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Linear differential operators

Object of study. Let ai ∈ Q(z).

(E ) : an(z)f
(n)(z) + · · ·+ a1(z)f

′(z) + a0(z)f (z) = 0

Formalism. f solution of (E ) ⇔ L · f = 0 where

L = an∂
n + · · ·+ a1∂ + a0 ∈ Q(z)〈∂〉

is a so-called linear differential operator.

Leibniz rule: (zf )′ = zf ′ + f → ∂z = z∂ + 1

Example. L = z∂2 + (−4z3 + 5z)∂ + 4z2 − 5
and an example of factorization:

z∂2 + (−4z3 + 5z)∂ + 4z2 − 5 = (∂ − 4z2 + 5)(z∂ − 1)
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History

Factoring a linear differential operator

1894: Beke (right-hand factor
of order 1)

1996: Singer (adaptation of
Berlekamp’s algorithm)

1997: van Hoeij (algorithm of the
type “local → global”)

2004: Cluzeau, van Hoeij (modular algorithm)

2007: van der Hoeven (symbolic-numeric algorithm)

Improvements of
Beke’s algorithm

− 1989: Schwarz
− 1990: Grigor’ev
− 1994: Bronstein
− 1996: Tsarev

Complexity analysis (bounds on coefficients):
1990: Grigor’ev
2020: Bostan, Rivoal, Salvy
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Space of solutions at an ordinary point

Let F denote Q(z) and consider a differential operator L ∈ F〈∂〉.
Write L = q (an∂

n + · · ·+ a1∂ + a0) with q ∈ Q(z) such that the
ai ∈ Q[z ] are coprime.

Definition. A point z0 ∈ C is an ordinary point of L if an(z0) 6= 0.
Otherwise, it is a singular point (or a singularity) of L.

Fix an ordinary point z0 of L.

Proposition. For each 1 ≤ i ≤ n, there is a unique power series
hi =

∑+∞
j=0 hi ,j(z − z0)

j such that:
hi est solution of L in a neighborhood of z0,

h
(j)
i (z0) = δi ,j+1 for 0 ≤ j < n.

Remark. The basis (h1, . . . , hn) gives an canonical identification of
the solution space Sol(L) := SpanQ(h1, . . . , hn) with Qn.
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Symbolic-numeric approach

approximation → guessing → post-certification

Factorization of a reducible polynomial P ∈ Q[X ] [Lenstra, 1984]

1: compute an approximation x̃ of a solution x ∈ C (Newton’s method)

2: guess the minimal polynomial mx ∈ Q[X ] from x̃ (LLL algorithm)

3: check that mx divides P (Euclidean division)

Factorization of a reducible operator L ∈ F〈∂〉 where F = Q(z)

1: compute an approximation ỹ of a solution y ∈ Q[[z − z0]]
(differential equation ↔ recurrence relation on coefficients)

2: guess the minimal operator my ∈ Q[z ]〈∂〉 from ỹ
(Hermite–Padé approximants)

3: check that my divides L in Q(z)〈∂〉 (right-Euclidean division)

if y is not
well-chosen
then my = L
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Differential Galois group [Singer, van der Put, 2003]

polynomial P ∈ Q[X ] operator L ∈ F〈∂〉

degree d order n
d roots x1, . . . , xd ∈ Q
counted with multiplicity

n linearly independent
solutions y1, . . . , yn ∈ Q[[z − z0]]

splitting field L = Q(xi ) Picard–Vessiot extension E = F(yi )

Gal(P) := Aut (L/Q) Galdiff(L) :=
{

σ∈Aut(E/F)
s.t. σ ◦ ∂ = ∂ ◦ σ

}
linear left action of Galdiff(L)

on Sol(L) = {f ∈ E | L · f = 0}

Proposition. There is a one-to-one correspondance:

V = Ker(L2)
L = L1L2

subspace V invariant
under the action of the
differential Galois group
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Monodromy [Mitschi, Sauzin, 2016]

Example: L = z∂2 + ∂

•1

(
1

log(z)

)

(
1

log(z) + 2iπ

)
?0

(
1 0
2iπ 1

)
︸ ︷︷ ︸

(
1

log(z)

)
=

(
1

log(z) + 2iπ

)
monodromy of L around the
singularity 0

Theorem. [Schlesinger, 1885]
Let L ∈ F〈∂〉 be an operator.
If L is Fuchsian then Galdiff(L) is
the Zariski-closure of the group
generated by the monodromy ma-
trices of L (with a fixed base-point).

How to check the Fuchsianity of L?
→ Fuchs’ Criterion [Fuchs, 1866]

What if L is not Fuchsian?
→ add exponential matrices

and Stokes’s matrices
[Ramis, 1985]
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Factorization and invariant subspace of Sol(L) ' Cn

If L is Fuchsian:
L = L1L2

subspace V invariant
under the action of the
the monodromy matrices

∗s1
M1 ∗s2

M2

∗
s3

M3

•z0

L ∈ Q(z)〈∂〉 with singularities s1, . . . , sr

monodromy matrices M1, . . . ,Mr ∈ Matn(C)

no non-trivial subspace of Sol(L) is
invariant under the action of the Mi ’s

L is irreducible

a non-trivial subspace V ⊂ Sol(L)
invariant under the action of the Mi ’s

L2 ∈ Q(z)〈∂〉 a minimal
annihilator of a non-zero f ∈ V

L = L1L2
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Orbit

LetM = {M1, . . . ,Mr} ⊂ Matn(C) be a finite list of matrices.

A := C[M], the algebra of non-commutative polynomials in the Mi ’s
OrbM(v) := {Mv ; M ∈ A}, the orbit of v under the action ofM

Algorithm Orbit(M, v)

Input: a listM = {M1, . . . ,Mr} ⊂ Matn(C) and v ∈ Cn

Output: the orbit of v under the action of the Mi ’s

Proposition. There is a non-trivialM-invariant subspace V ⊂ Cn

iff there is a non-zero vector v ∈ Cn such that OrbM(v) ( Cn.
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Irreducible case

Proposition [van der Hoeven, 2007]. Let (v1, ..., vn) be a basis
of Cn such that the projection maps onto the Cvi ’s belong to A.
Then there is a non-trivialM-invariant subspace V ⊂ Cn iff there
is an index i such that OrbM(vi ) ( Cn.

Remark. Let M ∈ A. Denote by λ1, . . . , λk the eigenvalues, with
multiplicities m1, . . . ,mk , of M. For each j , the projection map
onto the generalized eigenspace Ej := Ker ((M − λj In)mj ) is
polynomial in M (therefore it belongs to A).

Lemma 1. Assume that there is no non-trivialM-invariant
subspace. Then there is an M ∈ A with exactly n eigenvalues.

Lemma 2. Consider N1, . . . ,Ns ∈ Matn(C) and take a random
linear combination N ∈ SpanC(N1, . . . ,Ns).
With probability 1, the number of eigenvalues of N is maximal.
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Simplified version of the algorithm in [van der Hoeven, 2007]

Algorithm Invariant_Subspace(M)

Input: a listM = {M1, . . . ,Mr} ⊂ Matn(C)
Output: a non-trivialM-invariant subspace or None

1: take a random M ∈ A := C[M]
2: for each 1-dimensional generalized eigenspace E of M do
3: if Orbit(M,E ) 6= Cn then
4: return Orbit(M,E )
5: if all the generalized eigenspaces of M are 1-dimensional then
6: return None
7: else
8: take a generalized eigenspace E of M of dimension > 1
9: select v ∈ E such that Orbit(M, v) 6= Cn /* (details hidden) */
10: return Orbit(M, v)
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Interval arithmetic [Moore, 1962]

Implementation of operations +, −, ×, ÷,
√
·, . . . on intervals in

such a way that the following invariant is respected.

Motto

The interval contains the exact value.

Example: Let π := [3.1415, 3.1416] be an interval representing π.
We require that

√
π ⊃ {x ∈ R such that 3.1415 ≤ x2 ≤ 3.1416}.

Difficulties
Overestimation
Testing nullity

Extensions
Complex numbers
Vectors, matrices
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Interval version of the algorithm for computing
an invariant subspace

Algorithm Invariant_Subspace(M)

Input: a list M = {M1, . . . ,M r} ⊂ Matn(C )
Output: a non-trivial M-invariant subspace or None or Fail
1: take a random M ∈ A := C [M]
2: for each 1-dimensional generalized eigenspace E of M do /* can Fail */
3: if Orbit(M,E ) 6= C n then
4: return Orbit(M,E )
5: if all the generalized eigenspaces of M are 1-dimensional then
6: return None
7: else
8: take a generalized eigenspace E of M of dimension > 1
9: select v ∈ E such that Orbit(M, v) 6= C n /* can Fail (details hidden) */
10: return Orbit(M, v)

rigorous output
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Symbolic-numeric factorization [van der Hoeven, 2007]

Algorithm Right_∂Factor(L)

Input: a Fuchsian operator L ∈ Q(z)〈∂〉
Output: a non-trivial right factor ∈ Q(z)〈∂〉 of L or Irreducible
1: loop
2: compute M = {M1, . . . ,M r} the monodromy matrices by

approximations with rigorous error bounds
3: V = Invariant_Subspace(M)
4: if V is Fail then
5: increase precision
6: else-if V is None then
7: return Irreducible
8: else
9: guess a candidate operator L2 from V
10: if L2 divides L then
11: return L2
12: else
13: increase precision and order of truncation
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The code

In SageMath system, source available at
https://github.com/a-goyer/diffop_factorization.

Main functions
InvSub (interval version, with rigorous None)
right_dfactor, dfactor
and the structure ComplexOptimisticField

The code takes advantage of:
ore_algebra package, in particular the subpackage analytic for
arbitrary-precision monodromy computation
(https://github.com/mkauers/ore_algebra)
Arb library (https://arblib.org/)
some Sage functions (the method .minimal_approximant_basis
of polynomial matrices for Hermite–Padé approximation, . . . )
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Comparison of running times

operator order DEtools (*) diffop_factorization

fcc3 (**) 3 0.182s 0.148s
fcc4 (**) 4 0.630s 1.32s
fcc5 (**) 6 61.9s 12.9s
fcc6 (**) 8 >10h 432s

lclm(fcc3, fcc4) 7 66.6s 98.0s
fcc4× fcc3 7 1.88s 31.5s
fcc3× fcc4 7 4.59s 24.8s

fcc42 8 122.s 108.s
random4× fcc3 7 2.04s 169.s

random4× random3 7 2.40s 404.s
(z2∂ + 3)((z − 3)∂ + 4z5) 2 >10h 1.96s

(*) command DFactor of the Maple package DEtools (author: van Hoeij)
(**) http://koutschan.de/data/fcc1/ (probabilistic walks)
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Thank you for listening!

Summary
an implementation of van der Hoeven’s algorithm for factorization
of operators is now available!
confirmation that symbolic-numeric approach can compete with
purely symbolic approach!
detailed proofs of correction of the irreducible case

Remaining work and outlook
study the theoretical complexity
non-Fuchsian case
algebraic/exponential/liouvillian solutions
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