyer/diffop_factorization
https://github.com/mkauers/ore_algebra
https://arblib.org/

operator order DEtools (*) diffop_factorization
fce3 (*%*) 3 0.182s 0.148s
fcch (*¥*) 4 0.630s 1.32s
fcch (**) 6 61.9s 12.9s
fccb (**) 8 >10h 432s
lclm(fce3, fecd) 7 66.6s 98.0s
fccd x fec3 7 1.88s 31.5s
fee3 X fec4 7 4.59s 24.8s
fecd? 8 122.s 108.s
random4 X fcc3 7 2.04s 169.s
random4 X random3 7 2.40s 404.s
(220 4+ 3)((z — 3)0 + 42°) 2 >10h 1.96s

(*) command DFactor of the Maple package DEtools (author: van Hoeij)
(**) http://koutschan.de/data/fccl/ (probabilistic walks)


http://koutschan.de/data/fcc1/

Thank you for listening!

an implementation of van der Hoeven's algorithm for factorization
of operators is now available! ©

» confirmation that symbolic-numeric approach can compete with
purely symbolic approach!

> detailed proofs of correction of the irreducible case

» study the theoretical complexity

» non-Fuchsian case

> algebraic/exponential /liouvillian solutions




